blob: e0f5f95915f5af281df13fca710eec8dc22ab6e6 [file] [log] [blame]
/*
* Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "compiler/compileBroker.hpp"
#include "compiler/compileLog.hpp"
#include "oops/objArrayKlass.hpp"
#include "opto/addnode.hpp"
#include "opto/callGenerator.hpp"
#include "opto/cfgnode.hpp"
#include "opto/idealKit.hpp"
#include "opto/mulnode.hpp"
#include "opto/parse.hpp"
#include "opto/runtime.hpp"
#include "opto/subnode.hpp"
#include "prims/nativeLookup.hpp"
#include "runtime/sharedRuntime.hpp"
class LibraryIntrinsic : public InlineCallGenerator {
// Extend the set of intrinsics known to the runtime:
public:
private:
bool _is_virtual;
vmIntrinsics::ID _intrinsic_id;
public:
LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
: InlineCallGenerator(m),
_is_virtual(is_virtual),
_intrinsic_id(id)
{
}
virtual bool is_intrinsic() const { return true; }
virtual bool is_virtual() const { return _is_virtual; }
virtual JVMState* generate(JVMState* jvms);
vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
};
// Local helper class for LibraryIntrinsic:
class LibraryCallKit : public GraphKit {
private:
LibraryIntrinsic* _intrinsic; // the library intrinsic being called
public:
LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
: GraphKit(caller),
_intrinsic(intrinsic)
{
}
ciMethod* caller() const { return jvms()->method(); }
int bci() const { return jvms()->bci(); }
LibraryIntrinsic* intrinsic() const { return _intrinsic; }
vmIntrinsics::ID intrinsic_id() const { return _intrinsic->intrinsic_id(); }
ciMethod* callee() const { return _intrinsic->method(); }
ciSignature* signature() const { return callee()->signature(); }
int arg_size() const { return callee()->arg_size(); }
bool try_to_inline();
// Helper functions to inline natives
void push_result(RegionNode* region, PhiNode* value);
Node* generate_guard(Node* test, RegionNode* region, float true_prob);
Node* generate_slow_guard(Node* test, RegionNode* region);
Node* generate_fair_guard(Node* test, RegionNode* region);
Node* generate_negative_guard(Node* index, RegionNode* region,
// resulting CastII of index:
Node* *pos_index = NULL);
Node* generate_nonpositive_guard(Node* index, bool never_negative,
// resulting CastII of index:
Node* *pos_index = NULL);
Node* generate_limit_guard(Node* offset, Node* subseq_length,
Node* array_length,
RegionNode* region);
Node* generate_current_thread(Node* &tls_output);
address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
bool disjoint_bases, const char* &name, bool dest_uninitialized);
Node* load_mirror_from_klass(Node* klass);
Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
int nargs,
RegionNode* region, int null_path,
int offset);
Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
RegionNode* region, int null_path) {
int offset = java_lang_Class::klass_offset_in_bytes();
return load_klass_from_mirror_common(mirror, never_see_null, nargs,
region, null_path,
offset);
}
Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
int nargs,
RegionNode* region, int null_path) {
int offset = java_lang_Class::array_klass_offset_in_bytes();
return load_klass_from_mirror_common(mirror, never_see_null, nargs,
region, null_path,
offset);
}
Node* generate_access_flags_guard(Node* kls,
int modifier_mask, int modifier_bits,
RegionNode* region);
Node* generate_interface_guard(Node* kls, RegionNode* region);
Node* generate_array_guard(Node* kls, RegionNode* region) {
return generate_array_guard_common(kls, region, false, false);
}
Node* generate_non_array_guard(Node* kls, RegionNode* region) {
return generate_array_guard_common(kls, region, false, true);
}
Node* generate_objArray_guard(Node* kls, RegionNode* region) {
return generate_array_guard_common(kls, region, true, false);
}
Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
return generate_array_guard_common(kls, region, true, true);
}
Node* generate_array_guard_common(Node* kls, RegionNode* region,
bool obj_array, bool not_array);
Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
bool is_virtual = false, bool is_static = false);
CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
return generate_method_call(method_id, false, true);
}
CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
return generate_method_call(method_id, true, false);
}
Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
Node* make_string_method_node(int opcode, Node* str1, Node* str2);
bool inline_string_compareTo();
bool inline_string_indexOf();
Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
bool inline_string_equals();
Node* pop_math_arg();
bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
bool inline_math_native(vmIntrinsics::ID id);
bool inline_trig(vmIntrinsics::ID id);
bool inline_trans(vmIntrinsics::ID id);
bool inline_abs(vmIntrinsics::ID id);
bool inline_sqrt(vmIntrinsics::ID id);
bool inline_pow(vmIntrinsics::ID id);
bool inline_exp(vmIntrinsics::ID id);
bool inline_min_max(vmIntrinsics::ID id);
Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
// This returns Type::AnyPtr, RawPtr, or OopPtr.
int classify_unsafe_addr(Node* &base, Node* &offset);
Node* make_unsafe_address(Node* base, Node* offset);
// Helper for inline_unsafe_access.
// Generates the guards that check whether the result of
// Unsafe.getObject should be recorded in an SATB log buffer.
void insert_g1_pre_barrier(Node* base_oop, Node* offset, Node* pre_val);
bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
bool inline_unsafe_allocate();
bool inline_unsafe_copyMemory();
bool inline_native_currentThread();
#ifdef TRACE_HAVE_INTRINSICS
bool inline_native_classID();
bool inline_native_threadID();
#endif
bool inline_native_time_funcs(address method, const char* funcName);
bool inline_native_isInterrupted();
bool inline_native_Class_query(vmIntrinsics::ID id);
bool inline_native_subtype_check();
bool inline_native_newArray();
bool inline_native_getLength();
bool inline_array_copyOf(bool is_copyOfRange);
bool inline_array_equals();
void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
bool inline_native_clone(bool is_virtual);
bool inline_native_Reflection_getCallerClass();
bool inline_native_AtomicLong_get();
bool inline_native_AtomicLong_attemptUpdate();
bool is_method_invoke_or_aux_frame(JVMState* jvms);
// Helper function for inlining native object hash method
bool inline_native_hashcode(bool is_virtual, bool is_static);
bool inline_native_getClass();
// Helper functions for inlining arraycopy
bool inline_arraycopy();
void generate_arraycopy(const TypePtr* adr_type,
BasicType basic_elem_type,
Node* src, Node* src_offset,
Node* dest, Node* dest_offset,
Node* copy_length,
bool disjoint_bases = false,
bool length_never_negative = false,
RegionNode* slow_region = NULL);
AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
RegionNode* slow_region);
void generate_clear_array(const TypePtr* adr_type,
Node* dest,
BasicType basic_elem_type,
Node* slice_off,
Node* slice_len,
Node* slice_end);
bool generate_block_arraycopy(const TypePtr* adr_type,
BasicType basic_elem_type,
AllocateNode* alloc,
Node* src, Node* src_offset,
Node* dest, Node* dest_offset,
Node* dest_size, bool dest_uninitialized);
void generate_slow_arraycopy(const TypePtr* adr_type,
Node* src, Node* src_offset,
Node* dest, Node* dest_offset,
Node* copy_length, bool dest_uninitialized);
Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
Node* dest_elem_klass,
Node* src, Node* src_offset,
Node* dest, Node* dest_offset,
Node* copy_length, bool dest_uninitialized);
Node* generate_generic_arraycopy(const TypePtr* adr_type,
Node* src, Node* src_offset,
Node* dest, Node* dest_offset,
Node* copy_length, bool dest_uninitialized);
void generate_unchecked_arraycopy(const TypePtr* adr_type,
BasicType basic_elem_type,
bool disjoint_bases,
Node* src, Node* src_offset,
Node* dest, Node* dest_offset,
Node* copy_length, bool dest_uninitialized);
bool inline_unsafe_CAS(BasicType type);
bool inline_unsafe_ordered_store(BasicType type);
bool inline_fp_conversions(vmIntrinsics::ID id);
bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
bool inline_bitCount(vmIntrinsics::ID id);
bool inline_reverseBytes(vmIntrinsics::ID id);
bool inline_reference_get();
};
//---------------------------make_vm_intrinsic----------------------------
CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
vmIntrinsics::ID id = m->intrinsic_id();
assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
if (DisableIntrinsic[0] != '\0'
&& strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
// disabled by a user request on the command line:
// example: -XX:DisableIntrinsic=_hashCode,_getClass
return NULL;
}
if (!m->is_loaded()) {
// do not attempt to inline unloaded methods
return NULL;
}
// Only a few intrinsics implement a virtual dispatch.
// They are expensive calls which are also frequently overridden.
if (is_virtual) {
switch (id) {
case vmIntrinsics::_hashCode:
case vmIntrinsics::_clone:
// OK, Object.hashCode and Object.clone intrinsics come in both flavors
break;
default:
return NULL;
}
}
// -XX:-InlineNatives disables nearly all intrinsics:
if (!InlineNatives) {
switch (id) {
case vmIntrinsics::_indexOf:
case vmIntrinsics::_compareTo:
case vmIntrinsics::_equals:
case vmIntrinsics::_equalsC:
break; // InlineNatives does not control String.compareTo
default:
return NULL;
}
}
switch (id) {
case vmIntrinsics::_compareTo:
if (!SpecialStringCompareTo) return NULL;
break;
case vmIntrinsics::_indexOf:
if (!SpecialStringIndexOf) return NULL;
break;
case vmIntrinsics::_equals:
if (!SpecialStringEquals) return NULL;
break;
case vmIntrinsics::_equalsC:
if (!SpecialArraysEquals) return NULL;
break;
case vmIntrinsics::_arraycopy:
if (!InlineArrayCopy) return NULL;
break;
case vmIntrinsics::_copyMemory:
if (StubRoutines::unsafe_arraycopy() == NULL) return NULL;
if (!InlineArrayCopy) return NULL;
break;
case vmIntrinsics::_hashCode:
if (!InlineObjectHash) return NULL;
break;
case vmIntrinsics::_clone:
case vmIntrinsics::_copyOf:
case vmIntrinsics::_copyOfRange:
if (!InlineObjectCopy) return NULL;
// These also use the arraycopy intrinsic mechanism:
if (!InlineArrayCopy) return NULL;
break;
case vmIntrinsics::_checkIndex:
// We do not intrinsify this. The optimizer does fine with it.
return NULL;
case vmIntrinsics::_get_AtomicLong:
case vmIntrinsics::_attemptUpdate:
if (!InlineAtomicLong) return NULL;
break;
case vmIntrinsics::_getCallerClass:
if (!UseNewReflection) return NULL;
if (!InlineReflectionGetCallerClass) return NULL;
if (!JDK_Version::is_gte_jdk14x_version()) return NULL;
break;
case vmIntrinsics::_bitCount_i:
if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
break;
case vmIntrinsics::_bitCount_l:
if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
break;
case vmIntrinsics::_numberOfLeadingZeros_i:
if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
break;
case vmIntrinsics::_numberOfLeadingZeros_l:
if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
break;
case vmIntrinsics::_numberOfTrailingZeros_i:
if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
break;
case vmIntrinsics::_numberOfTrailingZeros_l:
if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
break;
case vmIntrinsics::_Reference_get:
// It is only when G1 is enabled that we absolutely
// need to use the intrinsic version of Reference.get()
// so that the value in the referent field, if necessary,
// can be registered by the pre-barrier code.
if (!UseG1GC) return NULL;
break;
default:
assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
break;
}
// -XX:-InlineClassNatives disables natives from the Class class.
// The flag applies to all reflective calls, notably Array.newArray
// (visible to Java programmers as Array.newInstance).
if (m->holder()->name() == ciSymbol::java_lang_Class() ||
m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
if (!InlineClassNatives) return NULL;
}
// -XX:-InlineThreadNatives disables natives from the Thread class.
if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
if (!InlineThreadNatives) return NULL;
}
// -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
if (m->holder()->name() == ciSymbol::java_lang_Math() ||
m->holder()->name() == ciSymbol::java_lang_Float() ||
m->holder()->name() == ciSymbol::java_lang_Double()) {
if (!InlineMathNatives) return NULL;
}
// -XX:-InlineUnsafeOps disables natives from the Unsafe class.
if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
if (!InlineUnsafeOps) return NULL;
}
return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
}
//----------------------register_library_intrinsics-----------------------
// Initialize this file's data structures, for each Compile instance.
void Compile::register_library_intrinsics() {
// Nothing to do here.
}
JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
LibraryCallKit kit(jvms, this);
Compile* C = kit.C;
int nodes = C->unique();
#ifndef PRODUCT
if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
char buf[1000];
const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
tty->print_cr("Intrinsic %s", str);
}
#endif
if (kit.try_to_inline()) {
if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
}
C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
if (C->log()) {
C->log()->elem("intrinsic id='%s'%s nodes='%d'",
vmIntrinsics::name_at(intrinsic_id()),
(is_virtual() ? " virtual='1'" : ""),
C->unique() - nodes);
}
return kit.transfer_exceptions_into_jvms();
}
// The intrinsic bailed out
if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
if (jvms->has_method()) {
// Not a root compile.
const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), msg);
} else {
// Root compile
tty->print("Did not generate intrinsic %s%s at bci:%d in",
vmIntrinsics::name_at(intrinsic_id()),
(is_virtual() ? " (virtual)" : ""), kit.bci());
}
}
C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
return NULL;
}
bool LibraryCallKit::try_to_inline() {
// Handle symbolic names for otherwise undistinguished boolean switches:
const bool is_store = true;
const bool is_native_ptr = true;
const bool is_static = true;
if (!jvms()->has_method()) {
// Root JVMState has a null method.
assert(map()->memory()->Opcode() == Op_Parm, "");
// Insert the memory aliasing node
set_all_memory(reset_memory());
}
assert(merged_memory(), "");
switch (intrinsic_id()) {
case vmIntrinsics::_hashCode:
return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
case vmIntrinsics::_identityHashCode:
return inline_native_hashcode(/*!virtual*/ false, is_static);
case vmIntrinsics::_getClass:
return inline_native_getClass();
case vmIntrinsics::_dsin:
case vmIntrinsics::_dcos:
case vmIntrinsics::_dtan:
case vmIntrinsics::_dabs:
case vmIntrinsics::_datan2:
case vmIntrinsics::_dsqrt:
case vmIntrinsics::_dexp:
case vmIntrinsics::_dlog:
case vmIntrinsics::_dlog10:
case vmIntrinsics::_dpow:
return inline_math_native(intrinsic_id());
case vmIntrinsics::_min:
case vmIntrinsics::_max:
return inline_min_max(intrinsic_id());
case vmIntrinsics::_arraycopy:
return inline_arraycopy();
case vmIntrinsics::_compareTo:
return inline_string_compareTo();
case vmIntrinsics::_indexOf:
return inline_string_indexOf();
case vmIntrinsics::_equals:
return inline_string_equals();
case vmIntrinsics::_getObject:
return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
case vmIntrinsics::_getBoolean:
return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
case vmIntrinsics::_getByte:
return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
case vmIntrinsics::_getShort:
return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
case vmIntrinsics::_getChar:
return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
case vmIntrinsics::_getInt:
return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
case vmIntrinsics::_getLong:
return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
case vmIntrinsics::_getFloat:
return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
case vmIntrinsics::_getDouble:
return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
case vmIntrinsics::_putObject:
return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
case vmIntrinsics::_putBoolean:
return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
case vmIntrinsics::_putByte:
return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
case vmIntrinsics::_putShort:
return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
case vmIntrinsics::_putChar:
return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
case vmIntrinsics::_putInt:
return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
case vmIntrinsics::_putLong:
return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
case vmIntrinsics::_putFloat:
return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
case vmIntrinsics::_putDouble:
return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
case vmIntrinsics::_getByte_raw:
return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
case vmIntrinsics::_getShort_raw:
return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
case vmIntrinsics::_getChar_raw:
return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
case vmIntrinsics::_getInt_raw:
return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
case vmIntrinsics::_getLong_raw:
return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
case vmIntrinsics::_getFloat_raw:
return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
case vmIntrinsics::_getDouble_raw:
return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
case vmIntrinsics::_getAddress_raw:
return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
case vmIntrinsics::_putByte_raw:
return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
case vmIntrinsics::_putShort_raw:
return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
case vmIntrinsics::_putChar_raw:
return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
case vmIntrinsics::_putInt_raw:
return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
case vmIntrinsics::_putLong_raw:
return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
case vmIntrinsics::_putFloat_raw:
return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
case vmIntrinsics::_putDouble_raw:
return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
case vmIntrinsics::_putAddress_raw:
return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
case vmIntrinsics::_getObjectVolatile:
return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
case vmIntrinsics::_getBooleanVolatile:
return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
case vmIntrinsics::_getByteVolatile:
return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
case vmIntrinsics::_getShortVolatile:
return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
case vmIntrinsics::_getCharVolatile:
return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
case vmIntrinsics::_getIntVolatile:
return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
case vmIntrinsics::_getLongVolatile:
return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
case vmIntrinsics::_getFloatVolatile:
return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
case vmIntrinsics::_getDoubleVolatile:
return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
case vmIntrinsics::_putObjectVolatile:
return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
case vmIntrinsics::_putBooleanVolatile:
return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
case vmIntrinsics::_putByteVolatile:
return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
case vmIntrinsics::_putShortVolatile:
return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
case vmIntrinsics::_putCharVolatile:
return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
case vmIntrinsics::_putIntVolatile:
return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
case vmIntrinsics::_putLongVolatile:
return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
case vmIntrinsics::_putFloatVolatile:
return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
case vmIntrinsics::_putDoubleVolatile:
return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
case vmIntrinsics::_prefetchRead:
return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
case vmIntrinsics::_prefetchWrite:
return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
case vmIntrinsics::_prefetchReadStatic:
return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
case vmIntrinsics::_prefetchWriteStatic:
return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
case vmIntrinsics::_compareAndSwapObject:
return inline_unsafe_CAS(T_OBJECT);
case vmIntrinsics::_compareAndSwapInt:
return inline_unsafe_CAS(T_INT);
case vmIntrinsics::_compareAndSwapLong:
return inline_unsafe_CAS(T_LONG);
case vmIntrinsics::_putOrderedObject:
return inline_unsafe_ordered_store(T_OBJECT);
case vmIntrinsics::_putOrderedInt:
return inline_unsafe_ordered_store(T_INT);
case vmIntrinsics::_putOrderedLong:
return inline_unsafe_ordered_store(T_LONG);
case vmIntrinsics::_currentThread:
return inline_native_currentThread();
case vmIntrinsics::_isInterrupted:
return inline_native_isInterrupted();
#ifdef TRACE_HAVE_INTRINSICS
case vmIntrinsics::_classID:
return inline_native_classID();
case vmIntrinsics::_threadID:
return inline_native_threadID();
case vmIntrinsics::_counterTime:
return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
#endif
case vmIntrinsics::_currentTimeMillis:
return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
case vmIntrinsics::_nanoTime:
return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
case vmIntrinsics::_allocateInstance:
return inline_unsafe_allocate();
case vmIntrinsics::_copyMemory:
return inline_unsafe_copyMemory();
case vmIntrinsics::_newArray:
return inline_native_newArray();
case vmIntrinsics::_getLength:
return inline_native_getLength();
case vmIntrinsics::_copyOf:
return inline_array_copyOf(false);
case vmIntrinsics::_copyOfRange:
return inline_array_copyOf(true);
case vmIntrinsics::_equalsC:
return inline_array_equals();
case vmIntrinsics::_clone:
return inline_native_clone(intrinsic()->is_virtual());
case vmIntrinsics::_isAssignableFrom:
return inline_native_subtype_check();
case vmIntrinsics::_isInstance:
case vmIntrinsics::_getModifiers:
case vmIntrinsics::_isInterface:
case vmIntrinsics::_isArray:
case vmIntrinsics::_isPrimitive:
case vmIntrinsics::_getSuperclass:
case vmIntrinsics::_getComponentType:
case vmIntrinsics::_getClassAccessFlags:
return inline_native_Class_query(intrinsic_id());
case vmIntrinsics::_floatToRawIntBits:
case vmIntrinsics::_floatToIntBits:
case vmIntrinsics::_intBitsToFloat:
case vmIntrinsics::_doubleToRawLongBits:
case vmIntrinsics::_doubleToLongBits:
case vmIntrinsics::_longBitsToDouble:
return inline_fp_conversions(intrinsic_id());
case vmIntrinsics::_numberOfLeadingZeros_i:
case vmIntrinsics::_numberOfLeadingZeros_l:
return inline_numberOfLeadingZeros(intrinsic_id());
case vmIntrinsics::_numberOfTrailingZeros_i:
case vmIntrinsics::_numberOfTrailingZeros_l:
return inline_numberOfTrailingZeros(intrinsic_id());
case vmIntrinsics::_bitCount_i:
case vmIntrinsics::_bitCount_l:
return inline_bitCount(intrinsic_id());
case vmIntrinsics::_reverseBytes_i:
case vmIntrinsics::_reverseBytes_l:
case vmIntrinsics::_reverseBytes_s:
case vmIntrinsics::_reverseBytes_c:
return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
case vmIntrinsics::_get_AtomicLong:
return inline_native_AtomicLong_get();
case vmIntrinsics::_attemptUpdate:
return inline_native_AtomicLong_attemptUpdate();
case vmIntrinsics::_getCallerClass:
return inline_native_Reflection_getCallerClass();
case vmIntrinsics::_Reference_get:
return inline_reference_get();
default:
// If you get here, it may be that someone has added a new intrinsic
// to the list in vmSymbols.hpp without implementing it here.
