blob: 6446cb109e30673d7c581d1c086d3cf7430b55d3 [file] [log] [blame]
/*
* Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package sun.java2d.pisces;
import java.awt.Shape;
import java.awt.BasicStroke;
import java.awt.geom.Path2D;
import java.awt.geom.AffineTransform;
import java.awt.geom.PathIterator;
import sun.awt.geom.PathConsumer2D;
import sun.java2d.pipe.Region;
import sun.java2d.pipe.RenderingEngine;
import sun.java2d.pipe.AATileGenerator;
public class PiscesRenderingEngine extends RenderingEngine {
public static Transform4 IdentT4 = new Transform4();
public static double defaultFlat = 0.1;
static int FloatToS15_16(float flt) {
flt = flt * 65536f + 0.5f;
if (flt <= -(65536f * 65536f)) {
return Integer.MIN_VALUE;
} else if (flt >= (65536f * 65536f)) {
return Integer.MAX_VALUE;
} else {
return (int) Math.floor(flt);
}
}
static float S15_16ToFloat(int fix) {
return (fix / 65536f);
}
/**
* Create a widened path as specified by the parameters.
* <p>
* The specified {@code src} {@link Shape} is widened according
* to the specified attribute parameters as per the
* {@link BasicStroke} specification.
*
* @param src the source path to be widened
* @param width the width of the widened path as per {@code BasicStroke}
* @param caps the end cap decorations as per {@code BasicStroke}
* @param join the segment join decorations as per {@code BasicStroke}
* @param miterlimit the miter limit as per {@code BasicStroke}
* @param dashes the dash length array as per {@code BasicStroke}
* @param dashphase the initial dash phase as per {@code BasicStroke}
* @return the widened path stored in a new {@code Shape} object
* @since 1.7
*/
public Shape createStrokedShape(Shape src,
float width,
int caps,
int join,
float miterlimit,
float dashes[],
float dashphase)
{
final Path2D p2d = new Path2D.Float();
strokeTo(src,
null,
width,
caps,
join,
miterlimit,
dashes,
dashphase,
new LineSink() {
public void moveTo(int x0, int y0) {
p2d.moveTo(S15_16ToFloat(x0), S15_16ToFloat(y0));
}
public void lineJoin() {}
public void lineTo(int x1, int y1) {
p2d.lineTo(S15_16ToFloat(x1), S15_16ToFloat(y1));
}
public void close() {
p2d.closePath();
}
public void end() {}
});
return p2d;
}
/**
* Sends the geometry for a widened path as specified by the parameters
* to the specified consumer.
* <p>
* The specified {@code src} {@link Shape} is widened according
* to the parameters specified by the {@link BasicStroke} object.
* Adjustments are made to the path as appropriate for the
* {@link VALUE_STROKE_NORMALIZE} hint if the {@code normalize}
* boolean parameter is true.
* Adjustments are made to the path as appropriate for the
* {@link VALUE_ANTIALIAS_ON} hint if the {@code antialias}
* boolean parameter is true.
* <p>
* The geometry of the widened path is forwarded to the indicated
* {@link PathConsumer2D} object as it is calculated.
