blob: f73045e6eb26a357f7df9a261a404422d350dae7 [file] [log] [blame]
/*
* Copyright (c) 2005, 2009, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package com.sun.crypto.provider;
import java.util.Arrays;
import java.security.*;
import java.security.spec.AlgorithmParameterSpec;
import javax.crypto.*;
import javax.crypto.spec.SecretKeySpec;
import sun.security.internal.spec.TlsPrfParameterSpec;
/**
* KeyGenerator implementation for the TLS PRF function.
*
* @author Andreas Sterbenz
* @since 1.6
*/
public final class TlsPrfGenerator extends KeyGeneratorSpi {
// magic constants and utility functions, also used by other files
// in this package
private final static byte[] B0 = new byte[0];
final static byte[] LABEL_MASTER_SECRET = // "master secret"
{ 109, 97, 115, 116, 101, 114, 32, 115, 101, 99, 114, 101, 116 };
final static byte[] LABEL_KEY_EXPANSION = // "key expansion"
{ 107, 101, 121, 32, 101, 120, 112, 97, 110, 115, 105, 111, 110 };
final static byte[] LABEL_CLIENT_WRITE_KEY = // "client write key"
{ 99, 108, 105, 101, 110, 116, 32, 119, 114, 105, 116, 101, 32,
107, 101, 121 };
final static byte[] LABEL_SERVER_WRITE_KEY = // "server write key"
{ 115, 101, 114, 118, 101, 114, 32, 119, 114, 105, 116, 101, 32,
107, 101, 121 };
final static byte[] LABEL_IV_BLOCK = // "IV block"
{ 73, 86, 32, 98, 108, 111, 99, 107 };
/*
* TLS HMAC "inner" and "outer" padding. This isn't a function
* of the digest algorithm.
*/
private static final byte[] HMAC_ipad = genPad((byte)0x36, 64);
private static final byte[] HMAC_opad = genPad((byte)0x5c, 64);
// SSL3 magic mix constants ("A", "BB", "CCC", ...)
final static byte[][] SSL3_CONST = genConst();
static byte[] genPad(byte b, int count) {
byte[] padding = new byte[count];
Arrays.fill(padding, b);
return padding;
}
static byte[] concat(byte[] b1, byte[] b2) {
int n1 = b1.length;
int n2 = b2.length;
byte[] b = new byte[n1 + n2];
System.arraycopy(b1, 0, b, 0, n1);
System.arraycopy(b2, 0, b, n1, n2);
return b;
}
private static byte[][] genConst() {
int n = 10;
byte[][] arr = new byte[n][];
for (int i = 0; i < n; i++) {
byte[] b = new byte[i + 1];
Arrays.fill(b, (byte)('A' + i));
arr[i] = b;
}
return arr;
}
// PRF implementation
private final static String MSG = "TlsPrfGenerator must be "
+ "initialized using a TlsPrfParameterSpec";
private TlsPrfParameterSpec spec;
public TlsPrfGenerator() {
}
protected void engineInit(SecureRandom random) {
throw new InvalidParameterException(MSG);
}
protected void engineInit(AlgorithmParameterSpec params,
SecureRandom random) throws InvalidAlgorithmParameterException {
if (params instanceof TlsPrfParameterSpec == false) {
throw new InvalidAlgorithmParameterException(MSG);
}
this.spec = (TlsPrfParameterSpec)params;
SecretKey key = spec.getSecret();
if ((key != null) && ("RAW".equals(key.getFormat()) == false)) {
throw new InvalidAlgorithmParameterException
("Key encoding format must be RAW");
}
}
protected void engineInit(int keysize, SecureRandom random) {
throw new InvalidParameterException(MSG);
}
protected SecretKey engineGenerateKey() {
if (spec == null) {
throw new IllegalStateException
("TlsPrfGenerator must be initialized");
}
SecretKey key = spec.getSecret();
byte[] secret = (key == null) ? null : key.getEncoded();
try {
byte[] labelBytes = spec.getLabel().getBytes("UTF8");
int n = spec.getOutputLength();
byte[] prfBytes = doPRF(secret, labelBytes, spec.getSeed(), n);
return new SecretKeySpec(prfBytes, "TlsPrf");
} catch (GeneralSecurityException e) {
throw new ProviderException("Could not generate PRF", e);
} catch (java.io.UnsupportedEncodingException e) {
throw new ProviderException("Could not generate PRF", e);
}
}
static final byte[] doPRF(byte[] secret, byte[] labelBytes, byte[] seed,
int outputLength) throws NoSuchAlgorithmException, DigestException {
MessageDigest md5 = MessageDigest.getInstance("MD5");
MessageDigest sha = MessageDigest.getInstance("SHA1");
return doPRF(secret, labelBytes, seed, outputLength, md5, sha);
}
static final byte[] doPRF(byte[] secret, byte[] labelBytes, byte[] seed,
int outputLength, MessageDigest md5, MessageDigest sha)
throws DigestException {
/*
* Split the secret into two halves S1 and S2 of same length.