#ifndef PRODUCT
if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
}
#endif
return false;
}
}
//------------------------------push_result------------------------------
// Helper function for finishing intrinsics.
void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
record_for_igvn(region);
set_control(_gvn.transform(region));
BasicType value_type = value->type()->basic_type();
push_node(value_type, _gvn.transform(value));
}
//------------------------------generate_guard---------------------------
// Helper function for generating guarded fast-slow graph structures.
// The given 'test', if true, guards a slow path. If the test fails
// then a fast path can be taken. (We generally hope it fails.)
// In all cases, GraphKit::control() is updated to the fast path.
// The returned value represents the control for the slow path.
// The return value is never 'top'; it is either a valid control
// or NULL if it is obvious that the slow path can never be taken.
// Also, if region and the slow control are not NULL, the slow edge
// is appended to the region.
Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
if (stopped()) {
// Already short circuited.
return NULL;
}
// Build an if node and its projections.
// If test is true we take the slow path, which we assume is uncommon.
if (_gvn.type(test) == TypeInt::ZERO) {
// The slow branch is never taken. No need to build this guard.
return NULL;
}
IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
if (if_slow == top()) {
// The slow branch is never taken. No need to build this guard.
return NULL;
}
if (region != NULL)
region->add_req(if_slow);
Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
set_control(if_fast);
return if_slow;
}
inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
}
inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
return generate_guard(test, region, PROB_FAIR);
}
inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
Node* *pos_index) {
if (stopped())
return NULL; // already stopped
if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
return NULL; // index is already adequately typed
Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
if (is_neg != NULL && pos_index != NULL) {
// Emulate effect of Parse::adjust_map_after_if.
Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
ccast->set_req(0, control());
(*pos_index) = _gvn.transform(ccast);
}
return is_neg;
}
inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
Node* *pos_index) {
if (stopped())
return NULL; // already stopped
if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
return NULL; // index is already adequately typed
Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
if (is_notp != NULL && pos_index != NULL) {
// Emulate effect of Parse::adjust_map_after_if.
Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
ccast->set_req(0, control());
(*pos_index) = _gvn.transform(ccast);
}
return is_notp;
}
// Make sure that 'position' is a valid limit index, in [0..length].
// There are two equivalent plans for checking this:
// A. (offset + copyLength) unsigned<= arrayLength
// B. offset <= (arrayLength - copyLength)
// We require that all of the values above, except for the sum and
// difference, are already known to be non-negative.
// Plan A is robust in the face of overflow, if offset and copyLength
// are both hugely positive.
//
// Plan B is less direct and intuitive, but it does not overflow at
// all, since the difference of two non-negatives is always
// representable. Whenever Java methods must perform the equivalent
// check they generally use Plan B instead of Plan A.
// For the moment we use Plan A.
inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
Node* subseq_length,
Node* array_length,
RegionNode* region) {
if (stopped())
return NULL; // already stopped
bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
if (zero_offset && subseq_length->eqv_uncast(array_length))
return NULL; // common case of whole-array copy
Node* last = subseq_length;
if (!zero_offset) // last += offset
last = _gvn.transform( new (C, 3) AddINode(last, offset));
Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
return is_over;
}
//--------------------------generate_current_thread--------------------
Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
ciKlass* thread_klass = env()->Thread_klass();
const Type* thread_type = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
tls_output = thread;
return threadObj;
}
//------------------------------make_string_method_node------------------------
// Helper method for String intrinsic functions. This version is called
// with str1 and str2 pointing to String object nodes.
//
Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
Node* no_ctrl = NULL;
// Get start addr of string
Node* str1_value = load_String_value(no_ctrl, str1);
Node* str1_offset = load_String_offset(no_ctrl, str1);
Node* str1_start = array_element_address(str1_value, str1_offset, T_CHAR);
// Get length of string 1
Node* str1_len = load_String_length(no_ctrl, str1);
Node* str2_value = load_String_value(no_ctrl, str2);
Node* str2_offset = load_String_offset(no_ctrl, str2);
Node* str2_start = array_element_address(str2_value, str2_offset, T_CHAR);
Node* str2_len = NULL;
Node* result = NULL;
switch (opcode) {
case Op_StrIndexOf:
// Get length of string 2
str2_len = load_String_length(no_ctrl, str2);
result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
str1_start, str1_len, str2_start, str2_len);
break;
case Op_StrComp:
// Get length of string 2
str2_len = load_String_length(no_ctrl, str2);
result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
str1_start, str1_len, str2_start, str2_len);
break;
case Op_StrEquals:
result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
str1_start, str2_start, str1_len);
break;
default:
ShouldNotReachHere();
return NULL;
}
// All these intrinsics have checks.
C->set_has_split_ifs(true); // Has chance for split-if optimization
return _gvn.transform(result);
}
// Helper method for String intrinsic functions. This version is called
// with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
// to Int nodes containing the lenghts of str1 and str2.
//
Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
Node* result = NULL;
switch (opcode) {
case Op_StrIndexOf:
result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
str1_start, cnt1, str2_start, cnt2);
break;
case Op_StrComp:
result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
str1_start, cnt1, str2_start, cnt2);
break;
case Op_StrEquals:
result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
str1_start, str2_start, cnt1);
break;
default:
ShouldNotReachHere();
return NULL;
}
// All these intrinsics have checks.
C->set_has_split_ifs(true); // Has chance for split-if optimization
return _gvn.transform(result);
}
//------------------------------inline_string_compareTo------------------------
bool LibraryCallKit::inline_string_compareTo() {
if (!Matcher::has_match_rule(Op_StrComp)) return false;
_sp += 2;
Node *argument = pop(); // pop non-receiver first: it was pushed second
Node *receiver = pop();
// Null check on self without removing any arguments. The argument
// null check technically happens in the wrong place, which can lead to
// invalid stack traces when string compare is inlined into a method
// which handles NullPointerExceptions.
_sp += 2;
receiver = do_null_check(receiver, T_OBJECT);
argument = do_null_check(argument, T_OBJECT);
_sp -= 2;
if (stopped()) {
return true;
}
Node* compare = make_string_method_node(Op_StrComp, receiver, argument);
push(compare);
return true;
}
//------------------------------inline_string_equals------------------------
bool LibraryCallKit::inline_string_equals() {
if (!Matcher::has_match_rule(Op_StrEquals)) return false;
int nargs = 2;
_sp += nargs;
Node* argument = pop(); // pop non-receiver first: it was pushed second
Node* receiver = pop();
// Null check on self without removing any arguments. The argument
// null check technically happens in the wrong place, which can lead to
// invalid stack traces when string compare is inlined into a method
// which handles NullPointerExceptions.
_sp += nargs;
receiver = do_null_check(receiver, T_OBJECT);
//should not do null check for argument for String.equals(), because spec
//allows to specify NULL as argument.
_sp -= nargs;
if (stopped()) {
return true;
}
// paths (plus control) merge
RegionNode* region = new (C, 5) RegionNode(5);
Node* phi = new (C, 5) PhiNode(region, TypeInt::BOOL);
// does source == target string?
Node* cmp = _gvn.transform(new (C, 3) CmpPNode(receiver, argument));
Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
Node* if_eq = generate_slow_guard(bol, NULL);
if (if_eq != NULL) {
// receiver == argument
phi->init_req(2, intcon(1));
region->init_req(2, if_eq);
}
// get String klass for instanceOf
ciInstanceKlass* klass = env()->String_klass();
if (!stopped()) {
_sp += nargs; // gen_instanceof might do an uncommon trap
Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
_sp -= nargs;
Node* cmp = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::ne));
Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
//instanceOf == true, fallthrough
if (inst_false != NULL) {
phi->init_req(3, intcon(0));
region->init_req(3, inst_false);
}
}
if (!stopped()) {
const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
// Properly cast the argument to String
argument = _gvn.transform(new (C, 2) CheckCastPPNode(control(), argument, string_type));
// This path is taken only when argument's type is String:NotNull.
argument = cast_not_null(argument, false);
Node* no_ctrl = NULL;
// Get start addr of receiver
Node* receiver_val = load_String_value(no_ctrl, receiver);
Node* receiver_offset = load_String_offset(no_ctrl, receiver);
Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
// Get length of receiver
Node* receiver_cnt = load_String_length(no_ctrl, receiver);
// Get start addr of argument
Node* argument_val = load_String_value(no_ctrl, argument);
Node* argument_offset = load_String_offset(no_ctrl, argument);
Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
// Get length of argument
Node* argument_cnt = load_String_length(no_ctrl, argument);
// Check for receiver count != argument count
Node* cmp = _gvn.transform( new(C, 3) CmpINode(receiver_cnt, argument_cnt) );
Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::ne) );
Node* if_ne = generate_slow_guard(bol, NULL);
if (if_ne != NULL) {
phi->init_req(4, intcon(0));
region->init_req(4, if_ne);
}
// Check for count == 0 is done by assembler code for StrEquals.
if (!stopped()) {
Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
phi->init_req(1, equals);
region->init_req(1, control());
}
}
// post merge
set_control(_gvn.transform(region));
record_for_igvn(region);
push(_gvn.transform(phi));
return true;
}
//------------------------------inline_array_equals----------------------------
bool LibraryCallKit::inline_array_equals() {
if (!Matcher::has_match_rule(Op_AryEq)) return false;
_sp += 2;
Node *argument2 = pop();
Node *argument1 = pop();
Node* equals =
_gvn.transform(new (C, 4) AryEqNode(control(), memory(TypeAryPtr::CHARS),
argument1, argument2) );
push(equals);
return true;
}
// Java version of String.indexOf(constant string)
// class StringDecl {
// StringDecl(char[] ca) {
// offset = 0;
// count = ca.length;
// value = ca;
// }
// int offset;
// int count;
// char[] value;
// }
//
// static int string_indexOf_J(StringDecl string_object, char[] target_object,
// int targetOffset, int cache_i, int md2) {
// int cache = cache_i;
// int sourceOffset = string_object.offset;
// int sourceCount = string_object.count;
// int targetCount = target_object.length;
//
// int targetCountLess1 = targetCount - 1;
// int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
//
// char[] source = string_object.value;
// char[] target = target_object;
// int lastChar = target[targetCountLess1];
//
// outer_loop:
// for (int i = sourceOffset; i < sourceEnd; ) {
// int src = source[i + targetCountLess1];
// if (src == lastChar) {
// // With random strings and a 4-character alphabet,
// // reverse matching at this point sets up 0.8% fewer
// // frames, but (paradoxically) makes 0.3% more probes.
// // Since those probes are nearer the lastChar probe,
// // there is may be a net D$ win with reverse matching.
// // But, reversing loop inhibits unroll of inner loop
// // for unknown reason. So, does running outer loop from
// // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
// for (int j = 0; j < targetCountLess1; j++) {
// if (target[targetOffset + j] != source[i+j]) {
// if ((cache & (1 << source[i+j])) == 0) {
// if (md2 < j+1) {
// i += j+1;
// continue outer_loop;
// }
// }
// i += md2;
// continue outer_loop;
// }
// }
// return i - sourceOffset;
// }
// if ((cache & (1 << src)) == 0) {
// i += targetCountLess1;
// } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
// i++;
// }
// return -1;
// }
//------------------------------string_indexOf------------------------
Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
jint cache_i, jint md2_i) {
Node* no_ctrl = NULL;
float likely = PROB_LIKELY(0.9);
float unlikely = PROB_UNLIKELY(0.9);
const int nargs = 2; // number of arguments to push back for uncommon trap in predicate
Node* source = load_String_value(no_ctrl, string_object);
Node* sourceOffset = load_String_offset(no_ctrl, string_object);
Node* sourceCount = load_String_length(no_ctrl, string_object);
Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
jint target_length = target_array->length();
const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
IdealKit kit(this, false, true);
#define __ kit.
Node* zero = __ ConI(0);
Node* one = __ ConI(1);
Node* cache = __ ConI(cache_i);
Node* md2 = __ ConI(md2_i);
Node* lastChar = __ ConI(target_array->char_at(target_length - 1));
Node* targetCount = __ ConI(target_length);
Node* targetCountLess1 = __ ConI(target_length - 1);
Node* targetOffset = __ ConI(targetOffset_i);
Node* sourceEnd = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
Node* outer_loop = __ make_label(2 /* goto */);
Node* return_ = __ make_label(1);
__ set(rtn,__ ConI(-1));
__ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
Node* i2 = __ AddI(__ value(i), targetCountLess1);
// pin to prohibit loading of "next iteration" value which may SEGV (rare)
Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
__ if_then(src, BoolTest::eq, lastChar, unlikely); {
__ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
Node* tpj = __ AddI(targetOffset, __ value(j));
Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
Node* ipj = __ AddI(__ value(i), __ value(j));
Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
__ if_then(targ, BoolTest::ne, src2); {
__ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
__ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
__ increment(i, __ AddI(__ value(j), one));
__ goto_(outer_loop);
} __ end_if(); __ dead(j);
}__ end_if(); __ dead(j);
__ increment(i, md2);
__ goto_(outer_loop);
}__ end_if();
__ increment(j, one);
}__ end_loop(); __ dead(j);
__ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
__ goto_(return_);
}__ end_if();
__ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
__ increment(i, targetCountLess1);
}__ end_if();
__ increment(i, one);
__ bind(outer_loop);
}__ end_loop(); __ dead(i);
__ bind(return_);
// Final sync IdealKit and GraphKit.
final_sync(kit);
Node* result = __ value(rtn);
#undef __
C->set_has_loops(true);
return result;
}
//------------------------------inline_string_indexOf------------------------
bool LibraryCallKit::inline_string_indexOf() {
_sp += 2;
Node *argument = pop(); // pop non-receiver first: it was pushed second
Node *receiver = pop();
Node* result;
// Disable the use of pcmpestri until it can be guaranteed that
// the load doesn't cross into the uncommited space.
if (Matcher::has_match_rule(Op_StrIndexOf) &&
UseSSE42Intrinsics) {
// Generate SSE4.2 version of indexOf
// We currently only have match rules that use SSE4.2
// Null check on self without removing any arguments. The argument
// null check technically happens in the wrong place, which can lead to
// invalid stack traces when string compare is inlined into a method
// which handles NullPointerExceptions.