*
* @param src the source path to be widened
* @param bs the {@code BasicSroke} object specifying the
* decorations to be applied to the widened path
* @param normalize indicates whether stroke normalization should
* be applied
* @param antialias indicates whether or not adjustments appropriate
* to antialiased rendering should be applied
* @param consumer the {@code PathConsumer2D} instance to forward
* the widened geometry to
* @since 1.7
*/
public void strokeTo(Shape src,
AffineTransform at,
BasicStroke bs,
boolean thin,
boolean normalize,
boolean antialias,
final PathConsumer2D consumer)
{
strokeTo(src, at, bs, thin, normalize, antialias,
new LineSink() {
public void moveTo(int x0, int y0) {
consumer.moveTo(S15_16ToFloat(x0), S15_16ToFloat(y0));
}
public void lineJoin() {}
public void lineTo(int x1, int y1) {
consumer.lineTo(S15_16ToFloat(x1), S15_16ToFloat(y1));
}
public void close() {
consumer.closePath();
}
public void end() {
consumer.pathDone();
}
});
}
void strokeTo(Shape src,
AffineTransform at,
BasicStroke bs,
boolean thin,
boolean normalize,
boolean antialias,
LineSink lsink)
{
float lw;
if (thin) {
if (antialias) {
lw = userSpaceLineWidth(at, 0.5f);
} else {
lw = userSpaceLineWidth(at, 1.0f);
}
} else {
lw = bs.getLineWidth();
}
strokeTo(src,
at,
lw,
bs.getEndCap(),
bs.getLineJoin(),
bs.getMiterLimit(),
bs.getDashArray(),
bs.getDashPhase(),
lsink);
}
private float userSpaceLineWidth(AffineTransform at, float lw) {
double widthScale;
if ((at.getType() & (AffineTransform.TYPE_GENERAL_TRANSFORM |
AffineTransform.TYPE_GENERAL_SCALE)) != 0) {
widthScale = Math.sqrt(at.getDeterminant());
} else {
/* First calculate the "maximum scale" of this transform. */
double A = at.getScaleX(); // m00
double C = at.getShearX(); // m01
double B = at.getShearY(); // m10
double D = at.getScaleY(); // m11
/*
* Given a 2 x 2 affine matrix [ A B ] such that
* [ C D ]
* v' = [x' y'] = [Ax + Cy, Bx + Dy], we want to
* find the maximum magnitude (norm) of the vector v'
* with the constraint (x^2 + y^2 = 1).
* The equation to maximize is
* |v'| = sqrt((Ax+Cy)^2+(Bx+Dy)^2)
* or |v'| = sqrt((AA+BB)x^2 + 2(AC+BD)xy + (CC+DD)y^2).
* Since sqrt is monotonic we can maximize |v'|^2
* instead and plug in the substitution y = sqrt(1 - x^2).
* Trigonometric equalities can then be used to get
* rid of most of the sqrt terms.
*/
double EA = A*A + B*B; // x^2 coefficient
double EB = 2*(A*C + B*D); // xy coefficient
double EC = C*C + D*D; // y^2 coefficient
/*
* There is a lot of calculus omitted here.
*
* Conceptually, in the interests of understanding the
* terms that the calculus produced we can consider
* that EA and EC end up providing the lengths along
* the major axes and the hypot term ends up being an
* adjustment for the additional length along the off-axis
* angle of rotated or sheared ellipses as well as an
* adjustment for the fact that the equation below
* averages the two major axis lengths. (Notice that
* the hypot term contains a part which resolves to the
* difference of these two axis lengths in the absence
* of rotation.)
*
* In the calculus, the ratio of the EB and (EA-EC) terms
* ends up being the tangent of 2*theta where theta is
* the angle that the long axis of the ellipse makes
* with the horizontal axis. Thus, this equation is
* calculating the length of the hypotenuse of a triangle
* along that axis.
*/
double hypot = Math.sqrt(EB*EB + (EA-EC)*(EA-EC));
/* sqrt omitted, compare to squared limits below. */
double widthsquared = ((EA + EC + hypot)/2.0);
widthScale = Math.sqrt(widthsquared);
}
return (float) (lw / widthScale);
}
void strokeTo(Shape src,
AffineTransform at,
float width,
int caps,
int join,
float miterlimit,
float dashes[],
float dashphase,
LineSink lsink)
{
Transform4 t4;
if (at == null || at.isIdentity()) {
t4 = IdentT4;
} else {
t4 = new Transform4(FloatToS15_16((float) at.getScaleX()),
FloatToS15_16((float) at.getShearX()),
FloatToS15_16((float) at.getShearY()),
FloatToS15_16((float) at.getScaleY()));
}
lsink = new Stroker(lsink,
FloatToS15_16(width),
caps,
join,
FloatToS15_16(miterlimit),
t4);
if (dashes != null) {
int fdashes[] = new int[dashes.length];
for (int i = 0; i < dashes.length; i++) {
fdashes[i] = FloatToS15_16(dashes[i]);
}
lsink = new Dasher(lsink,
fdashes,
FloatToS15_16(dashphase),
t4);
}
PathIterator pi = src.getPathIterator(at, defaultFlat);
pathTo(pi, lsink);
}
void pathTo(PathIterator pi, LineSink lsink) {
float coords[] = new float[2];
while (!pi.isDone()) {
switch (pi.currentSegment(coords)) {
case PathIterator.SEG_MOVETO:
lsink.moveTo(FloatToS15_16(coords[0]),
FloatToS15_16(coords[1]));
break;
case PathIterator.SEG_LINETO:
lsink.lineJoin();
lsink.lineTo(FloatToS15_16(coords[0]),
FloatToS15_16(coords[1]));
break;
case PathIterator.SEG_CLOSE:
lsink.lineJoin();
lsink.close();
break;
default:
throw new InternalError("unknown flattened segment type");
}
pi.next();
}
lsink.end();
}
/**
* Construct an antialiased tile generator for the given shape with
* the given rendering attributes and store the bounds of the tile
* iteration in the bbox parameter.
