blob: f76c9cc7d739d5186a2d49b104212a41dac156ee [file] [log] [blame]
/*
* Copyright (c) 2009, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package sun.nio.cs.ext;
import java.nio.ByteBuffer;
import java.nio.CharBuffer;
import java.nio.charset.Charset;
import java.nio.charset.CharsetDecoder;
import java.nio.charset.CharsetEncoder;
import java.nio.charset.CoderResult;
import java.util.Arrays;
import sun.nio.cs.Surrogate;
import static sun.nio.cs.CharsetMapping.*;
/*
* Four types of "DoubleByte" charsets are implemented in this class
* (1)DoubleByte
* The "mostly widely used" multibyte charset, a combination of
* a singlebyte character set (usually the ASCII charset) and a
* doublebyte character set. The codepoint values of singlebyte
* and doublebyte don't overlap. Microsoft's multibyte charsets
* and IBM's "DBCS_ASCII" charsets, such as IBM1381, 942, 943,
* 948, 949 and 950 are such charsets.
*
* (2)DoubleByte_EBCDIC
* IBM EBCDIC Mix multibyte charset. Use SO and SI to shift (switch)
* in and out between the singlebyte character set and doublebyte
* character set.
*
* (3)DoubleByte_SIMPLE_EUC
* It's a "simple" form of EUC encoding scheme, only have the
* singlebyte character set G0 and one doublebyte character set
* G1 are defined, G2 (with SS2) and G3 (with SS3) are not used.
* So it is actually the same as the "typical" type (1) mentioned
* above, except it return "malformed" for the SS2 and SS3 when
* decoding.
*
* (4)DoubleByte ONLY
* A "pure" doublebyte only character set. From implementation
* point of view, this is the type (1) with "decodeSingle" always
* returns unmappable.
*
* For simplicity, all implementations share the same decoding and
* encoding data structure.
*
* Decoding:
*
* char[][] b2c;
* char[] b2cSB;
* int b2Min, b2Max
*
* public char decodeSingle(int b) {
* return b2cSB.[b];
* }
*
* public char decodeDouble(int b1, int b2) {
* if (b2 < b2Min || b2 > b2Max)
* return UNMAPPABLE_DECODING;
* return b2c[b1][b2 - b2Min];
* }
*
* (1)b2Min, b2Max are the corresponding min and max value of the
* low-half of the double-byte.
* (2)The high 8-bit/b1 of the double-byte are used to indexed into
* b2c array.
*
* Encoding:
*
* char[] c2b;
* char[] c2bIndex;
*
* public int encodeChar(char ch) {
* return c2b[c2bIndex[ch >> 8] + (ch & 0xff)];
* }
*
*/
public class DoubleByte {
public final static char[] B2C_UNMAPPABLE;
static {
B2C_UNMAPPABLE = new char[0x100];
Arrays.fill(B2C_UNMAPPABLE, (char)UNMAPPABLE_DECODING);
}
public static class Decoder extends CharsetDecoder
implements DelegatableDecoder
{
final char[][] b2c;
final char[] b2cSB;
final int b2Min;
final int b2Max;
// for SimpleEUC override
protected CoderResult crMalformedOrUnderFlow(int b) {
return CoderResult.UNDERFLOW;
}
protected CoderResult crMalformedOrUnmappable(int b) {
return CoderResult.unmappableForLength(2);
}
Decoder(Charset cs, float avgcpb, float maxcpb,
char[][] b2c, char[] b2cSB,
int b2Min, int b2Max) {
super(cs, avgcpb, maxcpb);
this.b2c = b2c;
this.b2cSB = b2cSB;
this.b2Min = b2Min;
this.b2Max = b2Max;
}
Decoder(Charset cs, char[][] b2c, char[] b2cSB, int b2Min, int b2Max) {
this(cs, 0.5f, 1.0f, b2c, b2cSB, b2Min, b2Max);
}
protected CoderResult decodeArrayLoop(ByteBuffer src, CharBuffer dst) {
byte[] sa = src.array();
int sp = src.arrayOffset() + src.position();