_sp += 2;
receiver = do_null_check(receiver, T_OBJECT);
argument = do_null_check(argument, T_OBJECT);
_sp -= 2;
if (stopped()) {
return true;
}
ciInstanceKlass* str_klass = env()->String_klass();
const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
// Make the merge point
RegionNode* result_rgn = new (C, 4) RegionNode(4);
Node* result_phi = new (C, 4) PhiNode(result_rgn, TypeInt::INT);
Node* no_ctrl = NULL;
// Get start addr of source string
Node* source = load_String_value(no_ctrl, receiver);
Node* source_offset = load_String_offset(no_ctrl, receiver);
Node* source_start = array_element_address(source, source_offset, T_CHAR);
// Get length of source string
Node* source_cnt = load_String_length(no_ctrl, receiver);
// Get start addr of substring
Node* substr = load_String_value(no_ctrl, argument);
Node* substr_offset = load_String_offset(no_ctrl, argument);
Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
// Get length of source string
Node* substr_cnt = load_String_length(no_ctrl, argument);
// Check for substr count > string count
Node* cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, source_cnt) );
Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::gt) );
Node* if_gt = generate_slow_guard(bol, NULL);
if (if_gt != NULL) {
result_phi->init_req(2, intcon(-1));
result_rgn->init_req(2, if_gt);
}
if (!stopped()) {
// Check for substr count == 0
cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, intcon(0)) );
bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
Node* if_zero = generate_slow_guard(bol, NULL);
if (if_zero != NULL) {
result_phi->init_req(3, intcon(0));
result_rgn->init_req(3, if_zero);
}
}
if (!stopped()) {
result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
result_phi->init_req(1, result);
result_rgn->init_req(1, control());
}
set_control(_gvn.transform(result_rgn));
record_for_igvn(result_rgn);
result = _gvn.transform(result_phi);
} else { // Use LibraryCallKit::string_indexOf
// don't intrinsify if argument isn't a constant string.
if (!argument->is_Con()) {
return false;
}
const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
if (str_type == NULL) {
return false;
}
ciInstanceKlass* klass = env()->String_klass();
ciObject* str_const = str_type->const_oop();
if (str_const == NULL || str_const->klass() != klass) {
return false;
}
ciInstance* str = str_const->as_instance();
assert(str != NULL, "must be instance");
ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
int o;
int c;
if (java_lang_String::has_offset_field()) {
o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
} else {
o = 0;
c = pat->length();
}
// constant strings have no offset and count == length which
// simplifies the resulting code somewhat so lets optimize for that.
if (o != 0 || c != pat->length()) {
return false;
}
// Null check on self without removing any arguments. The argument
// null check technically happens in the wrong place, which can lead to
// invalid stack traces when string compare is inlined into a method
// which handles NullPointerExceptions.
_sp += 2;
receiver = do_null_check(receiver, T_OBJECT);
// No null check on the argument is needed since it's a constant String oop.
_sp -= 2;
if (stopped()) {
return true;
}
// The null string as a pattern always returns 0 (match at beginning of string)
if (c == 0) {
push(intcon(0));
return true;
}
// Generate default indexOf
jchar lastChar = pat->char_at(o + (c - 1));
int cache = 0;
int i;
for (i = 0; i < c - 1; i++) {
assert(i < pat->length(), "out of range");
cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
}
int md2 = c;
for (i = 0; i < c - 1; i++) {
assert(i < pat->length(), "out of range");
if (pat->char_at(o + i) == lastChar) {
md2 = (c - 1) - i;
}
}
result = string_indexOf(receiver, pat, o, cache, md2);
}
push(result);
return true;
}
//--------------------------pop_math_arg--------------------------------
// Pop a double argument to a math function from the stack
// rounding it if necessary.
Node * LibraryCallKit::pop_math_arg() {
Node *arg = pop_pair();
if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
return arg;
}
//------------------------------inline_trig----------------------------------
// Inline sin/cos/tan instructions, if possible. If rounding is required, do
// argument reduction which will turn into a fast/slow diamond.
bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
_sp += arg_size(); // restore stack pointer
Node* arg = pop_math_arg();
Node* trig = NULL;
switch (id) {
case vmIntrinsics::_dsin:
trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
break;
case vmIntrinsics::_dcos:
trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
break;
case vmIntrinsics::_dtan:
trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
break;
default:
assert(false, "bad intrinsic was passed in");
return false;
}
// Rounding required? Check for argument reduction!
if( Matcher::strict_fp_requires_explicit_rounding ) {
static const double pi_4 = 0.7853981633974483;
static const double neg_pi_4 = -0.7853981633974483;
// pi/2 in 80-bit extended precision
// static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
// -pi/2 in 80-bit extended precision
// static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
// Cutoff value for using this argument reduction technique
//static const double pi_2_minus_epsilon = 1.564660403643354;
//static const double neg_pi_2_plus_epsilon = -1.564660403643354;
// Pseudocode for sin:
// if (x <= Math.PI / 4.0) {
// if (x >= -Math.PI / 4.0) return fsin(x);
// if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
// } else {
// if (x <= Math.PI / 2.0) return fcos(x - Math.PI / 2.0);
// }
// return StrictMath.sin(x);
// Pseudocode for cos:
// if (x <= Math.PI / 4.0) {
// if (x >= -Math.PI / 4.0) return fcos(x);
// if (x >= -Math.PI / 2.0) return fsin(x + Math.PI / 2.0);
// } else {
// if (x <= Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
// }
// return StrictMath.cos(x);
// Actually, sticking in an 80-bit Intel value into C2 will be tough; it
// requires a special machine instruction to load it. Instead we'll try
// the 'easy' case. If we really need the extra range +/- PI/2 we'll
// probably do the math inside the SIN encoding.
// Make the merge point
RegionNode *r = new (C, 3) RegionNode(3);
Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
// Flatten arg so we need only 1 test
Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
// Node for PI/4 constant
Node *pi4 = makecon(TypeD::make(pi_4));
// Check PI/4 : abs(arg)
Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
// Check: If PI/4 < abs(arg) then go slow
Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
// Branch either way
IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
set_control(opt_iff(r,iff));
// Set fast path result
phi->init_req(2,trig);
// Slow path - non-blocking leaf call
Node* call = NULL;
switch (id) {
case vmIntrinsics::_dsin:
call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
"Sin", NULL, arg, top());
break;
case vmIntrinsics::_dcos:
call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
"Cos", NULL, arg, top());
break;
case vmIntrinsics::_dtan:
call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
"Tan", NULL, arg, top());
break;
}
assert(control()->in(0) == call, "");
Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
r->init_req(1,control());
phi->init_req(1,slow_result);
// Post-merge
set_control(_gvn.transform(r));
record_for_igvn(r);
trig = _gvn.transform(phi);
C->set_has_split_ifs(true); // Has chance for split-if optimization
}
// Push result back on JVM stack
push_pair(trig);
return true;
}
//------------------------------inline_sqrt-------------------------------------
// Inline square root instruction, if possible.
bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
assert(id == vmIntrinsics::_dsqrt, "Not square root");
_sp += arg_size(); // restore stack pointer
push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
return true;
}
//------------------------------inline_abs-------------------------------------
// Inline absolute value instruction, if possible.
bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
assert(id == vmIntrinsics::_dabs, "Not absolute value");
_sp += arg_size(); // restore stack pointer
push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
return true;
}
//------------------------------inline_exp-------------------------------------
// Inline exp instructions, if possible. The Intel hardware only misses
// really odd corner cases (+/- Infinity). Just uncommon-trap them.
bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
assert(id == vmIntrinsics::_dexp, "Not exp");
// If this inlining ever returned NaN in the past, we do not intrinsify it
// every again. NaN results requires StrictMath.exp handling.
if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
// Do not intrinsify on older platforms which lack cmove.
if (ConditionalMoveLimit == 0) return false;
_sp += arg_size(); // restore stack pointer
Node *x = pop_math_arg();
Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
//-------------------
//result=(result.isNaN())? StrictMath::exp():result;
// Check: If isNaN() by checking result!=result? then go to Strict Math
Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
// Build the boolean node
Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
{ BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
// End the current control-flow path
push_pair(x);
// Math.exp intrinsic returned a NaN, which requires StrictMath.exp
// to handle. Recompile without intrinsifying Math.exp
uncommon_trap(Deoptimization::Reason_intrinsic,
Deoptimization::Action_make_not_entrant);
}
C->set_has_split_ifs(true); // Has chance for split-if optimization
push_pair(result);
return true;
}
//------------------------------inline_pow-------------------------------------
// Inline power instructions, if possible.
bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
assert(id == vmIntrinsics::_dpow, "Not pow");
// If this inlining ever returned NaN in the past, we do not intrinsify it
// every again. NaN results requires StrictMath.pow handling.
if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
// Do not intrinsify on older platforms which lack cmove.
if (ConditionalMoveLimit == 0) return false;
// Pseudocode for pow
// if (x <= 0.0) {
// if ((double)((int)y)==y) { // if y is int
// result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
// } else {
// result = NaN;
// }
// } else {
// result = DPow(x,y);
// }
// if (result != result)? {
// uncommon_trap();
// }
// return result;
_sp += arg_size(); // restore stack pointer
Node* y = pop_math_arg();
Node* x = pop_math_arg();
Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
// Short form: if not top-level (i.e., Math.pow but inlining Math.pow
// inside of something) then skip the fancy tests and just check for
// NaN result.
Node *result = NULL;
if( jvms()->depth() >= 1 ) {
result = fast_result;
} else {
// Set the merge point for If node with condition of (x <= 0.0)
// There are four possible paths to region node and phi node
RegionNode *r = new (C, 4) RegionNode(4);
Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
// Build the first if node: if (x <= 0.0)
// Node for 0 constant
Node *zeronode = makecon(TypeD::ZERO);
// Check x:0
Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
// Check: If (x<=0) then go complex path
Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
// Branch either way
IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
Node *opt_test = _gvn.transform(if1);
//assert( opt_test->is_If(), "Expect an IfNode");
IfNode *opt_if1 = (IfNode*)opt_test;
// Fast path taken; set region slot 3
Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
r->init_req(3,fast_taken); // Capture fast-control
// Fast path not-taken, i.e. slow path
Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
// Set fast path result
Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
phi->init_req(3, fast_result);
// Complex path
// Build the second if node (if y is int)
// Node for (int)y
Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
// Node for (double)((int) y)
Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
// Check (double)((int) y) : y
Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
// Check if (y isn't int) then go to slow path
Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
// Branch either way
IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
Node *slow_path = opt_iff(r,if2); // Set region path 2
// Calculate DPow(abs(x), y)*(1 & (int)y)
// Node for constant 1
Node *conone = intcon(1);
// 1& (int)y
Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
// zero node
Node *conzero = intcon(0);
// Check (1&(int)y)==0?
Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
// Check if (1&(int)y)!=0?, if so the result is negative
Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
// abs(x)
Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
// abs(x)^y
Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
// -abs(x)^y
Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
// (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
// Set complex path fast result
phi->init_req(2, signresult);
static const jlong nan_bits = CONST64(0x7ff8000000000000);
Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
r->init_req(1,slow_path);
phi->init_req(1,slow_result);
// Post merge
set_control(_gvn.transform(r));
record_for_igvn(r);
result=_gvn.transform(phi);
}
//-------------------
//result=(result.isNaN())? uncommon_trap():result;
// Check: If isNaN() by checking result!=result? then go to Strict Math
Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
// Build the boolean node
Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
{ BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
// End the current control-flow path
push_pair(x);
push_pair(y);
// Math.pow intrinsic returned a NaN, which requires StrictMath.pow
// to handle. Recompile without intrinsifying Math.pow.
uncommon_trap(Deoptimization::Reason_intrinsic,
Deoptimization::Action_make_not_entrant);
}
C->set_has_split_ifs(true); // Has chance for split-if optimization
push_pair(result);
return true;
}
//------------------------------inline_trans-------------------------------------
// Inline transcendental instructions, if possible. The Intel hardware gets
// these right, no funny corner cases missed.
bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
_sp += arg_size(); // restore stack pointer
Node* arg = pop_math_arg();
Node* trans = NULL;
switch (id) {
case vmIntrinsics::_dlog:
trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
break;
case vmIntrinsics::_dlog10:
trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
break;
default:
assert(false, "bad intrinsic was passed in");
return false;
}
// Push result back on JVM stack
push_pair(trans);
return true;
}
//------------------------------runtime_math-----------------------------
bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
Node* a = NULL;
Node* b = NULL;
assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
"must be (DD)D or (D)D type");
// Inputs
_sp += arg_size(); // restore stack pointer
if (call_type == OptoRuntime::Math_DD_D_Type()) {
b = pop_math_arg();
}
a = pop_math_arg();
const TypePtr* no_memory_effects = NULL;
Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
no_memory_effects,
a, top(), b, b ? top() : NULL);
Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
#ifdef ASSERT
Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
assert(value_top == top(), "second value must be top");
#endif
push_pair(value);
return true;
}
//------------------------------inline_math_native-----------------------------
bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
switch (id) {
// These intrinsics are not properly supported on all hardware
case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
case vmIntrinsics::_dlog: return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
// These intrinsics are supported on all hardware
case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_abs(id) : false;
// These intrinsics don't work on X86. The ad implementation doesn't
// handle NaN's properly. Instead of returning infinity, the ad
// implementation returns a NaN on overflow. See bug: 6304089
// Once the ad implementations are fixed, change the code below
// to match the intrinsics above
case vmIntrinsics::_dexp: return
runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
case vmIntrinsics::_dpow: return
runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
// These intrinsics are not yet correctly implemented
case vmIntrinsics::_datan2:
return false;
default:
ShouldNotReachHere();
return false;
}
}
static bool is_simple_name(Node* n) {
return (n->req() == 1 // constant
|| (n->is_Type() && n->as_Type()->type()->singleton())
|| n->is_Proj() // parameter or return value
|| n->is_Phi() // local of some sort
);
}
//----------------------------inline_min_max-----------------------------------
bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
push(generate_min_max(id, argument(0), argument(1)));
return true;
}
Node*
LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
// These are the candidate return value:
Node* xvalue = x0;
Node* yvalue = y0;
if (xvalue == yvalue) {
return xvalue;
}
bool want_max = (id == vmIntrinsics::_max);
const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
if (txvalue == NULL || tyvalue == NULL) return top();
// This is not really necessary, but it is consistent with a
// hypothetical MaxINode::Value method:
int widen = MAX2(txvalue->_widen, tyvalue->_widen);
// %%% This folding logic should (ideally) be in a different place.
// Some should be inside IfNode, and there to be a more reliable
// transformation of ?: style patterns into cmoves. We also want
// more powerful optimizations around cmove and min/max.
// Try to find a dominating comparison of these guys.
// It can simplify the index computation for Arrays.copyOf
// and similar uses of System.arraycopy.
// First, compute the normalized version of CmpI(x, y).
int cmp_op = Op_CmpI;
Node* xkey = xvalue;
Node* ykey = yvalue;
Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
if (ideal_cmpxy->is_Cmp()) {
// E.g., if we have CmpI(length - offset, count),
// it might idealize to CmpI(length, count + offset)
cmp_op = ideal_cmpxy->Opcode();
xkey = ideal_cmpxy->in(1);
ykey = ideal_cmpxy->in(2);
}
// Start by locating any relevant comparisons.
Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
Node* cmpxy = NULL;
Node* cmpyx = NULL;
for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
Node* cmp = start_from->fast_out(k);
if (cmp->outcnt() > 0 && // must have prior uses
cmp->in(0) == NULL && // must be context-independent
cmp->Opcode() == cmp_op) { // right kind of compare
if (cmp->in(1) == xkey && cmp->in(2) == ykey) cmpxy = cmp;
if (cmp->in(1) == ykey && cmp->in(2) == xkey) cmpyx = cmp;
}
}
const int NCMPS = 2;
Node* cmps[NCMPS] = { cmpxy, cmpyx };
int cmpn;
for (cmpn = 0; cmpn < NCMPS; cmpn++) {
if (cmps[cmpn] != NULL) break; // find a result
}
if (cmpn < NCMPS) {
// Look for a dominating test that tells us the min and max.
int depth = 0; // Limit search depth for speed
Node* dom = control();
for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
if (++depth >= 100) break;
Node* ifproj = dom;
if (!ifproj->is_Proj()) continue;
Node* iff = ifproj->in(0);
if (!iff->is_If()) continue;
Node* bol = iff->in(1);
if (!bol->is_Bool()) continue;
Node* cmp = bol->in(1);
if (cmp == NULL) continue;
for (cmpn = 0; cmpn < NCMPS; cmpn++)
if (cmps[cmpn] == cmp) break;
if (cmpn == NCMPS) continue;
BoolTest::mask btest = bol->as_Bool()->_test._test;
if (ifproj->is_IfFalse()) btest = BoolTest(btest).negate();
if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
// At this point, we know that 'x btest y' is true.
switch (btest) {
case BoolTest::eq:
// They are proven equal, so we can collapse the min/max.
// Either value is the answer. Choose the simpler.
if (is_simple_name(yvalue) && !is_simple_name(xvalue))
return yvalue;
return xvalue;
case BoolTest::lt: // x < y
case BoolTest::le: // x <= y
return (want_max ? yvalue : xvalue);
case BoolTest::gt: // x > y
case BoolTest::ge: // x >= y
return (want_max ? xvalue : yvalue);
}
}
}
// We failed to find a dominating test.
// Let's pick a test that might GVN with prior tests.
