blob: 9d9c0ae94b30550f531d0571994d50d74451a2ec [file] [log] [blame]
/*
* Copyright (c) 2003, 2008, Oracle and/or its affiliates. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Oracle nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* All I/O functionality for hprof. */
/*
* The hprof agent has many forms of output:
*
* format=b gdata->output_format=='b'
* Binary format. Defined below. This is used by HAT.
* This is NOT the same format as emitted by JVMPI.
*
* format=a gdata->output_format=='a'
* Ascii format. Not exactly an ascii representation of the binary format.
*
* And many forms of dumps:
*
* heap=dump
* A large dump that in this implementation is written to a separate
* file first before being placed in the output file. Several reasons,
* the binary form needs a byte count of the length in the header, and
* references in this dump to other items need to be emitted first.
* So it's two pass, or use a temp file and copy.
* heap=sites
* Dumps the sites in the order of most allocations.
* cpu=samples
* Dumps the traces in order of most hits
* cpu=times
* Dumps the traces in the order of most time spent there.
* cpu=old (format=a only)
* Dumps out an older form of cpu output (old -prof format)
* monitor=y (format=a only)
* Dumps out a list of monitors in order of most contended.
*
* This file also includes a binary format check function that will read
* back in the hprof binary format and verify the syntax looks correct.
*
* WARNING: Besides the comments below, there is little format spec on this,
* however see:
* http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html#hprof
*/
#include "hprof.h"
typedef TableIndex HprofId;
#include "hprof_ioname.h"
#include "hprof_b_spec.h"
static int type_size[ /*HprofType*/ ] = HPROF_TYPE_SIZES;
static void dump_heap_segment_and_reset(jlong segment_size);
static void
not_implemented(void)
{
}
static IoNameIndex
get_name_index(char *name)
{
if (name != NULL && gdata->output_format == 'b') {
return ioname_find_or_create(name, NULL);
}
return 0;
}
static char *
signature_to_name(char *sig)
{
char *ptr;
char *basename;
char *name;
int i;
int len;
int name_len;
if ( sig != NULL ) {
switch ( sig[0] ) {
case JVM_SIGNATURE_CLASS:
ptr = strchr(sig+1, JVM_SIGNATURE_ENDCLASS);
if ( ptr == NULL ) {
basename = "Unknown_class";
break;
}
/*LINTED*/
name_len = (jint)(ptr - (sig+1));
name = HPROF_MALLOC(name_len+1);
(void)memcpy(name, sig+1, name_len);
name[name_len] = 0;
for ( i = 0 ; i < name_len ; i++ ) {
if ( name[i] == '/' ) name[i] = '.';
}
return name;
case JVM_SIGNATURE_ARRAY:
basename = signature_to_name(sig+1);
len = (int)strlen(basename);
name_len = len+2;
name = HPROF_MALLOC(name_len+1);
(void)memcpy(name, basename, len);
(void)memcpy(name+len, "[]", 2);
name[name_len] = 0;
HPROF_FREE(basename);
return name;
case JVM_SIGNATURE_FUNC:
ptr = strchr(sig+1, JVM_SIGNATURE_ENDFUNC);
if ( ptr == NULL ) {
basename = "Unknown_method";
break;
}
basename = "()"; /* Someday deal with method signatures */
break;
case JVM_SIGNATURE_BYTE:
basename = "byte";
break;
case JVM_SIGNATURE_CHAR:
basename = "char";
break;
case JVM_SIGNATURE_ENUM:
basename = "enum";
break;
case JVM_SIGNATURE_FLOAT:
basename = "float";
break;
case JVM_SIGNATURE_DOUBLE:
basename = "double";
break;
case JVM_SIGNATURE_INT:
basename = "int";
break;
case JVM_SIGNATURE_LONG:
basename = "long";
break;
case JVM_SIGNATURE_SHORT:
basename = "short";
break;
case JVM_SIGNATURE_VOID:
basename = "void";
break;
case JVM_SIGNATURE_BOOLEAN:
basename = "boolean";
break;
default:
basename = "Unknown_class";
break;
}
} else {
basename = "Unknown_class";
}
/* Simple basename */
name_len = (int)strlen(basename);
name = HPROF_MALLOC(name_len+1);
(void)strcpy(name, basename);
return name;
}
static int
size_from_field_info(int size)
{
if ( size == 0 ) {
size = (int)sizeof(HprofId);
}
return size;
}
static void
type_from_signature(const char *sig, HprofType *kind, jint *size)
{
*kind = HPROF_NORMAL_OBJECT;
*size = 0;
switch ( sig[0] ) {
case JVM_SIGNATURE_ENUM:
case JVM_SIGNATURE_CLASS:
case JVM_SIGNATURE_ARRAY:
*kind = HPROF_NORMAL_OBJECT;
break;
case JVM_SIGNATURE_BOOLEAN:
*kind = HPROF_BOOLEAN;
break;
case JVM_SIGNATURE_CHAR:
*kind = HPROF_CHAR;
break;
case JVM_SIGNATURE_FLOAT:
*kind = HPROF_FLOAT;
break;
case JVM_SIGNATURE_DOUBLE:
*kind = HPROF_DOUBLE;
break;
case JVM_SIGNATURE_BYTE:
*kind = HPROF_BYTE;
break;
case JVM_SIGNATURE_SHORT:
*kind = HPROF_SHORT;
break;
case JVM_SIGNATURE_INT:
*kind = HPROF_INT;
break;
case JVM_SIGNATURE_LONG:
*kind = HPROF_LONG;
break;
default:
HPROF_ASSERT(0);
break;
}
*size = type_size[*kind];
}
static void
type_array(const char *sig, HprofType *kind, jint *elem_size)
{
*kind = 0;
*elem_size = 0;
switch ( sig[0] ) {
case JVM_SIGNATURE_ARRAY:
type_from_signature(sig+1, kind, elem_size);
break;
}
}
static void
system_error(const char *system_call, int rc, int errnum)
{
char buf[256];
char details[256];
details[0] = 0;
if ( errnum != 0 ) {