* S1 is taken from the first half of the secret, S2 from the
* second half.
* Their length is created by rounding up the length of the
* overall secret divided by two; thus, if the original secret
* is an odd number of bytes long, the last byte of S1 will be
* the same as the first byte of S2.
*
* Note: Instead of creating S1 and S2, we determine the offset into
* the overall secret where S2 starts.
*/
if (secret == null) {
secret = B0;
}
int off = secret.length >> 1;
int seclen = off + (secret.length & 1);
byte[] output = new byte[outputLength];
// P_MD5(S1, label + seed)
expand(md5, 16, secret, 0, seclen, labelBytes, seed, output);
// P_SHA-1(S2, label + seed)
expand(sha, 20, secret, off, seclen, labelBytes, seed, output);
return output;
}
/*
* @param digest the MessageDigest to produce the HMAC
* @param hmacSize the HMAC size
* @param secret the secret
* @param secOff the offset into the secret
* @param secLen the secret length
* @param label the label
* @param seed the seed
* @param output the output array
*/
private static final void expand(MessageDigest digest, int hmacSize,
byte[] secret, int secOff, int secLen, byte[] label, byte[] seed,
byte[] output) throws DigestException {
/*
* modify the padding used, by XORing the key into our copy of that
* padding. That's to avoid doing that for each HMAC computation.
*/
byte[] pad1 = HMAC_ipad.clone();
byte[] pad2 = HMAC_opad.clone();
for (int i = 0; i < secLen; i++) {
pad1[i] ^= secret[i + secOff];
pad2[i] ^= secret[i + secOff];
}
byte[] tmp = new byte[hmacSize];
byte[] aBytes = null;
/*
* compute:
*
* P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
* HMAC_hash(secret, A(2) + seed) +
* HMAC_hash(secret, A(3) + seed) + ...
* A() is defined as:
*
* A(0) = seed
* A(i) = HMAC_hash(secret, A(i-1))
*/
int remaining = output.length;
int ofs = 0;
while (remaining > 0) {
/*
* compute A() ...
*/
// inner digest
digest.update(pad1);
if (aBytes == null) {
digest.update(label);
digest.update(seed);
} else {
digest.update(aBytes);
}
digest.digest(tmp, 0, hmacSize);
// outer digest
digest.update(pad2);
digest.update(tmp);
if (aBytes == null) {
aBytes = new byte[hmacSize];
}
digest.digest(aBytes, 0, hmacSize);
/*
* compute HMAC_hash() ...
*/
// inner digest
digest.update(pad1);
digest.update(aBytes);
digest.update(label);
digest.update(seed);
digest.digest(tmp, 0, hmacSize);
// outer digest
digest.update(pad2);
digest.update(tmp);
digest.digest(tmp, 0, hmacSize);
int k = Math.min(hmacSize, remaining);
for (int i = 0; i < k; i++) {
output[ofs++] ^= tmp[i];
}
remaining -= k;
}
}
}