Node* best_bol = NULL;
BoolTest::mask best_btest = BoolTest::illegal;
for (cmpn = 0; cmpn < NCMPS; cmpn++) {
Node* cmp = cmps[cmpn];
if (cmp == NULL) continue;
for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
Node* bol = cmp->fast_out(j);
if (!bol->is_Bool()) continue;
BoolTest::mask btest = bol->as_Bool()->_test._test;
if (btest == BoolTest::eq || btest == BoolTest::ne) continue;
if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
best_bol = bol->as_Bool();
best_btest = btest;
}
}
}
Node* answer_if_true = NULL;
Node* answer_if_false = NULL;
switch (best_btest) {
default:
if (cmpxy == NULL)
cmpxy = ideal_cmpxy;
best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
// and fall through:
case BoolTest::lt: // x < y
case BoolTest::le: // x <= y
answer_if_true = (want_max ? yvalue : xvalue);
answer_if_false = (want_max ? xvalue : yvalue);
break;
case BoolTest::gt: // x > y
case BoolTest::ge: // x >= y
answer_if_true = (want_max ? xvalue : yvalue);
answer_if_false = (want_max ? yvalue : xvalue);
break;
}
jint hi, lo;
if (want_max) {
// We can sharpen the minimum.
hi = MAX2(txvalue->_hi, tyvalue->_hi);
lo = MAX2(txvalue->_lo, tyvalue->_lo);
} else {
// We can sharpen the maximum.
hi = MIN2(txvalue->_hi, tyvalue->_hi);
lo = MIN2(txvalue->_lo, tyvalue->_lo);
}
// Use a flow-free graph structure, to avoid creating excess control edges
// which could hinder other optimizations.
// Since Math.min/max is often used with arraycopy, we want
// tightly_coupled_allocation to be able to see beyond min/max expressions.
Node* cmov = CMoveNode::make(C, NULL, best_bol,
answer_if_false, answer_if_true,
TypeInt::make(lo, hi, widen));
return _gvn.transform(cmov);
/*
// This is not as desirable as it may seem, since Min and Max
// nodes do not have a full set of optimizations.
// And they would interfere, anyway, with 'if' optimizations
// and with CMoveI canonical forms.
switch (id) {
case vmIntrinsics::_min:
result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
case vmIntrinsics::_max:
result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
default:
ShouldNotReachHere();
}
*/
}
inline int
LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
const TypePtr* base_type = TypePtr::NULL_PTR;
if (base != NULL) base_type = _gvn.type(base)->isa_ptr();
if (base_type == NULL) {
// Unknown type.
return Type::AnyPtr;
} else if (base_type == TypePtr::NULL_PTR) {
// Since this is a NULL+long form, we have to switch to a rawptr.
base = _gvn.transform( new (C, 2) CastX2PNode(offset) );
offset = MakeConX(0);
return Type::RawPtr;
} else if (base_type->base() == Type::RawPtr) {
return Type::RawPtr;
} else if (base_type->isa_oopptr()) {
// Base is never null => always a heap address.
if (base_type->ptr() == TypePtr::NotNull) {
return Type::OopPtr;
}
// Offset is small => always a heap address.
const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
if (offset_type != NULL &&
base_type->offset() == 0 && // (should always be?)
offset_type->_lo >= 0 &&
!MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
return Type::OopPtr;
}
// Otherwise, it might either be oop+off or NULL+addr.
return Type::AnyPtr;
} else {
// No information:
return Type::AnyPtr;
}
}
inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
int kind = classify_unsafe_addr(base, offset);
if (kind == Type::RawPtr) {
return basic_plus_adr(top(), base, offset);
} else {
return basic_plus_adr(base, offset);
}
}
//-------------------inline_numberOfLeadingZeros_int/long-----------------------
// inline int Integer.numberOfLeadingZeros(int)
// inline int Long.numberOfLeadingZeros(long)
bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
_sp += arg_size(); // restore stack pointer
switch (id) {
case vmIntrinsics::_numberOfLeadingZeros_i:
push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
break;
case vmIntrinsics::_numberOfLeadingZeros_l:
push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
break;
default:
ShouldNotReachHere();
}
return true;
}
//-------------------inline_numberOfTrailingZeros_int/long----------------------
// inline int Integer.numberOfTrailingZeros(int)
// inline int Long.numberOfTrailingZeros(long)
bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
_sp += arg_size(); // restore stack pointer
switch (id) {
case vmIntrinsics::_numberOfTrailingZeros_i:
push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
break;
case vmIntrinsics::_numberOfTrailingZeros_l:
push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
break;
default:
ShouldNotReachHere();
}
return true;
}
//----------------------------inline_bitCount_int/long-----------------------
// inline int Integer.bitCount(int)
// inline int Long.bitCount(long)
bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
_sp += arg_size(); // restore stack pointer
switch (id) {
case vmIntrinsics::_bitCount_i:
push(_gvn.transform(new (C, 2) PopCountINode(pop())));
break;
case vmIntrinsics::_bitCount_l:
push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
break;
default:
ShouldNotReachHere();
}
return true;
}
//----------------------------inline_reverseBytes_int/long/char/short-------------------
// inline Integer.reverseBytes(int)
// inline Long.reverseBytes(long)
// inline Character.reverseBytes(char)
// inline Short.reverseBytes(short)
bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l ||
id == vmIntrinsics::_reverseBytes_c || id == vmIntrinsics::_reverseBytes_s,
"not reverse Bytes");
if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI)) return false;
if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL)) return false;
if (id == vmIntrinsics::_reverseBytes_c && !Matcher::has_match_rule(Op_ReverseBytesUS)) return false;
if (id == vmIntrinsics::_reverseBytes_s && !Matcher::has_match_rule(Op_ReverseBytesS)) return false;
_sp += arg_size(); // restore stack pointer
switch (id) {
case vmIntrinsics::_reverseBytes_i:
push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
break;
case vmIntrinsics::_reverseBytes_l:
push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
break;
case vmIntrinsics::_reverseBytes_c:
push(_gvn.transform(new (C, 2) ReverseBytesUSNode(0, pop())));
break;
case vmIntrinsics::_reverseBytes_s:
push(_gvn.transform(new (C, 2) ReverseBytesSNode(0, pop())));
break;
default:
;
}
return true;
}
//----------------------------inline_unsafe_access----------------------------
const static BasicType T_ADDRESS_HOLDER = T_LONG;
// Helper that guards and inserts a G1 pre-barrier.
void LibraryCallKit::insert_g1_pre_barrier(Node* base_oop, Node* offset, Node* pre_val) {
assert(UseG1GC, "should not call this otherwise");
// We could be accessing the referent field of a reference object. If so, when G1
// is enabled, we need to log the value in the referent field in an SATB buffer.
// This routine performs some compile time filters and generates suitable
// runtime filters that guard the pre-barrier code.
// Some compile time checks.
// If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
const TypeX* otype = offset->find_intptr_t_type();
if (otype != NULL && otype->is_con() &&
otype->get_con() != java_lang_ref_Reference::referent_offset) {
// Constant offset but not the reference_offset so just return
return;
}
// We only need to generate the runtime guards for instances.
const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
if (btype != NULL) {
if (btype->isa_aryptr()) {
// Array type so nothing to do
return;
}
const TypeInstPtr* itype = btype->isa_instptr();
if (itype != NULL) {
// Can the klass of base_oop be statically determined
// to be _not_ a sub-class of Reference?
ciKlass* klass = itype->klass();
if (klass->is_subtype_of(env()->Reference_klass()) &&
!env()->Reference_klass()->is_subtype_of(klass)) {
return;
}
}
}
// The compile time filters did not reject base_oop/offset so
// we need to generate the following runtime filters
//
// if (offset == java_lang_ref_Reference::_reference_offset) {
// if (base != null) {
// if (instance_of(base, java.lang.ref.Reference)) {
// pre_barrier(_, pre_val, ...);
// }
// }
// }
float likely = PROB_LIKELY(0.999);
float unlikely = PROB_UNLIKELY(0.999);
IdealKit ideal(this);
#define __ ideal.
Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
__ if_then(offset, BoolTest::eq, referent_off, unlikely); {
__ if_then(base_oop, BoolTest::ne, null(), likely); {
// Update graphKit memory and control from IdealKit.
sync_kit(ideal);
Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
// Update IdealKit memory and control from graphKit.
__ sync_kit(this);
Node* one = __ ConI(1);
__ if_then(is_instof, BoolTest::eq, one, unlikely); {
// Update graphKit from IdeakKit.
sync_kit(ideal);
// Use the pre-barrier to record the value in the referent field
pre_barrier(false /* do_load */,
__ ctrl(),
NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
pre_val /* pre_val */,
T_OBJECT);
// Update IdealKit from graphKit.
__ sync_kit(this);
} __ end_if(); // _ref_type != ref_none
} __ end_if(); // base != NULL
} __ end_if(); // offset == referent_offset
// Final sync IdealKit and GraphKit.
final_sync(ideal);
#undef __
}
// Interpret Unsafe.fieldOffset cookies correctly:
extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
if (callee()->is_static()) return false; // caller must have the capability!
#ifndef PRODUCT
{
ResourceMark rm;
// Check the signatures.
ciSignature* sig = signature();
#ifdef ASSERT
if (!is_store) {
// Object getObject(Object base, int/long offset), etc.
BasicType rtype = sig->return_type()->basic_type();
if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
rtype = T_ADDRESS; // it is really a C void*
assert(rtype == type, "getter must return the expected value");
if (!is_native_ptr) {
assert(sig->count() == 2, "oop getter has 2 arguments");
assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
} else {
assert(sig->count() == 1, "native getter has 1 argument");
assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
}
} else {
// void putObject(Object base, int/long offset, Object x), etc.
assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
if (!is_native_ptr) {
assert(sig->count() == 3, "oop putter has 3 arguments");
assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
} else {
assert(sig->count() == 2, "native putter has 2 arguments");
assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
}
BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
vtype = T_ADDRESS; // it is really a C void*
assert(vtype == type, "putter must accept the expected value");
}
#endif // ASSERT
}
#endif //PRODUCT
C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
// Argument words: "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
debug_only(int saved_sp = _sp);
_sp += nargs;
Node* val;
debug_only(val = (Node*)(uintptr_t)-1);
if (is_store) {
// Get the value being stored. (Pop it first; it was pushed last.)
switch (type) {
case T_DOUBLE:
case T_LONG:
case T_ADDRESS:
val = pop_pair();
break;
default:
val = pop();
}
}
// Build address expression. See the code in inline_unsafe_prefetch.
Node *adr;
Node *heap_base_oop = top();
Node* offset = top();
if (!is_native_ptr) {
// The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
offset = pop_pair();
// The base is either a Java object or a value produced by Unsafe.staticFieldBase
Node* base = pop();
// We currently rely on the cookies produced by Unsafe.xxxFieldOffset
// to be plain byte offsets, which are also the same as those accepted
// by oopDesc::field_base.
assert(Unsafe_field_offset_to_byte_offset(11) == 11,
"fieldOffset must be byte-scaled");
// 32-bit machines ignore the high half!
offset = ConvL2X(offset);
adr = make_unsafe_address(base, offset);
heap_base_oop = base;
} else {
Node* ptr = pop_pair();
// Adjust Java long to machine word:
ptr = ConvL2X(ptr);
adr = make_unsafe_address(NULL, ptr);
}
// Pop receiver last: it was pushed first.
Node *receiver = pop();
assert(saved_sp == _sp, "must have correct argument count");
const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
// First guess at the value type.
const Type *value_type = Type::get_const_basic_type(type);
// Try to categorize the address. If it comes up as TypeJavaPtr::BOTTOM,
// there was not enough information to nail it down.
Compile::AliasType* alias_type = C->alias_type(adr_type);
assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
// We will need memory barriers unless we can determine a unique
// alias category for this reference. (Note: If for some reason
// the barriers get omitted and the unsafe reference begins to "pollute"
// the alias analysis of the rest of the graph, either Compile::can_alias
// or Compile::must_alias will throw a diagnostic assert.)
bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
// If we are reading the value of the referent field of a Reference
// object (either by using Unsafe directly or through reflection)
// then, if G1 is enabled, we need to record the referent in an
// SATB log buffer using the pre-barrier mechanism.
bool need_read_barrier = UseG1GC && !is_native_ptr && !is_store &&
offset != top() && heap_base_oop != top();
if (!is_store && type == T_OBJECT) {
// Attempt to infer a sharper value type from the offset and base type.
ciKlass* sharpened_klass = NULL;
// See if it is an instance field, with an object type.
if (alias_type->field() != NULL) {
assert(!is_native_ptr, "native pointer op cannot use a java address");
if (alias_type->field()->type()->is_klass()) {
sharpened_klass = alias_type->field()->type()->as_klass();
}
}
// See if it is a narrow oop array.
if (adr_type->isa_aryptr()) {
if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
if (elem_type != NULL) {
sharpened_klass = elem_type->klass();
}
}
}
if (sharpened_klass != NULL) {
const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
// Sharpen the value type.
value_type = tjp;
#ifndef PRODUCT
if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
tty->print(" from base type: "); adr_type->dump();
tty->print(" sharpened value: "); value_type->dump();
}
#endif
}
}
// Null check on self without removing any arguments. The argument
// null check technically happens in the wrong place, which can lead to
// invalid stack traces when the primitive is inlined into a method
// which handles NullPointerExceptions.
_sp += nargs;
do_null_check(receiver, T_OBJECT);
_sp -= nargs;
if (stopped()) {
return true;
}
// Heap pointers get a null-check from the interpreter,
// as a courtesy. However, this is not guaranteed by Unsafe,
// and it is not possible to fully distinguish unintended nulls
// from intended ones in this API.
if (is_volatile) {
// We need to emit leading and trailing CPU membars (see below) in
// addition to memory membars when is_volatile. This is a little
// too strong, but avoids the need to insert per-alias-type
// volatile membars (for stores; compare Parse::do_put_xxx), which
// we cannot do effectively here because we probably only have a
// rough approximation of type.
need_mem_bar = true;
// For Stores, place a memory ordering barrier now.
if (is_store)
insert_mem_bar(Op_MemBarRelease);
}
// Memory barrier to prevent normal and 'unsafe' accesses from
// bypassing each other. Happens after null checks, so the
// exception paths do not take memory state from the memory barrier,
// so there's no problems making a strong assert about mixing users
// of safe & unsafe memory. Otherwise fails in a CTW of rt.jar
// around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
if (!is_store) {
Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
// load value and push onto stack
switch (type) {
case T_BOOLEAN:
case T_CHAR:
case T_BYTE:
case T_SHORT:
case T_INT:
case T_FLOAT:
push(p);
break;
case T_OBJECT:
if (need_read_barrier) {
insert_g1_pre_barrier(heap_base_oop, offset, p);
}
push(p);
break;
case T_ADDRESS:
// Cast to an int type.
p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
p = ConvX2L(p);
push_pair(p);
break;
case T_DOUBLE:
case T_LONG:
push_pair( p );
break;
default: ShouldNotReachHere();
}
} else {
// place effect of store into memory
switch (type) {
case T_DOUBLE:
val = dstore_rounding(val);
break;
case T_ADDRESS:
// Repackage the long as a pointer.
val = ConvL2X(val);
val = _gvn.transform( new (C, 2) CastX2PNode(val) );
break;
}
if (type != T_OBJECT ) {
(void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
} else {
// Possibly an oop being stored to Java heap or native memory
if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
// oop to Java heap.
(void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
} else {
// We can't tell at compile time if we are storing in the Java heap or outside
// of it. So we need to emit code to conditionally do the proper type of
// store.
IdealKit ideal(this);
#define __ ideal.
// QQQ who knows what probability is here??
__ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
// Sync IdealKit and graphKit.
sync_kit(ideal);
Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
// Update IdealKit memory.
__ sync_kit(this);
} __ else_(); {
__ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
} __ end_if();
// Final sync IdealKit and GraphKit.
final_sync(ideal);
#undef __
}
}
}
if (is_volatile) {
if (!is_store)
insert_mem_bar(Op_MemBarAcquire);
else
insert_mem_bar(Op_MemBarVolatile);
}
if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
return true;
}
//----------------------------inline_unsafe_prefetch----------------------------
bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
#ifndef PRODUCT
{
ResourceMark rm;
// Check the signatures.
ciSignature* sig = signature();
#ifdef ASSERT
// Object getObject(Object base, int/long offset), etc.
BasicType rtype = sig->return_type()->basic_type();
if (!is_native_ptr) {
assert(sig->count() == 2, "oop prefetch has 2 arguments");
assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
} else {
assert(sig->count() == 1, "native prefetch has 1 argument");
assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
}
#endif // ASSERT
}
#endif // !PRODUCT
C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
// Argument words: "this" if not static, plus (oop/offset) or (lo/hi) args
int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
debug_only(int saved_sp = _sp);
_sp += nargs;
// Build address expression. See the code in inline_unsafe_access.
Node *adr;
if (!is_native_ptr) {
// The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
Node* offset = pop_pair();
// The base is either a Java object or a value produced by Unsafe.staticFieldBase
Node* base = pop();
// We currently rely on the cookies produced by Unsafe.xxxFieldOffset
// to be plain byte offsets, which are also the same as those accepted
// by oopDesc::field_base.
assert(Unsafe_field_offset_to_byte_offset(11) == 11,
"fieldOffset must be byte-scaled");
// 32-bit machines ignore the high half!
offset = ConvL2X(offset);
adr = make_unsafe_address(base, offset);
} else {
Node* ptr = pop_pair();
// Adjust Java long to machine word:
ptr = ConvL2X(ptr);
adr = make_unsafe_address(NULL, ptr);
}
if (is_static) {
assert(saved_sp == _sp, "must have correct argument count");
} else {
// Pop receiver last: it was pushed first.