md_system_error(details, (int)sizeof(details));
} else if ( rc >= 0 ) {
(void)strcpy(details,"Only part of buffer processed");
}
if ( details[0] == 0 ) {
(void)strcpy(details,"Unknown system error condition");
}
(void)md_snprintf(buf, sizeof(buf), "System %s failed: %s\n",
system_call, details);
HPROF_ERROR(JNI_TRUE, buf);
}
static void
system_write(int fd, void *buf, int len, jboolean socket)
{
int res;
HPROF_ASSERT(fd>=0);
if (socket) {
res = md_send(fd, buf, len, 0);
if (res < 0 || res!=len) {
system_error("send", res, errno);
}
} else {
res = md_write(fd, buf, len);
if (res < 0 || res!=len) {
system_error("write", res, errno);
}
}
}
static void
write_flush(void)
{
HPROF_ASSERT(gdata->fd >= 0);
if (gdata->write_buffer_index) {
system_write(gdata->fd, gdata->write_buffer, gdata->write_buffer_index,
gdata->socket);
gdata->write_buffer_index = 0;
}
}
static void
heap_flush(void)
{
HPROF_ASSERT(gdata->heap_fd >= 0);
if (gdata->heap_buffer_index) {
gdata->heap_write_count += (jlong)gdata->heap_buffer_index;
system_write(gdata->heap_fd, gdata->heap_buffer, gdata->heap_buffer_index,
JNI_FALSE);
gdata->heap_buffer_index = 0;
}
}
static void
write_raw(void *buf, int len)
{
HPROF_ASSERT(gdata->fd >= 0);
if (gdata->write_buffer_index + len > gdata->write_buffer_size) {
write_flush();
if (len > gdata->write_buffer_size) {
system_write(gdata->fd, buf, len, gdata->socket);
return;
}
}
(void)memcpy(gdata->write_buffer + gdata->write_buffer_index, buf, len);
gdata->write_buffer_index += len;
}
static void
write_u4(unsigned i)
{
i = md_htonl(i);
write_raw(&i, (jint)sizeof(unsigned));
}
static void
write_u8(jlong t)
{
write_u4((jint)jlong_high(t));
write_u4((jint)jlong_low(t));
}
static void
write_u2(unsigned short i)
{
i = md_htons(i);
write_raw(&i, (jint)sizeof(unsigned short));
}
static void
write_u1(unsigned char i)
{
write_raw(&i, (jint)sizeof(unsigned char));
}
static void
write_id(HprofId i)
{
write_u4(i);
}
static void
write_current_ticks(void)
{
write_u4((jint)(md_get_microsecs() - gdata->micro_sec_ticks));
}
static void
write_header(unsigned char type, jint length)
{
write_u1(type);
write_current_ticks();
write_u4(length);
}
static void
write_index_id(HprofId index)
{
write_id(index);
}
static IoNameIndex
write_name_first(char *name)
{
if ( name == NULL ) {
return 0;
}
if (gdata->output_format == 'b') {
IoNameIndex name_index;
jboolean new_one;
new_one = JNI_FALSE;
name_index = ioname_find_or_create(name, &new_one);
if ( new_one ) {
int len;
len = (int)strlen(name);
write_header(HPROF_UTF8, len + (jint)sizeof(HprofId));
write_index_id(name_index);
write_raw(name, len);
}
return name_index;
}
return 0;
}
static void
write_printf(char *fmt, ...)
{
char buf[1024];
va_list args;
va_start(args, fmt);
(void)md_vsnprintf(buf, sizeof(buf), fmt, args);
buf[sizeof(buf)-1] = 0;
write_raw(buf, (int)strlen(buf));
va_end(args);
}
static void
write_thread_serial_number(SerialNumber thread_serial_num, int with_comma)
{
if ( thread_serial_num != 0 ) {
CHECK_THREAD_SERIAL_NO(thread_serial_num);
if ( with_comma ) {
write_printf(" thread %d,", thread_serial_num);
} else {
write_printf(" thread %d", thread_serial_num);
}
} else {
if ( with_comma ) {
write_printf(" <unknown thread>,");
} else {
write_printf(" <unknown thread>");
}
}
}
static void
heap_raw(void *buf, int len)
{
HPROF_ASSERT(gdata->heap_fd >= 0);
if (gdata->heap_buffer_index + len > gdata->heap_buffer_size) {
heap_flush();
if (len > gdata->heap_buffer_size) {
gdata->heap_write_count += (jlong)len;
system_write(gdata->heap_fd, buf, len, JNI_FALSE);
return;
}
}
(void)memcpy(gdata->heap_buffer + gdata->heap_buffer_index, buf, len);
gdata->heap_buffer_index += len;
}
static void
heap_u4(unsigned i)
{
i = md_htonl(i);
heap_raw(&i, (jint)sizeof(unsigned));
}
static void
heap_u8(jlong i)
{
heap_u4((jint)jlong_high(i));
heap_u4((jint)jlong_low(i));
}
static void
heap_u2(unsigned short i)
{
i = md_htons(i);
heap_raw(&i, (jint)sizeof(unsigned short));
}
static void
heap_u1(unsigned char i)
{
heap_raw(&i, (jint)sizeof(unsigned char));
}
/* Write out the first byte of a heap tag */
static void
heap_tag(unsigned char tag)
{
jlong pos;
/* Current position in virtual heap dump file */
pos = gdata->heap_write_count + (jlong)gdata->heap_buffer_index;
if ( gdata->segmented == JNI_TRUE ) { /* 1.0.2 */
if ( pos >= gdata->maxHeapSegment ) {
/* Flush all bytes to the heap dump file */
heap_flush();
/* Send out segment (up to last tag written out) */
dump_heap_segment_and_reset(gdata->heap_last_tag_position);
/* Get new current position */
pos = gdata->heap_write_count + (jlong)gdata->heap_buffer_index;
}
}
/* Save position of this tag */
gdata->heap_last_tag_position = pos;
/* Write out this tag */
heap_u1(tag);
}
static void
heap_id(HprofId i)
{
heap_u4(i);
}
static void
heap_index_id(HprofId index)
{
heap_id(index);
}
static void
heap_name(char *name)
{
heap_index_id(get_name_index(name));
}
static void
heap_printf(char *fmt, ...)