int sl = src.arrayOffset() + src.limit();
char[] da = dst.array();
int dp = dst.arrayOffset() + dst.position();
int dl = dst.arrayOffset() + dst.limit();
try {
while (sp < sl && dp < dl) {
// inline the decodeSingle/Double() for better performance
int inSize = 1;
int b1 = sa[sp] & 0xff;
char c = b2cSB[b1];
if (c == UNMAPPABLE_DECODING) {
if (sl - sp < 2)
return crMalformedOrUnderFlow(b1);
int b2 = sa[sp + 1] & 0xff;
if (b2 < b2Min || b2 > b2Max ||
(c = b2c[b1][b2 - b2Min]) == UNMAPPABLE_DECODING) {
return crMalformedOrUnmappable(b1);
}
inSize++;
}
da[dp++] = c;
sp += inSize;
}
return (sp >= sl) ? CoderResult.UNDERFLOW
: CoderResult.OVERFLOW;
} finally {
src.position(sp - src.arrayOffset());
dst.position(dp - dst.arrayOffset());
}
}
protected CoderResult decodeBufferLoop(ByteBuffer src, CharBuffer dst) {
int mark = src.position();
try {
while (src.hasRemaining() && dst.hasRemaining()) {
int b1 = src.get() & 0xff;
char c = b2cSB[b1];
int inSize = 1;
if (c == UNMAPPABLE_DECODING) {
if (src.remaining() < 1)
return crMalformedOrUnderFlow(b1);
int b2 = src.get() & 0xff;
if (b2 < b2Min || b2 > b2Max ||
(c = b2c[b1][b2 - b2Min]) == UNMAPPABLE_DECODING)
return crMalformedOrUnmappable(b1);
inSize++;
}
dst.put(c);
mark += inSize;
}
return src.hasRemaining()? CoderResult.OVERFLOW
: CoderResult.UNDERFLOW;
} finally {
src.position(mark);
}
}
// Make some protected methods public for use by JISAutoDetect
public CoderResult decodeLoop(ByteBuffer src, CharBuffer dst) {
if (src.hasArray() && dst.hasArray())
return decodeArrayLoop(src, dst);
else
return decodeBufferLoop(src, dst);
}
public void implReset() {
super.implReset();
}
public CoderResult implFlush(CharBuffer out) {
return super.implFlush(out);
}
// decode loops are not using decodeSingle/Double() for performance
// reason.
public char decodeSingle(int b) {
return b2cSB[b];
}
public char decodeDouble(int b1, int b2) {
if (b2 < b2Min || b2 > b2Max)
return UNMAPPABLE_DECODING;
return b2c[b1][b2 - b2Min];
}
}
// IBM_EBCDIC_DBCS
public static class Decoder_EBCDIC extends Decoder {
private static final int SBCS = 0;
private static final int DBCS = 1;
private static final int SO = 0x0e;
private static final int SI = 0x0f;
private int currentState;
Decoder_EBCDIC(Charset cs,
char[][] b2c, char[] b2cSB, int b2Min, int b2Max) {
super(cs, b2c, b2cSB, b2Min, b2Max);
}
public void implReset() {
currentState = SBCS;
}
// Check validity of dbcs ebcdic byte pair values
//
// First byte : 0x41 -- 0xFE
// Second byte: 0x41 -- 0xFE
// Doublebyte blank: 0x4040
//
// The validation implementation in "old" DBCS_IBM_EBCDIC and sun.io
// as
// if ((b1 != 0x40 || b2 != 0x40) &&
// (b2 < 0x41 || b2 > 0xfe)) {...}
// is not correct/complete (range check for b1)
//
private static boolean isDoubleByte(int b1, int b2) {
return (0x41 <= b1 && b1 <= 0xfe && 0x41 <= b2 && b2 <= 0xfe)
|| (b1 == 0x40 && b2 == 0x40); // DBCS-HOST SPACE
}
protected CoderResult decodeArrayLoop(ByteBuffer src, CharBuffer dst) {
byte[] sa = src.array();
int sp = src.arrayOffset() + src.position();
int sl = src.arrayOffset() + src.limit();
char[] da = dst.array();
int dp = dst.arrayOffset() + dst.position();
int dl = dst.arrayOffset() + dst.limit();
try {
// don't check dp/dl together here, it's possible to
// decdoe a SO/SI without space in output buffer.