Node *receiver = pop();
assert(saved_sp == _sp, "must have correct argument count");
// Null check on self without removing any arguments. The argument
// null check technically happens in the wrong place, which can lead to
// invalid stack traces when the primitive is inlined into a method
// which handles NullPointerExceptions.
_sp += nargs;
do_null_check(receiver, T_OBJECT);
_sp -= nargs;
if (stopped()) {
return true;
}
}
// Generate the read or write prefetch
Node *prefetch;
if (is_store) {
prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
} else {
prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
}
prefetch->init_req(0, control());
set_i_o(_gvn.transform(prefetch));
return true;
}
//----------------------------inline_unsafe_CAS----------------------------
bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
// This basic scheme here is the same as inline_unsafe_access, but
// differs in enough details that combining them would make the code
// overly confusing. (This is a true fact! I originally combined
// them, but even I was confused by it!) As much code/comments as
// possible are retained from inline_unsafe_access though to make
// the correspondences clearer. - dl
if (callee()->is_static()) return false; // caller must have the capability!
#ifndef PRODUCT
{
ResourceMark rm;
// Check the signatures.
ciSignature* sig = signature();
#ifdef ASSERT
BasicType rtype = sig->return_type()->basic_type();
assert(rtype == T_BOOLEAN, "CAS must return boolean");
assert(sig->count() == 4, "CAS has 4 arguments");
assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
#endif // ASSERT
}
#endif //PRODUCT
// number of stack slots per value argument (1 or 2)
int type_words = type2size[type];
// Cannot inline wide CAS on machines that don't support it natively
if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
return false;
C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
// Argument words: "this" plus oop plus offset plus oldvalue plus newvalue;
int nargs = 1 + 1 + 2 + type_words + type_words;
// pop arguments: newval, oldval, offset, base, and receiver
debug_only(int saved_sp = _sp);
_sp += nargs;
Node* newval = (type_words == 1) ? pop() : pop_pair();
Node* oldval = (type_words == 1) ? pop() : pop_pair();
Node *offset = pop_pair();
Node *base = pop();
Node *receiver = pop();
assert(saved_sp == _sp, "must have correct argument count");
// Null check receiver.
_sp += nargs;
do_null_check(receiver, T_OBJECT);
_sp -= nargs;
if (stopped()) {
return true;
}
// Build field offset expression.
// We currently rely on the cookies produced by Unsafe.xxxFieldOffset
// to be plain byte offsets, which are also the same as those accepted
// by oopDesc::field_base.
assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
// 32-bit machines ignore the high half of long offsets
offset = ConvL2X(offset);
Node* adr = make_unsafe_address(base, offset);
const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
// (Unlike inline_unsafe_access, there seems no point in trying
// to refine types. Just use the coarse types here.
const Type *value_type = Type::get_const_basic_type(type);
Compile::AliasType* alias_type = C->alias_type(adr_type);
assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
int alias_idx = C->get_alias_index(adr_type);
// Memory-model-wise, a CAS acts like a little synchronized block,
// so needs barriers on each side. These don't translate into
// actual barriers on most machines, but we still need rest of
// compiler to respect ordering.
insert_mem_bar(Op_MemBarRelease);
insert_mem_bar(Op_MemBarCPUOrder);
// 4984716: MemBars must be inserted before this
// memory node in order to avoid a false
// dependency which will confuse the scheduler.
Node *mem = memory(alias_idx);
// For now, we handle only those cases that actually exist: ints,
// longs, and Object. Adding others should be straightforward.
Node* cas;
switch(type) {
case T_INT:
cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
break;
case T_LONG:
cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
break;
case T_OBJECT:
// Transformation of a value which could be NULL pointer (CastPP #NULL)
// could be delayed during Parse (for example, in adjust_map_after_if()).
// Execute transformation here to avoid barrier generation in such case.
if (_gvn.type(newval) == TypePtr::NULL_PTR)
newval = _gvn.makecon(TypePtr::NULL_PTR);
// Reference stores need a store barrier.
// (They don't if CAS fails, but it isn't worth checking.)
pre_barrier(true /* do_load*/,
control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
NULL /* pre_val*/,
T_OBJECT);
#ifdef _LP64
if (adr->bottom_type()->is_ptr_to_narrowoop()) {
Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
newval_enc, oldval_enc));
} else
#endif
{
cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
}
post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
break;
default:
ShouldNotReachHere();
break;
}
// SCMemProjNodes represent the memory state of CAS. Their main
// role is to prevent CAS nodes from being optimized away when their
// results aren't used.
Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
set_memory(proj, alias_idx);
// Add the trailing membar surrounding the access
insert_mem_bar(Op_MemBarCPUOrder);
insert_mem_bar(Op_MemBarAcquire);
push(cas);
return true;
}
bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
// This is another variant of inline_unsafe_access, differing in
// that it always issues store-store ("release") barrier and ensures
// store-atomicity (which only matters for "long").
if (callee()->is_static()) return false; // caller must have the capability!
#ifndef PRODUCT
{
ResourceMark rm;
// Check the signatures.
ciSignature* sig = signature();
#ifdef ASSERT
BasicType rtype = sig->return_type()->basic_type();
assert(rtype == T_VOID, "must return void");
assert(sig->count() == 3, "has 3 arguments");
assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
#endif // ASSERT
}
#endif //PRODUCT
// number of stack slots per value argument (1 or 2)
int type_words = type2size[type];
C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
// Argument words: "this" plus oop plus offset plus value;
int nargs = 1 + 1 + 2 + type_words;
// pop arguments: val, offset, base, and receiver
debug_only(int saved_sp = _sp);
_sp += nargs;
Node* val = (type_words == 1) ? pop() : pop_pair();
Node *offset = pop_pair();
Node *base = pop();
Node *receiver = pop();
assert(saved_sp == _sp, "must have correct argument count");
// Null check receiver.
_sp += nargs;
do_null_check(receiver, T_OBJECT);
_sp -= nargs;
if (stopped()) {
return true;
}
// Build field offset expression.
assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
// 32-bit machines ignore the high half of long offsets
offset = ConvL2X(offset);
Node* adr = make_unsafe_address(base, offset);
const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
const Type *value_type = Type::get_const_basic_type(type);
Compile::AliasType* alias_type = C->alias_type(adr_type);
insert_mem_bar(Op_MemBarRelease);
insert_mem_bar(Op_MemBarCPUOrder);
// Ensure that the store is atomic for longs:
bool require_atomic_access = true;
Node* store;
if (type == T_OBJECT) // reference stores need a store barrier.
store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
else {
store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
}
insert_mem_bar(Op_MemBarCPUOrder);
return true;
}
bool LibraryCallKit::inline_unsafe_allocate() {
if (callee()->is_static()) return false; // caller must have the capability!
int nargs = 1 + 1;
assert(signature()->size() == nargs-1, "alloc has 1 argument");
null_check_receiver(callee()); // check then ignore argument(0)
_sp += nargs; // set original stack for use by uncommon_trap
Node* cls = do_null_check(argument(1), T_OBJECT);
_sp -= nargs;
if (stopped()) return true;
Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
_sp += nargs; // set original stack for use by uncommon_trap
kls = do_null_check(kls, T_OBJECT);
_sp -= nargs;
if (stopped()) return true; // argument was like int.class
// Note: The argument might still be an illegal value like
// Serializable.class or Object[].class. The runtime will handle it.
// But we must make an explicit check for initialization.
Node* insp = basic_plus_adr(kls, in_bytes(instanceKlass::init_state_offset()));
// Use T_BOOLEAN for instanceKlass::_init_state so the compiler
// can generate code to load it as unsigned byte.
Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
Node* bits = intcon(instanceKlass::fully_initialized);
Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
// The 'test' is non-zero if we need to take a slow path.
Node* obj = new_instance(kls, test);
push(obj);
return true;
}
#ifdef TRACE_HAVE_INTRINSICS
/*
* oop -> myklass
* myklass->trace_id |= USED
* return myklass->trace_id & ~0x3
*/
bool LibraryCallKit::inline_native_classID() {
int nargs = 1 + 1;
null_check_receiver(callee()); // check then ignore argument(0)
_sp += nargs;
Node* cls = do_null_check(argument(1), T_OBJECT);
_sp -= nargs;
Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
_sp += nargs;
kls = do_null_check(kls, T_OBJECT);
_sp -= nargs;
ByteSize offset = TRACE_ID_OFFSET;
Node* insp = basic_plus_adr(kls, in_bytes(offset));
Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
Node* bits = longcon(~0x03l); // ignore bit 0 & 1
Node* andl = _gvn.transform(new (C, 3) AndLNode(tvalue, bits));
Node* clsused = longcon(0x01l); // set the class bit
Node* orl = _gvn.transform(new (C, 3) OrLNode(tvalue, clsused));
const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
store_to_memory(control(), insp, orl, T_LONG, adr_type);
push_pair(andl);
return true;
}
bool LibraryCallKit::inline_native_threadID() {
Node* tls_ptr = NULL;
Node* cur_thr = generate_current_thread(tls_ptr);
Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
Node* threadid = NULL;
size_t thread_id_size = OSThread::thread_id_size();
if (thread_id_size == (size_t) BytesPerLong) {
threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
push(threadid);
} else if (thread_id_size == (size_t) BytesPerInt) {
threadid = make_load(control(), p, TypeInt::INT, T_INT);
push(threadid);
} else {
ShouldNotReachHere();
}
return true;
}
#endif
//------------------------inline_native_time_funcs--------------
// inline code for System.currentTimeMillis() and System.nanoTime()
// these have the same type and signature
bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
const TypeFunc *tf = OptoRuntime::void_long_Type();
const TypePtr* no_memory_effects = NULL;
Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
#ifdef ASSERT
Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
assert(value_top == top(), "second value must be top");
#endif
push_pair(value);
return true;
}
//------------------------inline_native_currentThread------------------
bool LibraryCallKit::inline_native_currentThread() {
Node* junk = NULL;
push(generate_current_thread(junk));
return true;
}
//------------------------inline_native_isInterrupted------------------
bool LibraryCallKit::inline_native_isInterrupted() {
const int nargs = 1+1; // receiver + boolean
assert(nargs == arg_size(), "sanity");
// Add a fast path to t.isInterrupted(clear_int):
// (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
// ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
// So, in the common case that the interrupt bit is false,
// we avoid making a call into the VM. Even if the interrupt bit
// is true, if the clear_int argument is false, we avoid the VM call.
// However, if the receiver is not currentThread, we must call the VM,
// because there must be some locking done around the operation.
// We only go to the fast case code if we pass two guards.
// Paths which do not pass are accumulated in the slow_region.
RegionNode* slow_region = new (C, 1) RegionNode(1);
record_for_igvn(slow_region);
RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
PhiNode* result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
enum { no_int_result_path = 1,
no_clear_result_path = 2,
slow_result_path = 3
};
// (a) Receiving thread must be the current thread.
Node* rec_thr = argument(0);
Node* tls_ptr = NULL;
Node* cur_thr = generate_current_thread(tls_ptr);
Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
if (!known_current_thread)
generate_slow_guard(bol_thr, slow_region);
// (b) Interrupt bit on TLS must be false.
Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
// Set the control input on the field _interrupted read to prevent it floating up.
Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
// First fast path: if (!TLS._interrupted) return false;
Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
result_rgn->init_req(no_int_result_path, false_bit);
result_val->init_req(no_int_result_path, intcon(0));
// drop through to next case
set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
// (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
Node* clr_arg = argument(1);
Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
// Second fast path: ... else if (!clear_int) return true;
Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
result_rgn->init_req(no_clear_result_path, false_arg);
result_val->init_req(no_clear_result_path, intcon(1));
// drop through to next case
set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
// (d) Otherwise, go to the slow path.
slow_region->add_req(control());
set_control( _gvn.transform(slow_region) );
if (stopped()) {
// There is no slow path.
result_rgn->init_req(slow_result_path, top());
result_val->init_req(slow_result_path, top());
} else {
// non-virtual because it is a private non-static
CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
Node* slow_val = set_results_for_java_call(slow_call);
// this->control() comes from set_results_for_java_call
// If we know that the result of the slow call will be true, tell the optimizer!
if (known_current_thread) slow_val = intcon(1);
Node* fast_io = slow_call->in(TypeFunc::I_O);
Node* fast_mem = slow_call->in(TypeFunc::Memory);
// These two phis are pre-filled with copies of of the fast IO and Memory
Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO);
Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
result_rgn->init_req(slow_result_path, control());
io_phi ->init_req(slow_result_path, i_o());
mem_phi ->init_req(slow_result_path, reset_memory());
result_val->init_req(slow_result_path, slow_val);
set_all_memory( _gvn.transform(mem_phi) );
set_i_o( _gvn.transform(io_phi) );
}
push_result(result_rgn, result_val);
C->set_has_split_ifs(true); // Has chance for split-if optimization
return true;
}
//---------------------------load_mirror_from_klass----------------------------
// Given a klass oop, load its java mirror (a java.lang.Class oop).
Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
}
//-----------------------load_klass_from_mirror_common-------------------------
// Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
// Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
// and branch to the given path on the region.
// If never_see_null, take an uncommon trap on null, so we can optimistically
// compile for the non-null case.
// If the region is NULL, force never_see_null = true.
Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
bool never_see_null,
int nargs,
RegionNode* region,
int null_path,
int offset) {
if (region == NULL) never_see_null = true;
Node* p = basic_plus_adr(mirror, offset);
const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
_sp += nargs; // any deopt will start just before call to enclosing method
Node* null_ctl = top();
kls = null_check_oop(kls, &null_ctl, never_see_null);
if (region != NULL) {
// Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
region->init_req(null_path, null_ctl);
} else {
assert(null_ctl == top(), "no loose ends");
}
_sp -= nargs;
return kls;
}
//--------------------(inline_native_Class_query helpers)---------------------
// Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
// Fall through if (mods & mask) == bits, take the guard otherwise.
Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
// Branch around if the given klass has the given modifier bit set.
// Like generate_guard, adds a new path onto the region.
Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
Node* mask = intcon(modifier_mask);
Node* bits = intcon(modifier_bits);
Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
Node* cmp = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
Node* bol = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
return generate_fair_guard(bol, region);
}
Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
}
//-------------------------inline_native_Class_query-------------------
bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
int nargs = 1+0; // just the Class mirror, in most cases
const Type* return_type = TypeInt::BOOL;
Node* prim_return_value = top(); // what happens if it's a primitive class?
bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
bool expect_prim = false; // most of these guys expect to work on refs
enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
switch (id) {
case vmIntrinsics::_isInstance:
nargs = 1+1; // the Class mirror, plus the object getting queried about
// nothing is an instance of a primitive type
prim_return_value = intcon(0);
break;
case vmIntrinsics::_getModifiers:
prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
break;
case vmIntrinsics::_isInterface:
prim_return_value = intcon(0);
break;
case vmIntrinsics::_isArray:
prim_return_value = intcon(0);
expect_prim = true; // cf. ObjectStreamClass.getClassSignature
break;
case vmIntrinsics::_isPrimitive:
prim_return_value = intcon(1);
expect_prim = true; // obviously
break;
case vmIntrinsics::_getSuperclass:
prim_return_value = null();
return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
break;
case vmIntrinsics::_getComponentType:
prim_return_value = null();
return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
break;
case vmIntrinsics::_getClassAccessFlags:
prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
return_type = TypeInt::INT; // not bool! 6297094
break;
default:
ShouldNotReachHere();
}
Node* mirror = argument(0);
Node* obj = (nargs <= 1)? top(): argument(1);
const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
if (mirror_con == NULL) return false; // cannot happen?
#ifndef PRODUCT
if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
ciType* k = mirror_con->java_mirror_type();
if (k) {
tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
k->print_name();
tty->cr();
}
}
#endif
// Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
record_for_igvn(region);
PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
// The mirror will never be null of Reflection.getClassAccessFlags, however
// it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
// if it is. See bug 4774291.
// For Reflection.getClassAccessFlags(), the null check occurs in
// the wrong place; see inline_unsafe_access(), above, for a similar
// situation.
_sp += nargs; // set original stack for use by uncommon_trap
mirror = do_null_check(mirror, T_OBJECT);
_sp -= nargs;
// If mirror or obj is dead, only null-path is taken.
if (stopped()) return true;
if (expect_prim) never_see_null = false; // expect nulls (meaning prims)
// Now load the mirror's klass metaobject, and null-check it.
// Side-effects region with the control path if the klass is null.
Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
region, _prim_path);
// If kls is null, we have a primitive mirror.
phi->init_req(_prim_path, prim_return_value);
if (stopped()) { push_result(region, phi); return true; }
Node* p; // handy temp
Node* null_ctl;
// Now that we have the non-null klass, we can perform the real query.
// For constant classes, the query will constant-fold in LoadNode::Value.
Node* query_value = top();
switch (id) {
case vmIntrinsics::_isInstance:
// nothing is an instance of a primitive type
_sp += nargs; // gen_instanceof might do an uncommon trap
query_value = gen_instanceof(obj, kls);
_sp -= nargs;
break;
case vmIntrinsics::_getModifiers:
p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
query_value = make_load(NULL, p, TypeInt::INT, T_INT);
break;
case vmIntrinsics::_isInterface:
// (To verify this code sequence, check the asserts in JVM_IsInterface.)
if (generate_interface_guard(kls, region) != NULL)
// A guard was added. If the guard is taken, it was an interface.
phi->add_req(intcon(1));
// If we fall through, it's a plain class.
query_value = intcon(0);
break;
case vmIntrinsics::_isArray:
// (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
if (generate_array_guard(kls, region) != NULL)
// A guard was added. If the guard is taken, it was an array.
phi->add_req(intcon(1));
// If we fall through, it's a plain class.
query_value = intcon(0);
break;
case vmIntrinsics::_isPrimitive:
query_value = intcon(0); // "normal" path produces false
break;
case vmIntrinsics::_getSuperclass:
// The rules here are somewhat unfortunate, but we can still do better
// with random logic than with a JNI call.