{
char buf[1024];
va_list args;
va_start(args, fmt);
(void)md_vsnprintf(buf, sizeof(buf), fmt, args);
buf[sizeof(buf)-1] = 0;
heap_raw(buf, (int)strlen(buf));
va_end(args);
}
static void
heap_element(HprofType kind, jint size, jvalue value)
{
if ( !HPROF_TYPE_IS_PRIMITIVE(kind) ) {
HPROF_ASSERT(size==4);
heap_id((HprofId)value.i);
} else {
switch ( size ) {
case 8:
HPROF_ASSERT(size==8);
HPROF_ASSERT(kind==HPROF_LONG || kind==HPROF_DOUBLE);
heap_u8(value.j);
break;
case 4:
HPROF_ASSERT(size==4);
HPROF_ASSERT(kind==HPROF_INT || kind==HPROF_FLOAT);
heap_u4(value.i);
break;
case 2:
HPROF_ASSERT(size==2);
HPROF_ASSERT(kind==HPROF_SHORT || kind==HPROF_CHAR);
heap_u2(value.s);
break;
case 1:
HPROF_ASSERT(size==1);
HPROF_ASSERT(kind==HPROF_BOOLEAN || kind==HPROF_BYTE);
HPROF_ASSERT(kind==HPROF_BOOLEAN?(value.b==0 || value.b==1):1);
heap_u1(value.b);
break;
default:
HPROF_ASSERT(0);
break;
}
}
}
/* Dump out all elements of an array, objects in jvalues, prims packed */
static void
heap_elements(HprofType kind, jint num_elements, jint elem_size, void *elements)
{
int i;
jvalue val;
static jvalue empty_val;
if ( num_elements == 0 ) {
return;
}
switch ( kind ) {
case 0:
case HPROF_ARRAY_OBJECT:
case HPROF_NORMAL_OBJECT:
for (i = 0; i < num_elements; i++) {
val = empty_val;
val.i = ((ObjectIndex*)elements)[i];
heap_element(kind, elem_size, val);
}
break;
case HPROF_BYTE:
case HPROF_BOOLEAN:
HPROF_ASSERT(elem_size==1);
for (i = 0; i < num_elements; i++) {
val = empty_val;
val.b = ((jboolean*)elements)[i];
heap_element(kind, elem_size, val);
}
break;
case HPROF_CHAR:
case HPROF_SHORT:
HPROF_ASSERT(elem_size==2);
for (i = 0; i < num_elements; i++) {
val = empty_val;
val.s = ((jshort*)elements)[i];
heap_element(kind, elem_size, val);
}
break;
case HPROF_FLOAT:
case HPROF_INT:
HPROF_ASSERT(elem_size==4);
for (i = 0; i < num_elements; i++) {
val = empty_val;
val.i = ((jint*)elements)[i];
heap_element(kind, elem_size, val);
}
break;
case HPROF_DOUBLE:
case HPROF_LONG:
HPROF_ASSERT(elem_size==8);
for (i = 0; i < num_elements; i++) {
val = empty_val;
val.j = ((jlong*)elements)[i];
heap_element(kind, elem_size, val);
}
break;
}
}
/* ------------------------------------------------------------------ */
void
io_flush(void)
{
HPROF_ASSERT(gdata->header!=NULL);
write_flush();
}
void
io_setup(void)
{
gdata->write_buffer_size = FILE_IO_BUFFER_SIZE;
gdata->write_buffer = HPROF_MALLOC(gdata->write_buffer_size);
gdata->write_buffer_index = 0;
gdata->heap_write_count = (jlong)0;
gdata->heap_last_tag_position = (jlong)0;
gdata->heap_buffer_size = FILE_IO_BUFFER_SIZE;
gdata->heap_buffer = HPROF_MALLOC(gdata->heap_buffer_size);
gdata->heap_buffer_index = 0;
if ( gdata->logflags & LOG_CHECK_BINARY ) {
gdata->check_buffer_size = FILE_IO_BUFFER_SIZE;
gdata->check_buffer = HPROF_MALLOC(gdata->check_buffer_size);
gdata->check_buffer_index = 0;
}
ioname_init();
}
void
io_cleanup(void)
{
if ( gdata->write_buffer != NULL ) {
HPROF_FREE(gdata->write_buffer);
}
gdata->write_buffer_size = 0;
gdata->write_buffer = NULL;
gdata->write_buffer_index = 0;
if ( gdata->heap_buffer != NULL ) {
HPROF_FREE(gdata->heap_buffer);
}
gdata->heap_write_count = (jlong)0;
gdata->heap_last_tag_position = (jlong)0;
gdata->heap_buffer_size = 0;
gdata->heap_buffer = NULL;
gdata->heap_buffer_index = 0;
if ( gdata->logflags & LOG_CHECK_BINARY ) {
if ( gdata->check_buffer != NULL ) {
HPROF_FREE(gdata->check_buffer);
}
gdata->check_buffer_size = 0;
gdata->check_buffer = NULL;
gdata->check_buffer_index = 0;
}
ioname_cleanup();
}
void
io_write_file_header(void)
{
HPROF_ASSERT(gdata->header!=NULL);
if (gdata->output_format == 'b') {
jint settings;
jlong t;
settings = 0;
if (gdata->heap_dump || gdata->alloc_sites) {
settings |= 1;
}
if (gdata->cpu_sampling) {
settings |= 2;
}
t = md_get_timemillis();
write_raw(gdata->header, (int)strlen(gdata->header) + 1);
write_u4((jint)sizeof(HprofId));
write_u8(t);
write_header(HPROF_CONTROL_SETTINGS, 4 + 2);
write_u4(settings);
write_u2((unsigned short)gdata->max_trace_depth);
} else if ((!gdata->cpu_timing) || (!gdata->old_timing_format)) {
/* We don't want the prelude file for the old prof output format */
time_t t;
char prelude_file[FILENAME_MAX];
int prelude_fd;
int nbytes;
t = time(0);
md_get_prelude_path(prelude_file, sizeof(prelude_file), PRELUDE_FILE);
prelude_fd = md_open(prelude_file);
if (prelude_fd < 0) {
char buf[FILENAME_MAX+80];
(void)md_snprintf(buf, sizeof(buf), "Can't open %s", prelude_file);
buf[sizeof(buf)-1] = 0;
HPROF_ERROR(JNI_TRUE, buf);
}
write_printf("%s, created %s\n", gdata->header, ctime(&t));
do {
char buf[1024]; /* File is small, small buffer ok here */
nbytes = md_read(prelude_fd, buf, sizeof(buf));
if ( nbytes < 0 ) {
system_error("read", nbytes, errno);
break;
}
if (nbytes == 0) {
break;
}
write_raw(buf, nbytes);
} while ( nbytes > 0 );
md_close(prelude_fd);
write_printf("\n--------\n\n");
write_flush();
}
}
void
io_write_file_footer(void)
{
HPROF_ASSERT(gdata->header!=NULL);
}
void
io_write_class_load(SerialNumber class_serial_num, ObjectIndex index,
SerialNumber trace_serial_num, char *sig)
{
CHECK_CLASS_SERIAL_NO(class_serial_num);
CHECK_TRACE_SERIAL_NO(trace_serial_num);
if (gdata->output_format == 'b') {
IoNameIndex name_index;
char *class_name;
class_name = signature_to_name(sig);
name_index = write_name_first(class_name);
write_header(HPROF_LOAD_CLASS, (2 * (jint)sizeof(HprofId)) + (4 * 2));
write_u4(class_serial_num);
write_index_id(index);
write_u4(trace_serial_num);
write_index_id(name_index);
HPROF_FREE(class_name);
}
}
void
io_write_class_unload(SerialNumber class_serial_num, ObjectIndex index)
{
CHECK_CLASS_SERIAL_NO(class_serial_num);
if (gdata->output_format == 'b') {
write_header(HPROF_UNLOAD_CLASS, 4);
write_u4(class_serial_num);
}
}
void
io_write_sites_header(const char * comment_str, jint flags, double cutoff,
jint total_live_bytes, jint total_live_instances,
jlong total_alloced_bytes, jlong total_alloced_instances,
jint count)
{
if ( gdata->output_format == 'b') {