while (sp < sl) {
int b1 = sa[sp] & 0xff;
int inSize = 1;
if (b1 == SO) { // Shift out
if (currentState != SBCS)
return CoderResult.malformedForLength(1);
else
currentState = DBCS;
} else if (b1 == SI) {
if (currentState != DBCS)
return CoderResult.malformedForLength(1);
else
currentState = SBCS;
} else {
char c = UNMAPPABLE_DECODING;
if (currentState == SBCS) {
c = b2cSB[b1];
if (c == UNMAPPABLE_DECODING)
return CoderResult.unmappableForLength(1);
} else {
if (sl - sp < 2)
return CoderResult.UNDERFLOW;
int b2 = sa[sp + 1] & 0xff;
if (b2 < b2Min || b2 > b2Max ||
(c = b2c[b1][b2 - b2Min]) == UNMAPPABLE_DECODING) {
if (!isDoubleByte(b1, b2))
return CoderResult.malformedForLength(2);
return CoderResult.unmappableForLength(2);
}
inSize++;
}
if (dl - dp < 1)
return CoderResult.OVERFLOW;
da[dp++] = c;
}
sp += inSize;
}
return CoderResult.UNDERFLOW;
} finally {
src.position(sp - src.arrayOffset());
dst.position(dp - dst.arrayOffset());
}
}
protected CoderResult decodeBufferLoop(ByteBuffer src, CharBuffer dst) {
int mark = src.position();
try {
while (src.hasRemaining()) {
int b1 = src.get() & 0xff;
int inSize = 1;
if (b1 == SO) { // Shift out
if (currentState != SBCS)
return CoderResult.malformedForLength(1);
else
currentState = DBCS;
} else if (b1 == SI) {
if (currentState != DBCS)
return CoderResult.malformedForLength(1);
else
currentState = SBCS;
} else {
char c = UNMAPPABLE_DECODING;
if (currentState == SBCS) {
c = b2cSB[b1];
if (c == UNMAPPABLE_DECODING)
return CoderResult.unmappableForLength(1);
} else {
if (src.remaining() < 1)
return CoderResult.UNDERFLOW;
int b2 = src.get()&0xff;
if (b2 < b2Min || b2 > b2Max ||
(c = b2c[b1][b2 - b2Min]) == UNMAPPABLE_DECODING) {
if (!isDoubleByte(b1, b2))
return CoderResult.malformedForLength(2);
return CoderResult.unmappableForLength(2);
}
inSize++;
}
if (dst.remaining() < 1)
return CoderResult.OVERFLOW;
dst.put(c);
}
mark += inSize;
}
return CoderResult.UNDERFLOW;
} finally {
src.position(mark);
}
}
}
// EBCDIC_DBCS_ONLY
public static class Decoder_EBCDIC_DBCSONLY extends Decoder {
static final char[] b2cSB;
static {
b2cSB = new char[0x100];
Arrays.fill(b2cSB, (char)UNMAPPABLE_DECODING);
}
Decoder_EBCDIC_DBCSONLY(Charset cs, char[][] b2c, int b2Min, int b2Max) {
super(cs, 0.5f, 1.0f, b2c, b2cSB, b2Min, b2Max);
}
}
// EUC_SIMPLE
// The only thing we need to "override" is to check SS2/SS3 and
// return "malformed" if found
public static class Decoder_EUC_SIM extends Decoder {
private final int SS2 = 0x8E;
private final int SS3 = 0x8F;
Decoder_EUC_SIM(Charset cs,
char[][] b2c, char[] b2cSB, int b2Min, int b2Max) {
super(cs, b2c, b2cSB, b2Min, b2Max);
}
// No support provided for G2/G3 for SimpleEUC
protected CoderResult crMalformedOrUnderFlow(int b) {
if (b == SS2 || b == SS3 )
return CoderResult.malformedForLength(1);
return CoderResult.UNDERFLOW;
}
protected CoderResult crMalformedOrUnmappable(int b) {
if (b == SS2 || b == SS3 )
return CoderResult.malformedForLength(1);
return CoderResult.unmappableForLength(2);
}
}
public static class Encoder extends CharsetEncoder {
final int MAX_SINGLEBYTE = 0xff;
private final char[] c2b;
private final char[] c2bIndex;
Surrogate.Parser sgp;
protected Encoder(Charset cs, char[] c2b, char[] c2bIndex) {
super(cs, 2.0f, 2.0f);
this.c2b = c2b;
this.c2bIndex = c2bIndex;
}
Encoder(Charset cs, float avg, float max, byte[] repl, char[] c2b, char[] c2bIndex) {
super(cs, avg, max, repl);
this.c2b = c2b;
this.c2bIndex = c2bIndex;
}