* The {@code at} parameter specifies a transform that should affect
* both the shape and the {@code BasicStroke} attributes.
* The {@code clip} parameter specifies the current clip in effect
* in device coordinates and can be used to prune the data for the
* operation, but the renderer is not required to perform any
* clipping.
* If the {@code BasicStroke} parameter is null then the shape
* should be filled as is, otherwise the attributes of the
* {@code BasicStroke} should be used to specify a draw operation.
* The {@code thin} parameter indicates whether or not the
* transformed {@code BasicStroke} represents coordinates smaller
* than the minimum resolution of the antialiasing rasterizer as
* specified by the {@code getMinimumAAPenWidth()} method.
* <p>
* Upon returning, this method will fill the {@code bbox} parameter
* with 4 values indicating the bounds of the iteration of the
* tile generator.
* The iteration order of the tiles will be as specified by the
* pseudo-code:
* <pre>
* for (y = bbox[1]; y < bbox[3]; y += tileheight) {
* for (x = bbox[0]; x < bbox[2]; x += tilewidth) {
* }
* }
* </pre>
* If there is no output to be rendered, this method may return
* null.
*
* @param s the shape to be rendered (fill or draw)
* @param at the transform to be applied to the shape and the
* stroke attributes
* @param clip the current clip in effect in device coordinates
* @param bs if non-null, a {@code BasicStroke} whose attributes
* should be applied to this operation
* @param thin true if the transformed stroke attributes are smaller
* than the minimum dropout pen width
* @param normalize true if the {@code VALUE_STROKE_NORMALIZE}
* {@code RenderingHint} is in effect
* @param bbox returns the bounds of the iteration
* @return the {@code AATileGenerator} instance to be consulted
* for tile coverages, or null if there is no output to render
* @since 1.7
*/
public AATileGenerator getAATileGenerator(Shape s,
AffineTransform at,
Region clip,
BasicStroke bs,
boolean thin,
boolean normalize,
int bbox[])
{
PiscesCache pc = PiscesCache.createInstance();
Renderer r = new Renderer();
r.setCache(pc);
r.setAntialiasing(3, 3);
r.beginRendering(clip.getLoX(), clip.getLoY(),
clip.getWidth(), clip.getHeight());
if (bs == null) {
PathIterator pi = s.getPathIterator(at, defaultFlat);
r.setWindingRule(pi.getWindingRule());
pathTo(pi, r);
} else {
r.setWindingRule(PathIterator.WIND_NON_ZERO);
strokeTo(s, at, bs, thin, normalize, true, r);
}
r.endRendering();
PiscesTileGenerator ptg = new PiscesTileGenerator(pc, r.MAX_AA_ALPHA);
ptg.getBbox(bbox);
return ptg;
}
/**
* Returns the minimum pen width that the antialiasing rasterizer
* can represent without dropouts occuring.
* @since 1.7
*/
public float getMinimumAAPenSize() {
return 0.5f;
}
static {
if (PathIterator.WIND_NON_ZERO != Renderer.WIND_NON_ZERO ||
PathIterator.WIND_EVEN_ODD != Renderer.WIND_EVEN_ODD ||
BasicStroke.JOIN_MITER != Stroker.JOIN_MITER ||
BasicStroke.JOIN_ROUND != Stroker.JOIN_ROUND ||
BasicStroke.JOIN_BEVEL != Stroker.JOIN_BEVEL ||
BasicStroke.CAP_BUTT != Stroker.CAP_BUTT ||
BasicStroke.CAP_ROUND != Stroker.CAP_ROUND ||
BasicStroke.CAP_SQUARE != Stroker.CAP_SQUARE)
{
throw new InternalError("mismatched renderer constants");
}
}
}