write_header(HPROF_ALLOC_SITES, 2 + (8 * 4) + (count * (4 * 6 + 1)));
write_u2((unsigned short)flags);
write_u4(*(int *)(&cutoff));
write_u4(total_live_bytes);
write_u4(total_live_instances);
write_u8(total_alloced_bytes);
write_u8(total_alloced_instances);
write_u4(count);
} else {
time_t t;
t = time(0);
write_printf("SITES BEGIN (ordered by %s) %s", comment_str, ctime(&t));
write_printf(
" percent live alloc'ed stack class\n");
write_printf(
" rank self accum bytes objs bytes objs trace name\n");
}
}
void
io_write_sites_elem(jint index, double ratio, double accum_percent,
char *sig, SerialNumber class_serial_num,
SerialNumber trace_serial_num, jint n_live_bytes,
jint n_live_instances, jint n_alloced_bytes,
jint n_alloced_instances)
{
CHECK_CLASS_SERIAL_NO(class_serial_num);
CHECK_TRACE_SERIAL_NO(trace_serial_num);
if ( gdata->output_format == 'b') {
HprofType kind;
jint size;
type_array(sig, &kind, &size);
write_u1(kind);
write_u4(class_serial_num);
write_u4(trace_serial_num);
write_u4(n_live_bytes);
write_u4(n_live_instances);
write_u4(n_alloced_bytes);
write_u4(n_alloced_instances);
} else {
char *class_name;
class_name = signature_to_name(sig);
write_printf("%5u %5.2f%% %5.2f%% %9u %4u %9u %5u %5u %s\n",
index,
ratio * 100.0,
accum_percent * 100.0,
n_live_bytes,
n_live_instances,
n_alloced_bytes,
n_alloced_instances,
trace_serial_num,
class_name);
HPROF_FREE(class_name);
}
}
void
io_write_sites_footer(void)
{
if (gdata->output_format == 'b') {
not_implemented();
} else {
write_printf("SITES END\n");
}
}
void
io_write_thread_start(SerialNumber thread_serial_num,
ObjectIndex thread_obj_id,
SerialNumber trace_serial_num, char *thread_name,
char *thread_group_name, char *thread_parent_name)
{
CHECK_THREAD_SERIAL_NO(thread_serial_num);
CHECK_TRACE_SERIAL_NO(trace_serial_num);
if (gdata->output_format == 'b') {
IoNameIndex tname_index;
IoNameIndex gname_index;
IoNameIndex pname_index;
tname_index = write_name_first(thread_name);
gname_index = write_name_first(thread_group_name);
pname_index = write_name_first(thread_parent_name);
write_header(HPROF_START_THREAD, ((jint)sizeof(HprofId) * 4) + (4 * 2));
write_u4(thread_serial_num);
write_index_id(thread_obj_id);
write_u4(trace_serial_num);
write_index_id(tname_index);
write_index_id(gname_index);
write_index_id(pname_index);
} else if ( (!gdata->cpu_timing) || (!gdata->old_timing_format)) {
/* We don't want thread info for the old prof output format */
write_printf("THREAD START "
"(obj=%x, id = %d, name=\"%s\", group=\"%s\")\n",
thread_obj_id, thread_serial_num,
(thread_name==NULL?"":thread_name),
(thread_group_name==NULL?"":thread_group_name));
}
}
void
io_write_thread_end(SerialNumber thread_serial_num)
{
CHECK_THREAD_SERIAL_NO(thread_serial_num);
if (gdata->output_format == 'b') {
write_header(HPROF_END_THREAD, 4);
write_u4(thread_serial_num);
} else if ( (!gdata->cpu_timing) || (!gdata->old_timing_format)) {
/* we don't want thread info for the old prof output format */
write_printf("THREAD END (id = %d)\n", thread_serial_num);
}
}
void
io_write_frame(FrameIndex index, SerialNumber frame_serial_num,
char *mname, char *msig, char *sname,
SerialNumber class_serial_num, jint lineno)
{
CHECK_CLASS_SERIAL_NO(class_serial_num);
if (gdata->output_format == 'b') {
IoNameIndex mname_index;
IoNameIndex msig_index;
IoNameIndex sname_index;
mname_index = write_name_first(mname);
msig_index = write_name_first(msig);
sname_index = write_name_first(sname);
write_header(HPROF_FRAME, ((jint)sizeof(HprofId) * 4) + (4 * 2));
write_index_id(index);
write_index_id(mname_index);
write_index_id(msig_index);
write_index_id(sname_index);
write_u4(class_serial_num);
write_u4(lineno);
}
}
void
io_write_trace_header(SerialNumber trace_serial_num,
SerialNumber thread_serial_num, jint n_frames, char *phase_str)
{
CHECK_TRACE_SERIAL_NO(trace_serial_num);
if (gdata->output_format == 'b') {
write_header(HPROF_TRACE, ((jint)sizeof(HprofId) * n_frames) + (4 * 3));
write_u4(trace_serial_num);
write_u4(thread_serial_num);
write_u4(n_frames);
} else {
write_printf("TRACE %u:", trace_serial_num);
if (thread_serial_num) {
write_printf(" (thread=%d)", thread_serial_num);
}
if ( phase_str != NULL ) {
write_printf(" (from %s phase of JVM)", phase_str);
}
write_printf("\n");
if (n_frames == 0) {
write_printf("\t<empty>\n");
}
}
}
void
io_write_trace_elem(SerialNumber trace_serial_num, FrameIndex frame_index,
SerialNumber frame_serial_num,
char *csig, char *mname, char *sname, jint lineno)
{
if (gdata->output_format == 'b') {
write_index_id(frame_index);
} else {
char *class_name;
char linebuf[32];
if (lineno == -2) {
(void)md_snprintf(linebuf, sizeof(linebuf), "Compiled method");
} else if (lineno == -3) {
(void)md_snprintf(linebuf, sizeof(linebuf), "Native method");
} else if (lineno == -1) {
(void)md_snprintf(linebuf, sizeof(linebuf), "Unknown line");
} else {
(void)md_snprintf(linebuf, sizeof(linebuf), "%d", lineno);
}
linebuf[sizeof(linebuf)-1] = 0;
class_name = signature_to_name(csig);
if ( mname == NULL ) {
mname = "<Unknown Method>";
}
if ( sname == NULL ) {
sname = "<Unknown Source>";
}
write_printf("\t%s.%s(%s:%s)\n", class_name, mname, sname, linebuf);
HPROF_FREE(class_name);
}
}
void
io_write_trace_footer(SerialNumber trace_serial_num,
SerialNumber thread_serial_num, jint n_frames)
{
}
#define CPU_SAMPLES_RECORD_NAME ("CPU SAMPLES")
#define CPU_TIMES_RECORD_NAME ("CPU TIME (ms)")
void
io_write_cpu_samples_header(jlong total_cost, jint n_items)
{
if (gdata->output_format == 'b') {
write_header(HPROF_CPU_SAMPLES, (n_items * (4 * 2)) + (4 * 2));
write_u4((jint)total_cost);
write_u4(n_items);
} else {
time_t t;
char *record_name;
if ( gdata->cpu_sampling ) {
record_name = CPU_SAMPLES_RECORD_NAME;
} else {
record_name = CPU_TIMES_RECORD_NAME;
}
t = time(0);
write_printf("%s BEGIN (total = %d) %s", record_name,
/*jlong*/(int)total_cost, ctime(&t));
if ( n_items > 0 ) {
write_printf("rank self accum count trace method\n");
}
}
}
void