public boolean canEncode(char c) {
return encodeChar(c) != UNMAPPABLE_ENCODING;
}
Surrogate.Parser sgp() {
if (sgp == null)
sgp = new Surrogate.Parser();
return sgp;
}
protected CoderResult encodeArrayLoop(CharBuffer src, ByteBuffer dst) {
char[] sa = src.array();
int sp = src.arrayOffset() + src.position();
int sl = src.arrayOffset() + src.limit();
byte[] da = dst.array();
int dp = dst.arrayOffset() + dst.position();
int dl = dst.arrayOffset() + dst.limit();
try {
while (sp < sl) {
char c = sa[sp];
int bb = encodeChar(c);
if (bb == UNMAPPABLE_ENCODING) {
if (Character.isSurrogate(c)) {
if (sgp().parse(c, sa, sp, sl) < 0)
return sgp.error();
return sgp.unmappableResult();
}
return CoderResult.unmappableForLength(1);
}
if (bb > MAX_SINGLEBYTE) { // DoubleByte
if (dl - dp < 2)
return CoderResult.OVERFLOW;
da[dp++] = (byte)(bb >> 8);
da[dp++] = (byte)bb;
} else { // SingleByte
if (dl - dp < 1)
return CoderResult.OVERFLOW;
da[dp++] = (byte)bb;
}
sp++;
}
return CoderResult.UNDERFLOW;
} finally {
src.position(sp - src.arrayOffset());
dst.position(dp - dst.arrayOffset());
}
}
protected CoderResult encodeBufferLoop(CharBuffer src, ByteBuffer dst) {
int mark = src.position();
try {
while (src.hasRemaining()) {
char c = src.get();
int bb = encodeChar(c);
if (bb == UNMAPPABLE_ENCODING) {
if (Character.isSurrogate(c)) {
if (sgp().parse(c, src) < 0)
return sgp.error();
return sgp.unmappableResult();
}
return CoderResult.unmappableForLength(1);
}
if (bb > MAX_SINGLEBYTE) { // DoubleByte
if (dst.remaining() < 2)
return CoderResult.OVERFLOW;
dst.put((byte)(bb >> 8));
dst.put((byte)(bb));
} else {
if (dst.remaining() < 1)
return CoderResult.OVERFLOW;
dst.put((byte)bb);
}
mark++;
}
return CoderResult.UNDERFLOW;
} finally {
src.position(mark);
}
}
protected CoderResult encodeLoop(CharBuffer src, ByteBuffer dst) {
if (src.hasArray() && dst.hasArray())
return encodeArrayLoop(src, dst);
else
return encodeBufferLoop(src, dst);
}
public int encodeChar(char ch) {
return c2b[c2bIndex[ch >> 8] + (ch & 0xff)];
}
// init the c2b and c2bIndex tables from b2c.
static void initC2B(String[] b2c, String b2cSB, String b2cNR, String c2bNR,
int b2Min, int b2Max,
char[] c2b, char[] c2bIndex)
{
Arrays.fill(c2b, (char)UNMAPPABLE_ENCODING);
int off = 0x100;
char[][] b2c_ca = new char[b2c.length][];
char[] b2cSB_ca = null;
if (b2cSB != null)
b2cSB_ca = b2cSB.toCharArray();
for (int i = 0; i < b2c.length; i++) {
if (b2c[i] == null)
continue;
b2c_ca[i] = b2c[i].toCharArray();
}
if (b2cNR != null) {
int j = 0;
while (j < b2cNR.length()) {
char b = b2cNR.charAt(j++);
char c = b2cNR.charAt(j++);
if (b < 0x100 && b2cSB_ca != null) {
if (b2cSB_ca[b] == c)
b2cSB_ca[b] = UNMAPPABLE_DECODING;
} else {
if (b2c_ca[b >> 8][(b & 0xff) - b2Min] == c)
b2c_ca[b >> 8][(b & 0xff) - b2Min] = UNMAPPABLE_DECODING;
}
}
}
if (b2cSB_ca != null) { // SingleByte
for (int b = 0; b < b2cSB_ca.length; b++) {
char c = b2cSB_ca[b];
if (c == UNMAPPABLE_DECODING)
continue;
int index = c2bIndex[c >> 8];
if (index == 0) {
index = off;
off += 0x100;
c2bIndex[c >> 8] = (char)index;
}
c2b[index + (c & 0xff)] = (char)b;
}
}
for (int b1 = 0; b1 < b2c.length; b1++) { // DoubleByte
char[] db = b2c_ca[b1];
if (db == null)
continue;
for (int b2 = b2Min; b2 <= b2Max; b2++) {
char c = db[b2 - b2Min];
if (c == UNMAPPABLE_DECODING)
continue;
int index = c2bIndex[c >> 8];
if (index == 0) {
index = off;
off += 0x100;
c2bIndex[c >> 8] = (char)index;
}
c2b[index + (c & 0xff)] = (char)((b1 << 8) | b2);
}