// Interfaces store null or Object as _super, but must report null.
// Arrays store an intermediate super as _super, but must report Object.
// Other types can report the actual _super.
// (To verify this code sequence, check the asserts in JVM_IsInterface.)
if (generate_interface_guard(kls, region) != NULL)
// A guard was added. If the guard is taken, it was an interface.
phi->add_req(null());
if (generate_array_guard(kls, region) != NULL)
// A guard was added. If the guard is taken, it was an array.
phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
// If we fall through, it's a plain class. Get its _super.
p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
null_ctl = top();
kls = null_check_oop(kls, &null_ctl);
if (null_ctl != top()) {
// If the guard is taken, Object.superClass is null (both klass and mirror).
region->add_req(null_ctl);
phi ->add_req(null());
}
if (!stopped()) {
query_value = load_mirror_from_klass(kls);
}
break;
case vmIntrinsics::_getComponentType:
if (generate_array_guard(kls, region) != NULL) {
// Be sure to pin the oop load to the guard edge just created:
Node* is_array_ctrl = region->in(region->req()-1);
Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()));
Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
phi->add_req(cmo);
}
query_value = null(); // non-array case is null
break;
case vmIntrinsics::_getClassAccessFlags:
p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
query_value = make_load(NULL, p, TypeInt::INT, T_INT);
break;
default:
ShouldNotReachHere();
}
// Fall-through is the normal case of a query to a real class.
phi->init_req(1, query_value);
region->init_req(1, control());
push_result(region, phi);
C->set_has_split_ifs(true); // Has chance for split-if optimization
return true;
}
//--------------------------inline_native_subtype_check------------------------
// This intrinsic takes the JNI calls out of the heart of
// UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
bool LibraryCallKit::inline_native_subtype_check() {
int nargs = 1+1; // the Class mirror, plus the other class getting examined
// Pull both arguments off the stack.
Node* args[2]; // two java.lang.Class mirrors: superc, subc
args[0] = argument(0);
args[1] = argument(1);
Node* klasses[2]; // corresponding Klasses: superk, subk
klasses[0] = klasses[1] = top();
enum {
// A full decision tree on {superc is prim, subc is prim}:
_prim_0_path = 1, // {P,N} => false
// {P,P} & superc!=subc => false
_prim_same_path, // {P,P} & superc==subc => true
_prim_1_path, // {N,P} => false
_ref_subtype_path, // {N,N} & subtype check wins => true
_both_ref_path, // {N,N} & subtype check loses => false
PATH_LIMIT
};
RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
Node* phi = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
record_for_igvn(region);
const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads
const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
// First null-check both mirrors and load each mirror's klass metaobject.
int which_arg;
for (which_arg = 0; which_arg <= 1; which_arg++) {
Node* arg = args[which_arg];
_sp += nargs; // set original stack for use by uncommon_trap
arg = do_null_check(arg, T_OBJECT);
_sp -= nargs;
if (stopped()) break;
args[which_arg] = _gvn.transform(arg);
Node* p = basic_plus_adr(arg, class_klass_offset);
Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
klasses[which_arg] = _gvn.transform(kls);
}
// Having loaded both klasses, test each for null.
bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
for (which_arg = 0; which_arg <= 1; which_arg++) {
Node* kls = klasses[which_arg];
Node* null_ctl = top();
_sp += nargs; // set original stack for use by uncommon_trap
kls = null_check_oop(kls, &null_ctl, never_see_null);
_sp -= nargs;
int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
region->init_req(prim_path, null_ctl);
if (stopped()) break;
klasses[which_arg] = kls;
}
if (!stopped()) {
// now we have two reference types, in klasses[0..1]
Node* subk = klasses[1]; // the argument to isAssignableFrom
Node* superk = klasses[0]; // the receiver
region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
// now we have a successful reference subtype check
region->set_req(_ref_subtype_path, control());
}
// If both operands are primitive (both klasses null), then
// we must return true when they are identical primitives.
// It is convenient to test this after the first null klass check.
set_control(region->in(_prim_0_path)); // go back to first null check
if (!stopped()) {
// Since superc is primitive, make a guard for the superc==subc case.
Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
generate_guard(bol_eq, region, PROB_FAIR);
if (region->req() == PATH_LIMIT+1) {
// A guard was added. If the added guard is taken, superc==subc.
region->swap_edges(PATH_LIMIT, _prim_same_path);
region->del_req(PATH_LIMIT);
}
region->set_req(_prim_0_path, control()); // Not equal after all.
}
// these are the only paths that produce 'true':
phi->set_req(_prim_same_path, intcon(1));
phi->set_req(_ref_subtype_path, intcon(1));
// pull together the cases:
assert(region->req() == PATH_LIMIT, "sane region");
for (uint i = 1; i < region->req(); i++) {
Node* ctl = region->in(i);
if (ctl == NULL || ctl == top()) {
region->set_req(i, top());
phi ->set_req(i, top());
} else if (phi->in(i) == NULL) {
phi->set_req(i, intcon(0)); // all other paths produce 'false'
}
}
set_control(_gvn.transform(region));
push(_gvn.transform(phi));
return true;
}
//---------------------generate_array_guard_common------------------------
Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
bool obj_array, bool not_array) {
// If obj_array/non_array==false/false:
// Branch around if the given klass is in fact an array (either obj or prim).
// If obj_array/non_array==false/true:
// Branch around if the given klass is not an array klass of any kind.
// If obj_array/non_array==true/true:
// Branch around if the kls is not an oop array (kls is int[], String, etc.)
// If obj_array/non_array==true/false:
// Branch around if the kls is an oop array (Object[] or subtype)
//
// Like generate_guard, adds a new path onto the region.
jint layout_con = 0;
Node* layout_val = get_layout_helper(kls, layout_con);
if (layout_val == NULL) {
bool query = (obj_array
? Klass::layout_helper_is_objArray(layout_con)
: Klass::layout_helper_is_javaArray(layout_con));
if (query == not_array) {
return NULL; // never a branch
} else { // always a branch
Node* always_branch = control();
if (region != NULL)
region->add_req(always_branch);
set_control(top());
return always_branch;
}
}
// Now test the correct condition.
jint nval = (obj_array
? ((jint)Klass::_lh_array_tag_type_value
<< Klass::_lh_array_tag_shift)
: Klass::_lh_neutral_value);
Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array
// invert the test if we are looking for a non-array
if (not_array) btest = BoolTest(btest).negate();
Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
return generate_fair_guard(bol, region);
}
//-----------------------inline_native_newArray--------------------------
bool LibraryCallKit::inline_native_newArray() {
int nargs = 2;
Node* mirror = argument(0);
Node* count_val = argument(1);
_sp += nargs; // set original stack for use by uncommon_trap
mirror = do_null_check(mirror, T_OBJECT);
_sp -= nargs;
// If mirror or obj is dead, only null-path is taken.
if (stopped()) return true;
enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
PhiNode* result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
TypeInstPtr::NOTNULL);
PhiNode* result_io = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
TypePtr::BOTTOM);
bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
nargs,
result_reg, _slow_path);
Node* normal_ctl = control();
Node* no_array_ctl = result_reg->in(_slow_path);
// Generate code for the slow case. We make a call to newArray().
set_control(no_array_ctl);
if (!stopped()) {
// Either the input type is void.class, or else the
// array klass has not yet been cached. Either the
// ensuing call will throw an exception, or else it
// will cache the array klass for next time.
PreserveJVMState pjvms(this);
CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
Node* slow_result = set_results_for_java_call(slow_call);
// this->control() comes from set_results_for_java_call
result_reg->set_req(_slow_path, control());
result_val->set_req(_slow_path, slow_result);
result_io ->set_req(_slow_path, i_o());
result_mem->set_req(_slow_path, reset_memory());
}
set_control(normal_ctl);
if (!stopped()) {
// Normal case: The array type has been cached in the java.lang.Class.
// The following call works fine even if the array type is polymorphic.
// It could be a dynamic mix of int[], boolean[], Object[], etc.
Node* obj = new_array(klass_node, count_val, nargs);
result_reg->init_req(_normal_path, control());
result_val->init_req(_normal_path, obj);
result_io ->init_req(_normal_path, i_o());
result_mem->init_req(_normal_path, reset_memory());
}
// Return the combined state.
set_i_o( _gvn.transform(result_io) );
set_all_memory( _gvn.transform(result_mem) );
push_result(result_reg, result_val);
C->set_has_split_ifs(true); // Has chance for split-if optimization
return true;
}
//----------------------inline_native_getLength--------------------------
bool LibraryCallKit::inline_native_getLength() {
if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
int nargs = 1;
Node* array = argument(0);
_sp += nargs; // set original stack for use by uncommon_trap
array = do_null_check(array, T_OBJECT);
_sp -= nargs;
// If array is dead, only null-path is taken.
if (stopped()) return true;
// Deoptimize if it is a non-array.
Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
if (non_array != NULL) {
PreserveJVMState pjvms(this);
set_control(non_array);
_sp += nargs; // push the arguments back on the stack
uncommon_trap(Deoptimization::Reason_intrinsic,
Deoptimization::Action_maybe_recompile);
}
// If control is dead, only non-array-path is taken.
if (stopped()) return true;
// The works fine even if the array type is polymorphic.
// It could be a dynamic mix of int[], boolean[], Object[], etc.
push( load_array_length(array) );
C->set_has_split_ifs(true); // Has chance for split-if optimization
return true;
}
//------------------------inline_array_copyOf----------------------------
bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
// Restore the stack and pop off the arguments.
int nargs = 3 + (is_copyOfRange? 1: 0);
Node* original = argument(0);
Node* start = is_copyOfRange? argument(1): intcon(0);
Node* end = is_copyOfRange? argument(2): argument(1);
Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
Node* newcopy;
//set the original stack and the reexecute bit for the interpreter to reexecute
//the bytecode that invokes Arrays.copyOf if deoptimization happens
{ PreserveReexecuteState preexecs(this);
_sp += nargs;
jvms()->set_should_reexecute(true);
array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
original = do_null_check(original, T_OBJECT);
// Check if a null path was taken unconditionally.
if (stopped()) return true;
Node* orig_length = load_array_length(original);
Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
NULL, 0);
klass_node = do_null_check(klass_node, T_OBJECT);
RegionNode* bailout = new (C, 1) RegionNode(1);
record_for_igvn(bailout);
// Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
// Bail out if that is so.
Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
if (not_objArray != NULL) {
// Improve the klass node's type from the new optimistic assumption:
ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
Node* cast = new (C, 2) CastPPNode(klass_node, akls);
cast->init_req(0, control());
klass_node = _gvn.transform(cast);
}
// Bail out if either start or end is negative.
generate_negative_guard(start, bailout, &start);
generate_negative_guard(end, bailout, &end);
Node* length = end;
if (_gvn.type(start) != TypeInt::ZERO) {
length = _gvn.transform( new (C, 3) SubINode(end, start) );
}
// Bail out if length is negative.
// ...Not needed, since the new_array will throw the right exception.
//generate_negative_guard(length, bailout, &length);
if (bailout->req() > 1) {
PreserveJVMState pjvms(this);
set_control( _gvn.transform(bailout) );
uncommon_trap(Deoptimization::Reason_intrinsic,
Deoptimization::Action_maybe_recompile);
}
if (!stopped()) {
// How many elements will we copy from the original?
// The answer is MinI(orig_length - start, length).
Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
newcopy = new_array(klass_node, length, 0);
// Generate a direct call to the right arraycopy function(s).
// We know the copy is disjoint but we might not know if the
// oop stores need checking.
// Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class).
// This will fail a store-check if x contains any non-nulls.
bool disjoint_bases = true;
bool length_never_negative = true;
generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
original, start, newcopy, intcon(0), moved,
disjoint_bases, length_never_negative);
}
} //original reexecute and sp are set back here
if(!stopped()) {
push(newcopy);
}
C->set_has_split_ifs(true); // Has chance for split-if optimization
return true;
}
//----------------------generate_virtual_guard---------------------------
// Helper for hashCode and clone. Peeks inside the vtable to avoid a call.
Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
RegionNode* slow_region) {
ciMethod* method = callee();
int vtable_index = method->vtable_index();
// Get the methodOop out of the appropriate vtable entry.
int entry_offset = (instanceKlass::vtable_start_offset() +
vtable_index*vtableEntry::size()) * wordSize +
vtableEntry::method_offset_in_bytes();
Node* entry_addr = basic_plus_adr(obj_klass, entry_offset);
Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
// Compare the target method with the expected method (e.g., Object.hashCode).
const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
Node* native_call = makecon(native_call_addr);
Node* chk_native = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
return generate_slow_guard(test_native, slow_region);
}
//-----------------------generate_method_call----------------------------
// Use generate_method_call to make a slow-call to the real
// method if the fast path fails. An alternative would be to
// use a stub like OptoRuntime::slow_arraycopy_Java.
// This only works for expanding the current library call,
// not another intrinsic. (E.g., don't use this for making an
// arraycopy call inside of the copyOf intrinsic.)
CallJavaNode*
LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
// When compiling the intrinsic method itself, do not use this technique.
guarantee(callee() != C->method(), "cannot make slow-call to self");
ciMethod* method = callee();
// ensure the JVMS we have will be correct for this call
guarantee(method_id == method->intrinsic_id(), "must match");
const TypeFunc* tf = TypeFunc::make(method);
int tfdc = tf->domain()->cnt();
CallJavaNode* slow_call;
if (is_static) {
assert(!is_virtual, "");
slow_call = new(C, tfdc) CallStaticJavaNode(tf,
SharedRuntime::get_resolve_static_call_stub(),
method, bci());
} else if (is_virtual) {
null_check_receiver(method);
int vtable_index = methodOopDesc::invalid_vtable_index;
if (UseInlineCaches) {
// Suppress the vtable call
} else {
// hashCode and clone are not a miranda methods,
// so the vtable index is fixed.
// No need to use the linkResolver to get it.
vtable_index = method->vtable_index();
}
slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
SharedRuntime::get_resolve_virtual_call_stub(),
method, vtable_index, bci());
} else { // neither virtual nor static: opt_virtual
null_check_receiver(method);
slow_call = new(C, tfdc) CallStaticJavaNode(tf,
SharedRuntime::get_resolve_opt_virtual_call_stub(),
method, bci());
slow_call->set_optimized_virtual(true);
}
set_arguments_for_java_call(slow_call);
set_edges_for_java_call(slow_call);
return slow_call;
}
//------------------------------inline_native_hashcode--------------------
// Build special case code for calls to hashCode on an object.
bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
assert(is_static == callee()->is_static(), "correct intrinsic selection");
assert(!(is_virtual && is_static), "either virtual, special, or static");
enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
PhiNode* result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
TypeInt::INT);
PhiNode* result_io = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
TypePtr::BOTTOM);
Node* obj = NULL;
if (!is_static) {
// Check for hashing null object
obj = null_check_receiver(callee());
if (stopped()) return true; // unconditionally null
result_reg->init_req(_null_path, top());
result_val->init_req(_null_path, top());
} else {
// Do a null check, and return zero if null.
// System.identityHashCode(null) == 0
obj = argument(0);
Node* null_ctl = top();
obj = null_check_oop(obj, &null_ctl);
result_reg->init_req(_null_path, null_ctl);
result_val->init_req(_null_path, _gvn.intcon(0));
}
// Unconditionally null? Then return right away.
if (stopped()) {
set_control( result_reg->in(_null_path) );
if (!stopped())
push( result_val ->in(_null_path) );
return true;
}
// After null check, get the object's klass.
Node* obj_klass = load_object_klass(obj);
// This call may be virtual (invokevirtual) or bound (invokespecial).
// For each case we generate slightly different code.
// We only go to the fast case code if we pass a number of guards. The
// paths which do not pass are accumulated in the slow_region.
RegionNode* slow_region = new (C, 1) RegionNode(1);
record_for_igvn(slow_region);
// If this is a virtual call, we generate a funny guard. We pull out
// the vtable entry corresponding to hashCode() from the target object.
// If the target method which we are calling happens to be the native
// Object hashCode() method, we pass the guard. We do not need this
// guard for non-virtual calls -- the caller is known to be the native
// Object hashCode().
if (is_virtual) {
generate_virtual_guard(obj_klass, slow_region);
}
// Get the header out of the object, use LoadMarkNode when available
Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
// Test the header to see if it is unlocked.
Node *lock_mask = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
Node *unlocked_val = _gvn.MakeConX(markOopDesc::unlocked_value);
Node *chk_unlocked = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
Node *test_unlocked = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
generate_slow_guard(test_unlocked, slow_region);
// Get the hash value and check to see that it has been properly assigned.
// We depend on hash_mask being at most 32 bits and avoid the use of
// hash_mask_in_place because it could be larger than 32 bits in a 64-bit
// vm: see markOop.hpp.