io_write_cpu_samples_elem(jint index, double percent, double accum,
jint num_hits, jlong cost, SerialNumber trace_serial_num,
jint n_frames, char *csig, char *mname)
{
CHECK_TRACE_SERIAL_NO(trace_serial_num);
if (gdata->output_format == 'b') {
write_u4((jint)cost);
write_u4(trace_serial_num);
} else {
write_printf("%4u %5.2f%% %5.2f%% %7u %5u",
index, percent, accum, num_hits,
trace_serial_num);
if (n_frames > 0) {
char * class_name;
class_name = signature_to_name(csig);
write_printf(" %s.%s\n", class_name, mname);
HPROF_FREE(class_name);
} else {
write_printf(" <empty trace>\n");
}
}
}
void
io_write_cpu_samples_footer(void)
{
if (gdata->output_format == 'b') {
not_implemented();
} else {
char *record_name;
if ( gdata->cpu_sampling ) {
record_name = CPU_SAMPLES_RECORD_NAME;
} else {
record_name = CPU_TIMES_RECORD_NAME;
}
write_printf("%s END\n", record_name);
}
}
void
io_write_heap_summary(jlong total_live_bytes, jlong total_live_instances,
jlong total_alloced_bytes, jlong total_alloced_instances)
{
if (gdata->output_format == 'b') {
write_header(HPROF_HEAP_SUMMARY, 4 * 6);
write_u4((jint)total_live_bytes);
write_u4((jint)total_live_instances);
write_u8(total_alloced_bytes);
write_u8(total_alloced_instances);
}
}
void
io_write_oldprof_header(void)
{
if ( gdata->old_timing_format ) {
write_printf("count callee caller time\n");
}
}
void
io_write_oldprof_elem(jint num_hits, jint num_frames, char *csig_callee,
char *mname_callee, char *msig_callee, char *csig_caller,
char *mname_caller, char *msig_caller, jlong cost)
{
if ( gdata->old_timing_format ) {
char * class_name_callee;
char * class_name_caller;
class_name_callee = signature_to_name(csig_callee);
class_name_caller = signature_to_name(csig_caller);
write_printf("%d ", num_hits);
if (num_frames >= 1) {
write_printf("%s.%s%s ", class_name_callee,
mname_callee, msig_callee);
} else {
write_printf("%s ", "<unknown callee>");
}
if (num_frames > 1) {
write_printf("%s.%s%s ", class_name_caller,
mname_caller, msig_caller);
} else {
write_printf("%s ", "<unknown caller>");
}
write_printf("%d\n", (int)cost);
HPROF_FREE(class_name_callee);
HPROF_FREE(class_name_caller);
}
}
void
io_write_oldprof_footer(void)
{
}
void
io_write_monitor_header(jlong total_time)
{
if (gdata->output_format == 'b') {
not_implemented();
} else {
time_t t = time(0);
t = time(0);
write_printf("MONITOR TIME BEGIN (total = %u ms) %s",
(int)total_time, ctime(&t));
if (total_time > 0) {
write_printf("rank self accum count trace monitor\n");
}
}
}
void
io_write_monitor_elem(jint index, double percent, double accum,
jint num_hits, SerialNumber trace_serial_num, char *sig)
{
CHECK_TRACE_SERIAL_NO(trace_serial_num);
if (gdata->output_format == 'b') {
not_implemented();
} else {
char *class_name;
class_name = signature_to_name(sig);
write_printf("%4u %5.2f%% %5.2f%% %7u %5u %s (Java)\n",
index, percent, accum, num_hits,
trace_serial_num, class_name);
HPROF_FREE(class_name);
}
}
void
io_write_monitor_footer(void)
{
if (gdata->output_format == 'b') {
not_implemented();
} else {
write_printf("MONITOR TIME END\n");
}
}
void
io_write_monitor_sleep(jlong timeout, SerialNumber thread_serial_num)
{
if (gdata->output_format == 'b') {
not_implemented();
} else {
if ( thread_serial_num == 0 ) {
write_printf("SLEEP: timeout=%d, <unknown thread>\n",
(int)timeout);
} else {
CHECK_THREAD_SERIAL_NO(thread_serial_num);
write_printf("SLEEP: timeout=%d, thread %d\n",
(int)timeout, thread_serial_num);
}
}
}
void
io_write_monitor_wait(char *sig, jlong timeout,
SerialNumber thread_serial_num)
{
if (gdata->output_format == 'b') {
not_implemented();
} else {
if ( thread_serial_num == 0 ) {
write_printf("WAIT: MONITOR %s, timeout=%d, <unknown thread>\n",
sig, (int)timeout);
} else {
CHECK_THREAD_SERIAL_NO(thread_serial_num);
write_printf("WAIT: MONITOR %s, timeout=%d, thread %d\n",
sig, (int)timeout, thread_serial_num);
}
}
}
void
io_write_monitor_waited(char *sig, jlong time_waited,
SerialNumber thread_serial_num)
{
if (gdata->output_format == 'b') {
not_implemented();
} else {
if ( thread_serial_num == 0 ) {
write_printf("WAITED: MONITOR %s, time_waited=%d, <unknown thread>\n",
sig, (int)time_waited);
} else {
CHECK_THREAD_SERIAL_NO(thread_serial_num);
write_printf("WAITED: MONITOR %s, time_waited=%d, thread %d\n",
sig, (int)time_waited, thread_serial_num);
}
}
}
void
io_write_monitor_exit(char *sig, SerialNumber thread_serial_num)
{
if (gdata->output_format == 'b') {
not_implemented();
} else {
if ( thread_serial_num == 0 ) {
write_printf("EXIT: MONITOR %s, <unknown thread>\n", sig);
} else {
CHECK_THREAD_SERIAL_NO(thread_serial_num);
write_printf("EXIT: MONITOR %s, thread %d\n",
sig, thread_serial_num);
}
}
}
void
io_write_monitor_dump_header(void)
{
if (gdata->output_format == 'b') {
not_implemented();
} else {
write_printf("MONITOR DUMP BEGIN\n");
}
}
void
io_write_monitor_dump_thread_state(SerialNumber thread_serial_num,
SerialNumber trace_serial_num,
jint threadState)
{
CHECK_THREAD_SERIAL_NO(thread_serial_num);
CHECK_TRACE_SERIAL_NO(trace_serial_num);
if (gdata->output_format == 'b') {
not_implemented();
} else {
char tstate[20];
tstate[0] = 0;
if (threadState & JVMTI_THREAD_STATE_SUSPENDED) {
(void)strcat(tstate,"S|");
}
if (threadState & JVMTI_THREAD_STATE_INTERRUPTED) {
(void)strcat(tstate,"intr|");
}
if (threadState & JVMTI_THREAD_STATE_IN_NATIVE) {
(void)strcat(tstate,"native|");
}
if ( ! ( threadState & JVMTI_THREAD_STATE_ALIVE ) ) {
if ( threadState & JVMTI_THREAD_STATE_TERMINATED ) {
(void)strcat(tstate,"ZO");
} else {
(void)strcat(tstate,"NS");
}
} else {
if ( threadState & JVMTI_THREAD_STATE_SLEEPING ) {
(void)strcat(tstate,"SL");
} else if ( threadState & JVMTI_THREAD_STATE_BLOCKED_ON_MONITOR_ENTER ) {
(void)strcat(tstate,"MW");
} else if ( threadState & JVMTI_THREAD_STATE_WAITING ) {
(void)strcat(tstate,"CW");
} else if ( threadState & JVMTI_THREAD_STATE_RUNNABLE ) {
(void)strcat(tstate,"R");
} else {
(void)strcat(tstate,"UN");
}
}
write_printf(" THREAD %d, trace %d, status: %s\n",
