blob: d7bf6560e97a6a1b2dfed36958b6b6f6eb1b5159 [file] [log] [blame]
/*
* Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* __ieee754_sinh(x)
* Method :
* mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
* 1. Replace x by |x| (sinh(-x) = -sinh(x)).
* 2.
* E + E/(E+1)
* 0 <= x <= 22 : sinh(x) := --------------, E=expm1(x)
* 2
*
* 22 <= x <= lnovft : sinh(x) := exp(x)/2
* lnovft <= x <= ln2ovft: sinh(x) := exp(x/2)/2 * exp(x/2)
* ln2ovft < x : sinh(x) := x*shuge (overflow)
*
* Special cases:
* sinh(x) is |x| if x is +INF, -INF, or NaN.
* only sinh(0)=0 is exact for finite x.
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double one = 1.0, shuge = 1.0e307;
#else
static double one = 1.0, shuge = 1.0e307;
#endif
#ifdef __STDC__
double __ieee754_sinh(double x)
#else
double __ieee754_sinh(x)
double x;
#endif
{
double t,w,h;
int ix,jx;
unsigned lx;
/* High word of |x|. */
jx = __HI(x);
ix = jx&0x7fffffff;
/* x is INF or NaN */
if(ix>=0x7ff00000) return x+x;
h = 0.5;
if (jx<0) h = -h;
/* |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) */
if (ix < 0x40360000) { /* |x|<22 */
if (ix<0x3e300000) /* |x|<2**-28 */
if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */
t = expm1(fabs(x));
if(ix<0x3ff00000) return h*(2.0*t-t*t/(t+one));
return h*(t+t/(t+one));
}
/* |x| in [22, log(maxdouble)] return 0.5*exp(|x|) */
if (ix < 0x40862E42) return h*__ieee754_exp(fabs(x));
/* |x| in [log(maxdouble), overflowthresold] */
lx = *( (((*(unsigned*)&one)>>29)) + (unsigned*)&x);
if (ix<0x408633CE || ((ix==0x408633ce)&&(lx<=(unsigned)0x8fb9f87d))) {
w = __ieee754_exp(0.5*fabs(x));
t = h*w;
return t*w;
}
/* |x| > overflowthresold, sinh(x) overflow */
return x*shuge;
}