Node *hash_mask = _gvn.intcon(markOopDesc::hash_mask);
Node *hash_shift = _gvn.intcon(markOopDesc::hash_shift);
Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
// This hack lets the hash bits live anywhere in the mark object now, as long
// as the shift drops the relevant bits into the low 32 bits. Note that
// Java spec says that HashCode is an int so there's no point in capturing
// an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
hshifted_header = ConvX2I(hshifted_header);
Node *hash_val = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
Node *no_hash_val = _gvn.intcon(markOopDesc::no_hash);
Node *chk_assigned = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
Node *test_assigned = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
generate_slow_guard(test_assigned, slow_region);
Node* init_mem = reset_memory();
// fill in the rest of the null path:
result_io ->init_req(_null_path, i_o());
result_mem->init_req(_null_path, init_mem);
result_val->init_req(_fast_path, hash_val);
result_reg->init_req(_fast_path, control());
result_io ->init_req(_fast_path, i_o());
result_mem->init_req(_fast_path, init_mem);
// Generate code for the slow case. We make a call to hashCode().
set_control(_gvn.transform(slow_region));
if (!stopped()) {
// No need for PreserveJVMState, because we're using up the present state.
set_all_memory(init_mem);
vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
if (is_static) hashCode_id = vmIntrinsics::_identityHashCode;
CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
Node* slow_result = set_results_for_java_call(slow_call);
// this->control() comes from set_results_for_java_call
result_reg->init_req(_slow_path, control());
result_val->init_req(_slow_path, slow_result);
result_io ->set_req(_slow_path, i_o());
result_mem ->set_req(_slow_path, reset_memory());
}
// Return the combined state.
set_i_o( _gvn.transform(result_io) );
set_all_memory( _gvn.transform(result_mem) );
push_result(result_reg, result_val);
return true;
}
//---------------------------inline_native_getClass----------------------------
// Build special case code for calls to getClass on an object.
bool LibraryCallKit::inline_native_getClass() {
Node* obj = null_check_receiver(callee());
if (stopped()) return true;
push( load_mirror_from_klass(load_object_klass(obj)) );
return true;
}
//-----------------inline_native_Reflection_getCallerClass---------------------
// In the presence of deep enough inlining, getCallerClass() becomes a no-op.
//
// NOTE that this code must perform the same logic as
// vframeStream::security_get_caller_frame in that it must skip
// Method.invoke() and auxiliary frames.
bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
ciMethod* method = callee();
#ifndef PRODUCT
if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
}
#endif
debug_only(int saved_sp = _sp);
// Argument words: (int depth)
int nargs = 1;
_sp += nargs;
Node* caller_depth_node = pop();
assert(saved_sp == _sp, "must have correct argument count");
// The depth value must be a constant in order for the runtime call
// to be eliminated.
const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
#ifndef PRODUCT
if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
tty->print_cr(" Bailing out because caller depth was not a constant");
}
#endif
return false;
}
// Note that the JVM state at this point does not include the
// getCallerClass() frame which we are trying to inline. The
// semantics of getCallerClass(), however, are that the "first"
// frame is the getCallerClass() frame, so we subtract one from the
// requested depth before continuing. We don't inline requests of
// getCallerClass(0).
int caller_depth = caller_depth_type->get_con() - 1;
if (caller_depth < 0) {
#ifndef PRODUCT
if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
tty->print_cr(" Bailing out because caller depth was %d", caller_depth);
}
#endif
return false;
}
if (!jvms()->has_method()) {
#ifndef PRODUCT
if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
tty->print_cr(" Bailing out because intrinsic was inlined at top level");
}
#endif
return false;
}
int _depth = jvms()->depth(); // cache call chain depth
// Walk back up the JVM state to find the caller at the required
// depth. NOTE that this code must perform the same logic as
// vframeStream::security_get_caller_frame in that it must skip
// Method.invoke() and auxiliary frames. Note also that depth is
// 1-based (1 is the bottom of the inlining).
int inlining_depth = _depth;
JVMState* caller_jvms = NULL;
if (inlining_depth > 0) {
caller_jvms = jvms();
assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
do {
// The following if-tests should be performed in this order
if (is_method_invoke_or_aux_frame(caller_jvms)) {
// Skip a Method.invoke() or auxiliary frame
} else if (caller_depth > 0) {
// Skip real frame
--caller_depth;
} else {
// We're done: reached desired caller after skipping.
break;
}
caller_jvms = caller_jvms->caller();
--inlining_depth;
} while (inlining_depth > 0);
}
if (inlining_depth == 0) {
#ifndef PRODUCT
if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
tty->print_cr(" Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
tty->print_cr(" JVM state at this point:");
for (int i = _depth; i >= 1; i--) {
tty->print_cr(" %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
}
}
#endif
return false; // Reached end of inlining
}
// Acquire method holder as java.lang.Class
ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
ciInstance* caller_mirror = caller_klass->java_mirror();
// Push this as a constant
push(makecon(TypeInstPtr::make(caller_mirror)));
#ifndef PRODUCT
if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
tty->print_cr(" Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
tty->print_cr(" JVM state at this point:");
for (int i = _depth; i >= 1; i--) {
tty->print_cr(" %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
}
}
#endif
return true;
}
// Helper routine for above
bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
ciMethod* method = jvms->method();
// Is this the Method.invoke method itself?
if (method->intrinsic_id() == vmIntrinsics::_invoke)
return true;
// Is this a helper, defined somewhere underneath MethodAccessorImpl.
ciKlass* k = method->holder();
if (k->is_instance_klass()) {
ciInstanceKlass* ik = k->as_instance_klass();
for (; ik != NULL; ik = ik->super()) {
if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
ik == env()->find_system_klass(ik->name())) {
return true;
}
}
}
else if (method->is_method_handle_adapter()) {
// This is an internal adapter frame from the MethodHandleCompiler -- skip it
return true;
}
return false;
}
static int value_field_offset = -1; // offset of the "value" field of AtomicLongCSImpl. This is needed by
// inline_native_AtomicLong_attemptUpdate() but it has no way of
// computing it since there is no lookup field by name function in the
// CI interface. This is computed and set by inline_native_AtomicLong_get().
// Using a static variable here is safe even if we have multiple compilation
// threads because the offset is constant. At worst the same offset will be
// computed and stored multiple
bool LibraryCallKit::inline_native_AtomicLong_get() {
// Restore the stack and pop off the argument
_sp+=1;
Node *obj = pop();
// get the offset of the "value" field. Since the CI interfaces
// does not provide a way to look up a field by name, we scan the bytecodes
// to get the field index. We expect the first 2 instructions of the method
// to be:
// 0 aload_0
// 1 getfield "value"
ciMethod* method = callee();
if (value_field_offset == -1)
{
ciField* value_field;
ciBytecodeStream iter(method);
Bytecodes::Code bc = iter.next();
if ((bc != Bytecodes::_aload_0) &&
((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
return false;
bc = iter.next();
if (bc != Bytecodes::_getfield)
return false;
bool ignore;
value_field = iter.get_field(ignore);
value_field_offset = value_field->offset_in_bytes();
}
// Null check without removing any arguments.
_sp++;
obj = do_null_check(obj, T_OBJECT);
_sp--;
// Check for locking null object
if (stopped()) return true;
Node *adr = basic_plus_adr(obj, obj, value_field_offset);
const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
int alias_idx = C->get_alias_index(adr_type);
Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
push_pair(result);
return true;
}
bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
// Restore the stack and pop off the arguments
_sp+=5;
Node *newVal = pop_pair();
Node *oldVal = pop_pair();
Node *obj = pop();
// we need the offset of the "value" field which was computed when
// inlining the get() method. Give up if we don't have it.
if (value_field_offset == -1)
return false;
// Null check without removing any arguments.
_sp+=5;
obj = do_null_check(obj, T_OBJECT);
_sp-=5;
// Check for locking null object
if (stopped()) return true;
Node *adr = basic_plus_adr(obj, obj, value_field_offset);
const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
int alias_idx = C->get_alias_index(adr_type);
Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
set_memory(store_proj, alias_idx);
Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
Node *result;
// CMove node is not used to be able fold a possible check code
// after attemptUpdate() call. This code could be transformed
// into CMove node by loop optimizations.
{
RegionNode *r = new (C, 3) RegionNode(3);
result = new (C, 3) PhiNode(r, TypeInt::BOOL);
Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
Node *iftrue = opt_iff(r, iff);
r->init_req(1, iftrue);
result->init_req(1, intcon(1));
result->init_req(2, intcon(0));
set_control(_gvn.transform(r));
record_for_igvn(r);
C->set_has_split_ifs(true); // Has chance for split-if optimization
}
push(_gvn.transform(result));
return true;
}
bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
// restore the arguments
_sp += arg_size();
switch (id) {
case vmIntrinsics::_floatToRawIntBits:
push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
break;
case vmIntrinsics::_intBitsToFloat:
push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
break;
case vmIntrinsics::_doubleToRawLongBits:
push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
break;
case vmIntrinsics::_longBitsToDouble:
push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
break;
case vmIntrinsics::_doubleToLongBits: {
Node* value = pop_pair();
// two paths (plus control) merge in a wood
RegionNode *r = new (C, 3) RegionNode(3);
Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
// Build the boolean node
Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
// Branch either way.
// NaN case is less traveled, which makes all the difference.
IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
Node *opt_isnan = _gvn.transform(ifisnan);
assert( opt_isnan->is_If(), "Expect an IfNode");
IfNode *opt_ifisnan = (IfNode*)opt_isnan;
Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
set_control(iftrue);
static const jlong nan_bits = CONST64(0x7ff8000000000000);
Node *slow_result = longcon(nan_bits); // return NaN
phi->init_req(1, _gvn.transform( slow_result ));
r->init_req(1, iftrue);
// Else fall through
Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
set_control(iffalse);
phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
r->init_req(2, iffalse);
// Post merge
set_control(_gvn.transform(r));
record_for_igvn(r);
Node* result = _gvn.transform(phi);
assert(result->bottom_type()->isa_long(), "must be");
push_pair(result);
C->set_has_split_ifs(true); // Has chance for split-if optimization
break;
}
case vmIntrinsics::_floatToIntBits: {
Node* value = pop();
// two paths (plus control) merge in a wood
RegionNode *r = new (C, 3) RegionNode(3);
Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
// Build the boolean node
Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
// Branch either way.
// NaN case is less traveled, which makes all the difference.
IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
Node *opt_isnan = _gvn.transform(ifisnan);
assert( opt_isnan->is_If(), "Expect an IfNode");
IfNode *opt_ifisnan = (IfNode*)opt_isnan;
Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
set_control(iftrue);
static const jint nan_bits = 0x7fc00000;
Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
phi->init_req(1, _gvn.transform( slow_result ));
r->init_req(1, iftrue);
// Else fall through
Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
set_control(iffalse);
phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
r->init_req(2, iffalse);
// Post merge
set_control(_gvn.transform(r));
record_for_igvn(r);
Node* result = _gvn.transform(phi);
assert(result->bottom_type()->isa_int(), "must be");
push(result);
C->set_has_split_ifs(true); // Has chance for split-if optimization
break;
}
default:
ShouldNotReachHere();
}
return true;
}
#ifdef _LP64
#define XTOP ,top() /*additional argument*/
#else //_LP64
#define XTOP /*no additional argument*/
#endif //_LP64
//----------------------inline_unsafe_copyMemory-------------------------
bool LibraryCallKit::inline_unsafe_copyMemory() {
if (callee()->is_static()) return false; // caller must have the capability!
int nargs = 1 + 5 + 3; // 5 args: (src: ptr,off, dst: ptr,off, size)
assert(signature()->size() == nargs-1, "copy has 5 arguments");
null_check_receiver(callee()); // check then ignore argument(0)
if (stopped()) return true;
C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
Node* src_ptr = argument(1);
Node* src_off = ConvL2X(argument(2));
assert(argument(3)->is_top(), "2nd half of long");
Node* dst_ptr = argument(4);
Node* dst_off = ConvL2X(argument(5));
assert(argument(6)->is_top(), "2nd half of long");
Node* size = ConvL2X(argument(7));
assert(argument(8)->is_top(), "2nd half of long");
assert(Unsafe_field_offset_to_byte_offset(11) == 11,
"fieldOffset must be byte-scaled");
Node* src = make_unsafe_address(src_ptr, src_off);
Node* dst = make_unsafe_address(dst_ptr, dst_off);
// Conservatively insert a memory barrier on all memory slices.
// Do not let writes of the copy source or destination float below the copy.
insert_mem_bar(Op_MemBarCPUOrder);
// Call it. Note that the length argument is not scaled.
make_runtime_call(RC_LEAF|RC_NO_FP,
OptoRuntime::fast_arraycopy_Type(),
StubRoutines::unsafe_arraycopy(),
"unsafe_arraycopy",
TypeRawPtr::BOTTOM,
src, dst, size XTOP);
// Do not let reads of the copy destination float above the copy.
insert_mem_bar(Op_MemBarCPUOrder);
return true;
}
//------------------------clone_coping-----------------------------------
// Helper function for inline_native_clone.
void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
assert(obj_size != NULL, "");
Node* raw_obj = alloc_obj->in(1);
assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
AllocateNode* alloc = NULL;
if (ReduceBulkZeroing) {
// We will be completely responsible for initializing this object -
// mark Initialize node as complete.
alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
// The object was just allocated - there should be no any stores!
guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
// Mark as complete_with_arraycopy so that on AllocateNode
// expansion, we know this AllocateNode is initialized by an array
// copy and a StoreStore barrier exists after the array copy.
alloc->initialization()->set_complete_with_arraycopy();
}
// Copy the fastest available way.
// TODO: generate fields copies for small objects instead.
Node* src = obj;
Node* dest = alloc_obj;
Node* size = _gvn.transform(obj_size);
// Exclude the header but include array length to copy by 8 bytes words.
// Can't use base_offset_in_bytes(bt) since basic type is unknown.
int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
instanceOopDesc::base_offset_in_bytes();
// base_off:
// 8 - 32-bit VM
// 12 - 64-bit VM, compressed oops
// 16 - 64-bit VM, normal oops
if (base_off % BytesPerLong != 0) {
assert(UseCompressedOops, "");
if (is_array) {
// Exclude length to copy by 8 bytes words.
base_off += sizeof(int);
} else {
// Include klass to copy by 8 bytes words.
base_off = instanceOopDesc::klass_offset_in_bytes();
}
assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
}
src = basic_plus_adr(src, base_off);
dest = basic_plus_adr(dest, base_off);
// Compute the length also, if needed:
Node* countx = size;
countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
bool disjoint_bases = true;
generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
src, NULL, dest, NULL, countx,
/*dest_uninitialized*/true);
// If necessary, emit some card marks afterwards. (Non-arrays only.)
if (card_mark) {
assert(!is_array, "");
// Put in store barrier for any and all oops we are sticking
// into this object. (We could avoid this if we could prove
// that the object type contains no oop fields at all.)
Node* no_particular_value = NULL;
Node* no_particular_field = NULL;
int raw_adr_idx = Compile::AliasIdxRaw;
post_barrier(control(),
memory(raw_adr_type),
alloc_obj,
no_particular_field,
raw_adr_idx,
no_particular_value,
T_OBJECT,
false);
}
// Do not let reads from the cloned object float above the arraycopy.
if (alloc != NULL) {
// Do not let stores that initialize this object be reordered with
// a subsequent store that would make this object accessible by
// other threads.
// Record what AllocateNode this StoreStore protects so that
// escape analysis can go from the MemBarStoreStoreNode to the
// AllocateNode and eliminate the MemBarStoreStoreNode if possible
// based on the escape status of the AllocateNode.
insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
} else {
insert_mem_bar(Op_MemBarCPUOrder);
}
}
//------------------------inline_native_clone----------------------------
// Here are the simple edge cases:
// null receiver => normal trap
// virtual and clone was overridden => slow path to out-of-line clone
// not cloneable or finalizer => slow path to out-of-line Object.clone
//
// The general case has two steps, allocation and copying.
// Allocation has two cases, and uses GraphKit::new_instance or new_array.
//
// Copying also has two cases, oop arrays and everything else.
// Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
// Everything else uses the tight inline loop supplied by CopyArrayNode.
//
// These steps fold up nicely if and when the cloned object's klass
// can be sharply typed as an object array, a type array, or an instance.
//
bool LibraryCallKit::inline_native_clone(bool is_virtual) {
int nargs = 1;
PhiNode* result_val;
//set the original stack and the reexecute bit for the interpreter to reexecute
//the bytecode that invokes Object.clone if deoptimization happens
{ PreserveReexecuteState preexecs(this);
jvms()->set_should_reexecute(true);
//null_check_receiver will adjust _sp (push and pop)
Node* obj = null_check_receiver(callee());
if (stopped()) return true;
_sp += nargs;
Node* obj_klass = load_object_klass(obj);
const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
const TypeOopPtr* toop = ((tklass != NULL)
? tklass->as_instance_type()
: TypeInstPtr::NOTNULL);
// Conservatively insert a memory barrier on all memory slices.
// Do not let writes into the original float below the clone.
insert_mem_bar(Op_MemBarCPUOrder);
// paths into result_reg:
enum {
_slow_path = 1, // out-of-line call to clone method (virtual or not)
_objArray_path, // plain array allocation, plus arrayof_oop_arraycopy
_array_path, // plain array allocation, plus arrayof_long_arraycopy
_instance_path, // plain instance allocation, plus arrayof_long_arraycopy
PATH_LIMIT
};
RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
TypeInstPtr::NOTNULL);
PhiNode* result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
PhiNode* result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
TypePtr::BOTTOM);
record_for_igvn(result_reg);
const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
int raw_adr_idx = Compile::AliasIdxRaw;
Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
if (array_ctl != NULL) {
// It's an array.
PreserveJVMState pjvms(this);
set_control(array_ctl);
Node* obj_length = load_array_length(obj);
Node* obj_size = NULL;
Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);
if (!use_ReduceInitialCardMarks()) {
// If it is an oop array, it requires very special treatment,
// because card marking is required on each card of the array.
Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
if (is_obja != NULL) {
PreserveJVMState pjvms2(this);
set_control(is_obja);
// Generate a direct call to the right arraycopy function(s).
bool disjoint_bases = true;
bool length_never_negative = true;
generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
obj, intcon(0), alloc_obj, intcon(0),
obj_length,
disjoint_bases, length_never_negative);
result_reg->init_req(_objArray_path, control());
result_val->init_req(_objArray_path, alloc_obj);
result_i_o ->set_req(_objArray_path, i_o());
result_mem ->set_req(_objArray_path, reset_memory());
}
}
// Otherwise, there are no card marks to worry about.