thread_serial_num, trace_serial_num, tstate);
}
}
void
io_write_monitor_dump_state(char *sig, SerialNumber thread_serial_num,
jint entry_count,
SerialNumber *waiters, jint waiter_count,
SerialNumber *notify_waiters, jint notify_waiter_count)
{
if (gdata->output_format == 'b') {
not_implemented();
} else {
int i;
if ( thread_serial_num != 0 ) {
CHECK_THREAD_SERIAL_NO(thread_serial_num);
write_printf(" MONITOR %s\n", sig);
write_printf("\towner: thread %d, entry count: %d\n",
thread_serial_num, entry_count);
} else {
write_printf(" MONITOR %s unowned\n", sig);
}
write_printf("\twaiting to enter:");
for (i = 0; i < waiter_count; i++) {
write_thread_serial_number(waiters[i],
(i != (waiter_count-1)));
}
write_printf("\n");
write_printf("\twaiting to be notified:");
for (i = 0; i < notify_waiter_count; i++) {
write_thread_serial_number(notify_waiters[i],
(i != (notify_waiter_count-1)));
}
write_printf("\n");
}
}
void
io_write_monitor_dump_footer(void)
{
if (gdata->output_format == 'b') {
not_implemented();
} else {
write_printf("MONITOR DUMP END\n");
}
}
/* ----------------------------------------------------------------- */
/* These functions write to a separate file */
void
io_heap_header(jlong total_live_instances, jlong total_live_bytes)
{
if (gdata->output_format != 'b') {
time_t t;
t = time(0);
heap_printf("HEAP DUMP BEGIN (%u objects, %u bytes) %s",
/*jlong*/(int)total_live_instances,
/*jlong*/(int)total_live_bytes, ctime(&t));
}
}
void
io_heap_root_thread_object(ObjectIndex thread_obj_id,
SerialNumber thread_serial_num, SerialNumber trace_serial_num)
{
CHECK_THREAD_SERIAL_NO(thread_serial_num);
CHECK_TRACE_SERIAL_NO(trace_serial_num);
if (gdata->output_format == 'b') {
heap_tag(HPROF_GC_ROOT_THREAD_OBJ);
heap_id(thread_obj_id);
heap_u4(thread_serial_num);
heap_u4(trace_serial_num);
} else {
heap_printf("ROOT %x (kind=<thread>, id=%u, trace=%u)\n",
thread_obj_id, thread_serial_num, trace_serial_num);
}
}
void
io_heap_root_unknown(ObjectIndex obj_id)
{
if (gdata->output_format == 'b') {
heap_tag(HPROF_GC_ROOT_UNKNOWN);
heap_id(obj_id);
} else {
heap_printf("ROOT %x (kind=<unknown>)\n", obj_id);
}
}
void
io_heap_root_jni_global(ObjectIndex obj_id, SerialNumber gref_serial_num,
SerialNumber trace_serial_num)
{
CHECK_TRACE_SERIAL_NO(trace_serial_num);
if (gdata->output_format == 'b') {
heap_tag(HPROF_GC_ROOT_JNI_GLOBAL);
heap_id(obj_id);
heap_id(gref_serial_num);
} else {
heap_printf("ROOT %x (kind=<JNI global ref>, "
"id=%x, trace=%u)\n",
obj_id, gref_serial_num, trace_serial_num);
}
}
void
io_heap_root_jni_local(ObjectIndex obj_id, SerialNumber thread_serial_num,
jint frame_depth)
{
CHECK_THREAD_SERIAL_NO(thread_serial_num);
if (gdata->output_format == 'b') {
heap_tag(HPROF_GC_ROOT_JNI_LOCAL);
heap_id(obj_id);
heap_u4(thread_serial_num);
heap_u4(frame_depth);
} else {
heap_printf("ROOT %x (kind=<JNI local ref>, "
"thread=%u, frame=%d)\n",
obj_id, thread_serial_num, frame_depth);
}
}
void
io_heap_root_system_class(ObjectIndex obj_id, char *sig, SerialNumber class_serial_num)
{
if (gdata->output_format == 'b') {
heap_tag(HPROF_GC_ROOT_STICKY_CLASS);
heap_id(obj_id);
} else {
char *class_name;
class_name = signature_to_name(sig);
heap_printf("ROOT %x (kind=<system class>, name=%s)\n",
obj_id, class_name);
HPROF_FREE(class_name);
}
}
void
io_heap_root_monitor(ObjectIndex obj_id)
{
if (gdata->output_format == 'b') {
heap_tag(HPROF_GC_ROOT_MONITOR_USED);
heap_id(obj_id);
} else {
heap_printf("ROOT %x (kind=<busy monitor>)\n", obj_id);
}
}
void
io_heap_root_thread(ObjectIndex obj_id, SerialNumber thread_serial_num)
{
CHECK_THREAD_SERIAL_NO(thread_serial_num);
if (gdata->output_format == 'b') {
heap_tag(HPROF_GC_ROOT_THREAD_BLOCK);
heap_id(obj_id);
heap_u4(thread_serial_num);
} else {
heap_printf("ROOT %x (kind=<thread block>, thread=%u)\n",
obj_id, thread_serial_num);
}
}
void
io_heap_root_java_frame(ObjectIndex obj_id, SerialNumber thread_serial_num,
jint frame_depth)
{
CHECK_THREAD_SERIAL_NO(thread_serial_num);
if (gdata->output_format == 'b') {
heap_tag(HPROF_GC_ROOT_JAVA_FRAME);
heap_id(obj_id);
heap_u4(thread_serial_num);
heap_u4(frame_depth);
} else {
heap_printf("ROOT %x (kind=<Java stack>, "
"thread=%u, frame=%d)\n",
obj_id, thread_serial_num, frame_depth);
}
}
void
io_heap_root_native_stack(ObjectIndex obj_id, SerialNumber thread_serial_num)
{
CHECK_THREAD_SERIAL_NO(thread_serial_num);
if (gdata->output_format == 'b') {
heap_tag(HPROF_GC_ROOT_NATIVE_STACK);
heap_id(obj_id);
heap_u4(thread_serial_num);
} else {
heap_printf("ROOT %x (kind=<native stack>, thread=%u)\n",
obj_id, thread_serial_num);
}
}
static jboolean
is_static_field(jint modifiers)
{
if ( modifiers & JVM_ACC_STATIC ) {
return JNI_TRUE;
}
return JNI_FALSE;
}
static jboolean
is_inst_field(jint modifiers)
{
if ( modifiers & JVM_ACC_STATIC ) {
return JNI_FALSE;
}
return JNI_TRUE;
}
void
io_heap_class_dump(ClassIndex cnum, char *sig, ObjectIndex class_id,
SerialNumber trace_serial_num,
ObjectIndex super_id, ObjectIndex loader_id,
ObjectIndex signers_id, ObjectIndex domain_id,
jint size,
jint n_cpool, ConstantPoolValue *cpool,
jint n_fields, FieldInfo *fields, jvalue *fvalues)
{
CHECK_TRACE_SERIAL_NO(trace_serial_num);
if (gdata->output_format == 'b') {
int i;
jint n_static_fields;
jint n_inst_fields;
jint inst_size;
jint saved_inst_size;
n_static_fields = 0;
n_inst_fields = 0;
inst_size = 0;
/* These do NOT go into the heap output */
for ( i = 0 ; i < n_fields ; i++ ) {
if ( fields[i].cnum == cnum &&
is_static_field(fields[i].modifiers) ) {
char *field_name;
field_name = string_get(fields[i].name_index);
(void)write_name_first(field_name);
n_static_fields++;
}
if ( is_inst_field(fields[i].modifiers) ) {
inst_size += size_from_field_info(fields[i].primSize);
if ( fields[i].cnum == cnum ) {
char *field_name;
field_name = string_get(fields[i].name_index);
(void)write_name_first(field_name);
n_inst_fields++;
}
}
}
/* Verify that the instance size we have calculated as we went
* through the fields, matches what is saved away with this
* class.