}
if (c2bNR != null) {
// add c->b only nr entries
for (int i = 0; i < c2bNR.length(); i += 2) {
char b = c2bNR.charAt(i);
char c = c2bNR.charAt(i + 1);
int index = (c >> 8);
if (c2bIndex[index] == 0) {
c2bIndex[index] = (char)off;
off += 0x100;
}
index = c2bIndex[index] + (c & 0xff);
c2b[index] = b;
}
}
}
}
// EBCDIC_DBCS_ONLY
public static class Encoder_EBCDIC_DBCSONLY extends Encoder {
Encoder_EBCDIC_DBCSONLY(Charset cs, byte[] repl,
char[] c2b, char[] c2bIndex) {
super(cs, 2.0f, 2.0f, repl, c2b, c2bIndex);
}
public int encodeChar(char ch) {
int bb = super.encodeChar(ch);
if (bb <= MAX_SINGLEBYTE)
return UNMAPPABLE_ENCODING;
return bb;
}
}
// for IBM_EBCDIC_DBCS
public static class Encoder_EBCDIC extends Encoder {
static final int SBCS = 0;
static final int DBCS = 1;
static final byte SO = 0x0e;
static final byte SI = 0x0f;
protected int currentState = SBCS;
Encoder_EBCDIC(Charset cs, char[] c2b, char[] c2bIndex) {
super(cs, 4.0f, 5.0f, new byte[] {(byte)0x6f}, c2b, c2bIndex);
}
protected void implReset() {
currentState = SBCS;
}
protected CoderResult implFlush(ByteBuffer out) {
if (currentState == DBCS) {
if (out.remaining() < 1)
return CoderResult.OVERFLOW;
out.put(SI);
}
implReset();
return CoderResult.UNDERFLOW;
}
protected CoderResult encodeArrayLoop(CharBuffer src, ByteBuffer dst) {
char[] sa = src.array();
int sp = src.arrayOffset() + src.position();
int sl = src.arrayOffset() + src.limit();
byte[] da = dst.array();
int dp = dst.arrayOffset() + dst.position();
int dl = dst.arrayOffset() + dst.limit();
try {
while (sp < sl) {
char c = sa[sp];
int bb = encodeChar(c);
if (bb == UNMAPPABLE_ENCODING) {
if (Character.isSurrogate(c)) {
if (sgp().parse(c, sa, sp, sl) < 0)
return sgp.error();
return sgp.unmappableResult();
}
return CoderResult.unmappableForLength(1);
}
if (bb > MAX_SINGLEBYTE) { // DoubleByte
if (currentState == SBCS) {
if (dl - dp < 1)
return CoderResult.OVERFLOW;
currentState = DBCS;
da[dp++] = SO;
}
if (dl - dp < 2)
return CoderResult.OVERFLOW;
da[dp++] = (byte)(bb >> 8);
da[dp++] = (byte)bb;
} else { // SingleByte
if (currentState == DBCS) {
if (dl - dp < 1)
return CoderResult.OVERFLOW;
currentState = SBCS;
da[dp++] = SI;
}
if (dl - dp < 1)
return CoderResult.OVERFLOW;
da[dp++] = (byte)bb;
}
sp++;
}
return CoderResult.UNDERFLOW;
} finally {
src.position(sp - src.arrayOffset());
dst.position(dp - dst.arrayOffset());
}
}
protected CoderResult encodeBufferLoop(CharBuffer src, ByteBuffer dst) {
int mark = src.position();
try {
while (src.hasRemaining()) {
char c = src.get();
int bb = encodeChar(c);
if (bb == UNMAPPABLE_ENCODING) {
if (Character.isSurrogate(c)) {
if (sgp().parse(c, src) < 0)
return sgp.error();
return sgp.unmappableResult();
}
return CoderResult.unmappableForLength(1);
}
if (bb > MAX_SINGLEBYTE) { // DoubleByte
if (currentState == SBCS) {
if (dst.remaining() < 1)
return CoderResult.OVERFLOW;
currentState = DBCS;
dst.put(SO);
}
if (dst.remaining() < 2)
return CoderResult.OVERFLOW;
dst.put((byte)(bb >> 8));
dst.put((byte)(bb));
} else { // Single-byte
if (currentState == DBCS) {
if (dst.remaining() < 1)
return CoderResult.OVERFLOW;
currentState = SBCS;
dst.put(SI);
}
if (dst.remaining() < 1)
return CoderResult.OVERFLOW;
dst.put((byte)bb);
}
mark++;
}
return CoderResult.UNDERFLOW;
} finally {
src.position(mark);
}
}
}
// EUC_SIMPLE
public static class Encoder_EUC_SIM extends Encoder {
Encoder_EUC_SIM(Charset cs, char[] c2b, char[] c2bIndex) {
super(cs, c2b, c2bIndex);
}
}
}