*/
if ( size >= 0 ) {
saved_inst_size = class_get_inst_size(cnum);
if ( saved_inst_size == -1 ) {
class_set_inst_size(cnum, inst_size);
} else if ( saved_inst_size != inst_size ) {
HPROF_ERROR(JNI_TRUE, "Mis-match on instance size in class dump");
}
}
heap_tag(HPROF_GC_CLASS_DUMP);
heap_id(class_id);
heap_u4(trace_serial_num);
heap_id(super_id);
heap_id(loader_id);
heap_id(signers_id);
heap_id(domain_id);
heap_id(0);
heap_id(0);
heap_u4(inst_size); /* Must match inst_size in instance dump */
heap_u2((unsigned short)n_cpool);
for ( i = 0 ; i < n_cpool ; i++ ) {
HprofType kind;
jint size;
type_from_signature(string_get(cpool[i].sig_index),
&kind, &size);
heap_u2((unsigned short)(cpool[i].constant_pool_index));
heap_u1(kind);
HPROF_ASSERT(!HPROF_TYPE_IS_PRIMITIVE(kind));
heap_element(kind, size, cpool[i].value);
}
heap_u2((unsigned short)n_static_fields);
for ( i = 0 ; i < n_fields ; i++ ) {
if ( fields[i].cnum == cnum &&
is_static_field(fields[i].modifiers) ) {
char *field_name;
HprofType kind;
jint size;
type_from_signature(string_get(fields[i].sig_index),
&kind, &size);
field_name = string_get(fields[i].name_index);
heap_name(field_name);
heap_u1(kind);
heap_element(kind, size, fvalues[i]);
}
}
heap_u2((unsigned short)n_inst_fields); /* Does not include super class */
for ( i = 0 ; i < n_fields ; i++ ) {
if ( fields[i].cnum == cnum &&
is_inst_field(fields[i].modifiers) ) {
HprofType kind;
jint size;
char *field_name;
field_name = string_get(fields[i].name_index);
type_from_signature(string_get(fields[i].sig_index),
&kind, &size);
heap_name(field_name);
heap_u1(kind);
}
}
} else {
char * class_name;
int i;
class_name = signature_to_name(sig);
heap_printf("CLS %x (name=%s, trace=%u)\n",
class_id, class_name, trace_serial_num);
HPROF_FREE(class_name);
if (super_id) {
heap_printf("\tsuper\t\t%x\n", super_id);
}
if (loader_id) {
heap_printf("\tloader\t\t%x\n", loader_id);
}
if (signers_id) {
heap_printf("\tsigners\t\t%x\n", signers_id);
}
if (domain_id) {
heap_printf("\tdomain\t\t%x\n", domain_id);
}
for ( i = 0 ; i < n_fields ; i++ ) {
if ( fields[i].cnum == cnum &&
is_static_field(fields[i].modifiers) ) {
HprofType kind;
jint size;
type_from_signature(string_get(fields[i].sig_index),
&kind, &size);
if ( !HPROF_TYPE_IS_PRIMITIVE(kind) ) {
if (fvalues[i].i != 0 ) {
char *field_name;
field_name = string_get(fields[i].name_index);
heap_printf("\tstatic %s\t%x\n", field_name,
fvalues[i].i);
}
}
}
}
for ( i = 0 ; i < n_cpool ; i++ ) {
HprofType kind;
jint size;
type_from_signature(string_get(cpool[i].sig_index), &kind, &size);
if ( !HPROF_TYPE_IS_PRIMITIVE(kind) ) {
if (cpool[i].value.i != 0 ) {
heap_printf("\tconstant pool entry %d\t%x\n",
cpool[i].constant_pool_index, cpool[i].value.i);
}
}
}
}
}
/* Dump the instance fields in the right order. */
static int
dump_instance_fields(ClassIndex cnum,
FieldInfo *fields, jvalue *fvalues, jint n_fields)
{
ClassIndex super_cnum;
int i;
int nbytes;
HPROF_ASSERT(cnum!=0);
nbytes = 0;
for (i = 0; i < n_fields; i++) {
if ( fields[i].cnum == cnum &&
is_inst_field(fields[i].modifiers) ) {
HprofType kind;
int size;
type_from_signature(string_get(fields[i].sig_index),
&kind, &size);
heap_element(kind, size, fvalues[i]);
nbytes += size;
}
}
super_cnum = class_get_super(cnum);
if ( super_cnum != 0 ) {
nbytes += dump_instance_fields(super_cnum, fields, fvalues, n_fields);
}
return nbytes;
}
void
io_heap_instance_dump(ClassIndex cnum, ObjectIndex obj_id,
SerialNumber trace_serial_num,
ObjectIndex class_id, jint size, char *sig,
FieldInfo *fields, jvalue *fvalues, jint n_fields)
{
CHECK_TRACE_SERIAL_NO(trace_serial_num);
if (gdata->output_format == 'b') {
jint inst_size;
jint saved_inst_size;
int i;
int nbytes;
inst_size = 0;
for (i = 0; i < n_fields; i++) {
if ( is_inst_field(fields[i].modifiers) ) {
inst_size += size_from_field_info(fields[i].primSize);
}
}
/* Verify that the instance size we have calculated as we went
* through the fields, matches what is saved away with this
* class.
*/
saved_inst_size = class_get_inst_size(cnum);
if ( saved_inst_size == -1 ) {
class_set_inst_size(cnum, inst_size);
} else if ( saved_inst_size != inst_size ) {
HPROF_ERROR(JNI_TRUE, "Mis-match on instance size in instance dump");
}
heap_tag(HPROF_GC_INSTANCE_DUMP);
heap_id(obj_id);
heap_u4(trace_serial_num);
heap_id(class_id);
heap_u4(inst_size); /* Must match inst_size in class dump */
/* Order must be class, super, super's super, ... */
nbytes = dump_instance_fields(cnum, fields, fvalues, n_fields);
HPROF_ASSERT(nbytes==inst_size);
} else {
char * class_name;
int i;
class_name = signature_to_name(sig);
heap_printf("OBJ %x (sz=%u, trace=%u, class=%s@%x)\n",
obj_id, size, trace_serial_num, class_name, class_id);
HPROF_FREE(class_name);
for (i = 0; i < n_fields; i++) {
if ( is_inst_field(fields[i].modifiers) ) {
HprofType kind;
int size;
type_from_signature(string_get(fields[i].sig_index),
&kind, &size);
if ( !HPROF_TYPE_IS_PRIMITIVE(kind) ) {
if (fvalues[i].i != 0 ) {
char *sep;
ObjectIndex val_id;
char *field_name;
field_name = string_get(fields[i].name_index);
val_id = (ObjectIndex)(fvalues[i].i);
sep = (int)strlen(field_name) < 8 ? "\t" : "";
heap_printf("\t%s\t%s%x\n", field_name, sep, val_id);
}
}
}
}
}
}
void
io_heap_object_array(ObjectIndex obj_id, SerialNumber trace_serial_num,
jint size, jint num_elements, char *sig, ObjectIndex *values,
ObjectIndex class_id)
{
CHECK_TRACE_SERIAL_NO(trace_serial_num);
if (gdata->output_format == 'b') {
heap_tag(HPROF_GC_OBJ_ARRAY_DUMP);
heap_id(obj_id);
heap_u4(trace_serial_num);
heap_u4(num_elements);
heap_id(class_id);
heap_elements(HPROF_NORMAL_OBJECT, num_elements,
(jint)sizeof(HprofId), (void*)values);
} else {
char *name;
int i;
name = signature_to_name(sig);
heap_printf("ARR %x (sz=%u, trace=%u, nelems=%u, elem type=%s@%x)\n",
obj_id, size, trace_serial_num, num_elements,
name, class_id);
for (i = 0; i < num_elements; i++) {
ObjectIndex id;
id = values[i];
if (id != 0) {
heap_printf("\t[%u]\t\t%x\n", i, id);
}
}
HPROF_FREE(name);
}
}
void
io_heap_prim_array(ObjectIndex obj_id, SerialNumber trace_serial_num,
jint size, jint num_elements, char *sig, void *elements)
{
CHECK_TRACE_SERIAL_NO(trace_serial_num);
if (gdata->output_format == 'b') {
HprofType kind;
jint esize;
type_array(sig, &kind, &esize);
HPROF_ASSERT(HPROF_TYPE_IS_PRIMITIVE(kind));
heap_tag(HPROF_GC_PRIM_ARRAY_DUMP);
heap_id(obj_id);
heap_u4(trace_serial_num);
heap_u4(num_elements);
heap_u1(kind);
heap_elements(kind, num_elements, esize, elements);
} else {
char *name;
name = signature_to_name(sig);
heap_printf("ARR %x (sz=%u, trace=%u, nelems=%u, elem type=%s)\n",
obj_id, size, trace_serial_num, num_elements, name);
HPROF_FREE(name);
}
}
/* Move file bytes into supplied raw interface */
static void
write_raw_from_file(int fd, jlong byteCount, void (*raw_interface)(void *,int))
{
char *buf;
int buf_len;
int left;
int nbytes;
HPROF_ASSERT(fd >= 0);
/* Move contents of this file into output file. */
buf_len = FILE_IO_BUFFER_SIZE*2; /* Twice as big! */
buf = HPROF_MALLOC(buf_len);
HPROF_ASSERT(buf!=NULL);
/* Keep track of how many we have left */
left = (int)byteCount;
do {
int count;
count = buf_len;
if ( count > left ) count = left;
nbytes = md_read(fd, buf, count);
if (nbytes < 0) {
system_error("read", nbytes, errno);
break;
}
if (nbytes == 0) {
break;
}
if ( nbytes > 0 ) {
(*raw_interface)(buf, nbytes);
left -= nbytes;
}
} while ( left > 0 );
if (left > 0 && nbytes == 0) {
HPROF_ERROR(JNI_TRUE, "File size is smaller than bytes written");
}
HPROF_FREE(buf);
}
/* Write out a heap segment, and copy remainder to top of file. */
static void
dump_heap_segment_and_reset(jlong segment_size)
{
int fd;
jlong last_chunk_len;
HPROF_ASSERT(gdata->heap_fd >= 0);
/* Flush all bytes to the heap dump file */
heap_flush();
/* Last segment? */
last_chunk_len = gdata->heap_write_count - segment_size;
HPROF_ASSERT(last_chunk_len>=0);
/* Re-open in proper way, binary vs. ascii is important */
if (gdata->output_format == 'b') {
int tag;
if ( gdata->segmented == JNI_TRUE ) { /* 1.0.2 */
tag = HPROF_HEAP_DUMP_SEGMENT; /* 1.0.2 */
} else {
tag = HPROF_HEAP_DUMP; /* Just one segment */
HPROF_ASSERT(last_chunk_len==0);
}
/* Write header for binary heap dump (don't know size until now) */
write_header(tag, (jint)segment_size);
fd = md_open_binary(gdata->heapfilename);
} else {
fd = md_open(gdata->heapfilename);
}
/* Move file bytes into hprof dump file */
write_raw_from_file(fd, segment_size, &write_raw);
/* Clear the byte count and reset the heap file. */
if ( md_seek(gdata->heap_fd, (jlong)0) != (jlong)0 ) {
HPROF_ERROR(JNI_TRUE, "Cannot seek to beginning of heap info file");
}
gdata->heap_write_count = (jlong)0;
gdata->heap_last_tag_position = (jlong)0;
/* Move trailing bytes from heap dump file to beginning of file */
if ( last_chunk_len > 0 ) {
write_raw_from_file(fd, last_chunk_len, &heap_raw);
}
/* Close the temp file handle */
md_close(fd);
}
void
io_heap_footer(void)
{
HPROF_ASSERT(gdata->heap_fd >= 0);
/* Flush all bytes to the heap dump file */
heap_flush();
/* Send out the last (or maybe only) segment */
dump_heap_segment_and_reset(gdata->heap_write_count);
/* Write out the last tag */
if (gdata->output_format != 'b') {
write_printf("HEAP DUMP END\n");
} else {
if ( gdata->segmented == JNI_TRUE ) { /* 1.0.2 */
write_header(HPROF_HEAP_DUMP_END, 0);
}
}
}