// (We can dispense with card marks if we know the allocation
// comes out of eden (TLAB)... In fact, ReduceInitialCardMarks
// causes the non-eden paths to take compensating steps to
// simulate a fresh allocation, so that no further
// card marks are required in compiled code to initialize
// the object.)
if (!stopped()) {
copy_to_clone(obj, alloc_obj, obj_size, true, false);
// Present the results of the copy.
result_reg->init_req(_array_path, control());
result_val->init_req(_array_path, alloc_obj);
result_i_o ->set_req(_array_path, i_o());
result_mem ->set_req(_array_path, reset_memory());
}
}
// We only go to the instance fast case code if we pass a number of guards.
// The paths which do not pass are accumulated in the slow_region.
RegionNode* slow_region = new (C, 1) RegionNode(1);
record_for_igvn(slow_region);
if (!stopped()) {
// It's an instance (we did array above). Make the slow-path tests.
// If this is a virtual call, we generate a funny guard. We grab
// the vtable entry corresponding to clone() from the target object.
// If the target method which we are calling happens to be the
// Object clone() method, we pass the guard. We do not need this
// guard for non-virtual calls; the caller is known to be the native
// Object clone().
if (is_virtual) {
generate_virtual_guard(obj_klass, slow_region);
}
// The object must be cloneable and must not have a finalizer.
// Both of these conditions may be checked in a single test.
// We could optimize the cloneable test further, but we don't care.
generate_access_flags_guard(obj_klass,
// Test both conditions:
JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
// Must be cloneable but not finalizer:
JVM_ACC_IS_CLONEABLE,
slow_region);
}
if (!stopped()) {
// It's an instance, and it passed the slow-path tests.
PreserveJVMState pjvms(this);
Node* obj_size = NULL;
Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
// Present the results of the slow call.
result_reg->init_req(_instance_path, control());
result_val->init_req(_instance_path, alloc_obj);
result_i_o ->set_req(_instance_path, i_o());
result_mem ->set_req(_instance_path, reset_memory());
}
// Generate code for the slow case. We make a call to clone().
set_control(_gvn.transform(slow_region));
if (!stopped()) {
PreserveJVMState pjvms(this);
CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
Node* slow_result = set_results_for_java_call(slow_call);
// this->control() comes from set_results_for_java_call
result_reg->init_req(_slow_path, control());
result_val->init_req(_slow_path, slow_result);
result_i_o ->set_req(_slow_path, i_o());
result_mem ->set_req(_slow_path, reset_memory());
}
// Return the combined state.
set_control( _gvn.transform(result_reg) );
set_i_o( _gvn.transform(result_i_o) );
set_all_memory( _gvn.transform(result_mem) );
} //original reexecute and sp are set back here
push(_gvn.transform(result_val));
return true;
}
//------------------------------basictype2arraycopy----------------------------
address LibraryCallKit::basictype2arraycopy(BasicType t,
Node* src_offset,
Node* dest_offset,
bool disjoint_bases,
const char* &name,
bool dest_uninitialized) {
const TypeInt* src_offset_inttype = gvn().find_int_type(src_offset);;
const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
bool aligned = false;
bool disjoint = disjoint_bases;
// if the offsets are the same, we can treat the memory regions as
// disjoint, because either the memory regions are in different arrays,
// or they are identical (which we can treat as disjoint.) We can also
// treat a copy with a destination index less that the source index
// as disjoint since a low->high copy will work correctly in this case.
if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
// both indices are constants
int s_offs = src_offset_inttype->get_con();
int d_offs = dest_offset_inttype->get_con();
int element_size = type2aelembytes(t);
aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
if (s_offs >= d_offs) disjoint = true;
} else if (src_offset == dest_offset && src_offset != NULL) {
// This can occur if the offsets are identical non-constants.
disjoint = true;
}
return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
}
//------------------------------inline_arraycopy-----------------------
bool LibraryCallKit::inline_arraycopy() {
// Restore the stack and pop off the arguments.
int nargs = 5; // 2 oops, 3 ints, no size_t or long
assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
Node *src = argument(0);
Node *src_offset = argument(1);
Node *dest = argument(2);
Node *dest_offset = argument(3);
Node *length = argument(4);
// Compile time checks. If any of these checks cannot be verified at compile time,
// we do not make a fast path for this call. Instead, we let the call remain as it
// is. The checks we choose to mandate at compile time are:
//
// (1) src and dest are arrays.
const Type* src_type = src->Value(&_gvn);
const Type* dest_type = dest->Value(&_gvn);
const TypeAryPtr* top_src = src_type->isa_aryptr();
const TypeAryPtr* top_dest = dest_type->isa_aryptr();
if (top_src == NULL || top_src->klass() == NULL ||
top_dest == NULL || top_dest->klass() == NULL) {
// Conservatively insert a memory barrier on all memory slices.
// Do not let writes into the source float below the arraycopy.
insert_mem_bar(Op_MemBarCPUOrder);
// Call StubRoutines::generic_arraycopy stub.
generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
src, src_offset, dest, dest_offset, length);
// Do not let reads from the destination float above the arraycopy.
// Since we cannot type the arrays, we don't know which slices
// might be affected. We could restrict this barrier only to those
// memory slices which pertain to array elements--but don't bother.
if (!InsertMemBarAfterArraycopy)
// (If InsertMemBarAfterArraycopy, there is already one in place.)
insert_mem_bar(Op_MemBarCPUOrder);
return true;
}
// (2) src and dest arrays must have elements of the same BasicType
// Figure out the size and type of the elements we will be copying.
BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type();
BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
if (src_elem == T_ARRAY) src_elem = T_OBJECT;
if (dest_elem == T_ARRAY) dest_elem = T_OBJECT;
if (src_elem != dest_elem || dest_elem == T_VOID) {
// The component types are not the same or are not recognized. Punt.
// (But, avoid the native method wrapper to JVM_ArrayCopy.)
generate_slow_arraycopy(TypePtr::BOTTOM,
src, src_offset, dest, dest_offset, length,
/*dest_uninitialized*/false);
return true;
}
//---------------------------------------------------------------------------
// We will make a fast path for this call to arraycopy.
// We have the following tests left to perform:
//
// (3) src and dest must not be null.
// (4) src_offset must not be negative.
// (5) dest_offset must not be negative.
// (6) length must not be negative.
// (7) src_offset + length must not exceed length of src.
// (8) dest_offset + length must not exceed length of dest.
// (9) each element of an oop array must be assignable
RegionNode* slow_region = new (C, 1) RegionNode(1);
record_for_igvn(slow_region);
// (3) operands must not be null
// We currently perform our null checks with the do_null_check routine.
// This means that the null exceptions will be reported in the caller
// rather than (correctly) reported inside of the native arraycopy call.
// This should be corrected, given time. We do our null check with the
// stack pointer restored.
_sp += nargs;
src = do_null_check(src, T_ARRAY);
dest = do_null_check(dest, T_ARRAY);
_sp -= nargs;
// (4) src_offset must not be negative.
generate_negative_guard(src_offset, slow_region);
// (5) dest_offset must not be negative.
generate_negative_guard(dest_offset, slow_region);
// (6) length must not be negative (moved to generate_arraycopy()).
// generate_negative_guard(length, slow_region);
// (7) src_offset + length must not exceed length of src.
generate_limit_guard(src_offset, length,
load_array_length(src),
slow_region);
// (8) dest_offset + length must not exceed length of dest.
generate_limit_guard(dest_offset, length,
load_array_length(dest),
slow_region);
// (9) each element of an oop array must be assignable
// The generate_arraycopy subroutine checks this.
// This is where the memory effects are placed:
const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
generate_arraycopy(adr_type, dest_elem,
src, src_offset, dest, dest_offset, length,
false, false, slow_region);
return true;
}
//-----------------------------generate_arraycopy----------------------
// Generate an optimized call to arraycopy.
// Caller must guard against non-arrays.
// Caller must determine a common array basic-type for both arrays.
// Caller must validate offsets against array bounds.
// The slow_region has already collected guard failure paths
// (such as out of bounds length or non-conformable array types).
// The generated code has this shape, in general:
//
// if (length == 0) return // via zero_path
// slowval = -1
// if (types unknown) {
// slowval = call generic copy loop
// if (slowval == 0) return // via checked_path
// } else if (indexes in bounds) {
// if ((is object array) && !(array type check)) {
// slowval = call checked copy loop
// if (slowval == 0) return // via checked_path
// } else {
// call bulk copy loop
// return // via fast_path
// }
// }
// // adjust params for remaining work:
// if (slowval != -1) {
// n = -1^slowval; src_offset += n; dest_offset += n; length -= n
// }
// slow_region:
// call slow arraycopy(src, src_offset, dest, dest_offset, length)
// return // via slow_call_path
//
// This routine is used from several intrinsics: System.arraycopy,
// Object.clone (the array subcase), and Arrays.copyOf[Range].
//
void
LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
BasicType basic_elem_type,
Node* src, Node* src_offset,
Node* dest, Node* dest_offset,
Node* copy_length,
bool disjoint_bases,
bool length_never_negative,
RegionNode* slow_region) {
if (slow_region == NULL) {
slow_region = new(C,1) RegionNode(1);
record_for_igvn(slow_region);
}
Node* original_dest = dest;
AllocateArrayNode* alloc = NULL; // used for zeroing, if needed
bool dest_uninitialized = false;
// See if this is the initialization of a newly-allocated array.
// If so, we will take responsibility here for initializing it to zero.
// (Note: Because tightly_coupled_allocation performs checks on the
// out-edges of the dest, we need to avoid making derived pointers
// from it until we have checked its uses.)
if (ReduceBulkZeroing
&& !ZeroTLAB // pointless if already zeroed
&& basic_elem_type != T_CONFLICT // avoid corner case
&& !src->eqv_uncast(dest)
&& ((alloc = tightly_coupled_allocation(dest, slow_region))
!= NULL)
&& _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
&& alloc->maybe_set_complete(&_gvn)) {
// "You break it, you buy it."
InitializeNode* init = alloc->initialization();
assert(init->is_complete(), "we just did this");
init->set_complete_with_arraycopy();
assert(dest->is_CheckCastPP(), "sanity");
assert(dest->in(0)->in(0) == init, "dest pinned");
adr_type = TypeRawPtr::BOTTOM; // all initializations are into raw memory
// From this point on, every exit path is responsible for
// initializing any non-copied parts of the object to zero.
// Also, if this flag is set we make sure that arraycopy interacts properly
// with G1, eliding pre-barriers. See CR 6627983.
dest_uninitialized = true;
} else {
// No zeroing elimination here.
alloc = NULL;
//original_dest = dest;
//dest_uninitialized = false;
}
// Results are placed here:
enum { fast_path = 1, // normal void-returning assembly stub
checked_path = 2, // special assembly stub with cleanup
slow_call_path = 3, // something went wrong; call the VM
zero_path = 4, // bypass when length of copy is zero
bcopy_path = 5, // copy primitive array by 64-bit blocks
PATH_LIMIT = 6
};
RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
PhiNode* result_i_o = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
PhiNode* result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
record_for_igvn(result_region);
_gvn.set_type_bottom(result_i_o);
_gvn.set_type_bottom(result_memory);
assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
// The slow_control path:
Node* slow_control;
Node* slow_i_o = i_o();
Node* slow_mem = memory(adr_type);
debug_only(slow_control = (Node*) badAddress);
// Checked control path:
Node* checked_control = top();
Node* checked_mem = NULL;
Node* checked_i_o = NULL;
Node* checked_value = NULL;
if (basic_elem_type == T_CONFLICT) {
assert(!dest_uninitialized, "");
Node* cv = generate_generic_arraycopy(adr_type,
src, src_offset, dest, dest_offset,
copy_length, dest_uninitialized);
if (cv == NULL) cv = intcon(-1); // failure (no stub available)
checked_control = control();
checked_i_o = i_o();
checked_mem = memory(adr_type);
checked_value = cv;
set_control(top()); // no fast path
}
Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
if (not_pos != NULL) {
PreserveJVMState pjvms(this);
set_control(not_pos);
// (6) length must not be negative.
if (!length_never_negative) {
generate_negative_guard(copy_length, slow_region);
}
// copy_length is 0.
if (!stopped() && dest_uninitialized) {
Node* dest_length = alloc->in(AllocateNode::ALength);
if (copy_length->eqv_uncast(dest_length)
|| _gvn.find_int_con(dest_length, 1) <= 0) {
// There is no zeroing to do. No need for a secondary raw memory barrier.
} else {
// Clear the whole thing since there are no source elements to copy.
generate_clear_array(adr_type, dest, basic_elem_type,
intcon(0), NULL,
alloc->in(AllocateNode::AllocSize));
// Use a secondary InitializeNode as raw memory barrier.
// Currently it is needed only on this path since other
// paths have stub or runtime calls as raw memory barriers.
InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
Compile::AliasIdxRaw,
top())->as_Initialize();
init->set_complete(&_gvn); // (there is no corresponding AllocateNode)
}
}
// Present the results of the fast call.
result_region->init_req(zero_path, control());
result_i_o ->init_req(zero_path, i_o());
result_memory->init_req(zero_path, memory(adr_type));
}
if (!stopped() && dest_uninitialized) {
// We have to initialize the *uncopied* part of the array to zero.
// The copy destination is the slice dest[off..off+len]. The other slices
// are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
Node* dest_size = alloc->in(AllocateNode::AllocSize);
Node* dest_length = alloc->in(AllocateNode::ALength);
Node* dest_tail = _gvn.transform( new(C,3) AddINode(dest_offset,
copy_length) );
// If there is a head section that needs zeroing, do it now.
if (find_int_con(dest_offset, -1) != 0) {
generate_clear_array(adr_type, dest, basic_elem_type,
intcon(0), dest_offset,
NULL);
}
// Next, perform a dynamic check on the tail length.
// It is often zero, and we can win big if we prove this.
// There are two wins: Avoid generating the ClearArray
// with its attendant messy index arithmetic, and upgrade
// the copy to a more hardware-friendly word size of 64 bits.
Node* tail_ctl = NULL;
if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
Node* cmp_lt = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
Node* bol_lt = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
tail_ctl = generate_slow_guard(bol_lt, NULL);
assert(tail_ctl != NULL || !stopped(), "must be an outcome");
}
// At this point, let's assume there is no tail.
if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
// There is no tail. Try an upgrade to a 64-bit copy.
bool didit = false;
{ PreserveJVMState pjvms(this);
didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
src, src_offset, dest, dest_offset,
dest_size, dest_uninitialized);
if (didit) {
// Present the results of the block-copying fast call.
result_region->init_req(bcopy_path, control());
result_i_o ->init_req(bcopy_path, i_o());
result_memory->init_req(bcopy_path, memory(adr_type));
}
}
if (didit)
set_control(top()); // no regular fast path
}
// Clear the tail, if any.
if (tail_ctl != NULL) {
Node* notail_ctl = stopped() ? NULL : control();
set_control(tail_ctl);
if (notail_ctl == NULL) {
generate_clear_array(adr_type, dest, basic_elem_type,
dest_tail, NULL,
dest_size);
} else {
// Make a local merge.
Node* done_ctl = new(C,3) RegionNode(3);
Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
done_ctl->init_req(1, notail_ctl);
done_mem->init_req(1, memory(adr_type));
generate_clear_array(adr_type, dest, basic_elem_type,
dest_tail, NULL,
dest_size);
done_ctl->init_req(2, control());
done_mem->init_req(2, memory(adr_type));
set_control( _gvn.transform(done_ctl) );
set_memory( _gvn.transform(done_mem), adr_type );
}
}
}
BasicType copy_type = basic_elem_type;
assert(basic_elem_type != T_ARRAY, "caller must fix this");
if (!stopped() && copy_type == T_OBJECT) {
// If src and dest have compatible element types, we can copy bits.
// Types S[] and D[] are compatible if D is a supertype of S.
//
// If they are not, we will use checked_oop_disjoint_arraycopy,
// which performs a fast optimistic per-oop check, and backs off
// further to JVM_ArrayCopy on the first per-oop check that fails.
// (Actually, we don't move raw bits only; the GC requires card marks.)
// Get the klassOop for both src and dest
Node* src_klass = load_object_klass(src);
Node* dest_klass = load_object_klass(dest);
// Generate the subtype check.
// This might fold up statically, or then again it might not.
//
// Non-static example: Copying List<String>.elements to a new String[].
// The backing store for a List<String> is always an Object[],
// but its elements are always type String, if the generic types
// are correct at the source level.
//
// Test S[] against D[], not S against D, because (probably)
// the secondary supertype cache is less busy for S[] than S.
// This usually only matters when D is an interface.
Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
// Plug failing path into checked_oop_disjoint_arraycopy
if (not_subtype_ctrl != top()) {
PreserveJVMState pjvms(this);
set_control(not_subtype_ctrl);
// (At this point we can assume disjoint_bases, since types differ.)
int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
Node* p1 = basic_plus_adr(dest_klass, ek_offset);
Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
Node* dest_elem_klass = _gvn.transform(n1);
Node* cv = generate_checkcast_arraycopy(adr_type,
dest_elem_klass,
src, src_offset, dest, dest_offset,
ConvI2X(copy_length), dest_uninitialized);
if (cv == NULL) cv = intcon(-1); // failure (no stub available)
checked_control = control();
checked_i_o = i_o();
checked_mem = memory(adr_type);
checked_value = cv;
}
// At this point we know we do not need type checks on oop stores.
// Let's see if we need card marks:
if (alloc != NULL && use_ReduceInitialCardMarks()) {
// If we do not need card marks, copy using the jint or jlong stub.
copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
"sizes agree");
}
}
if (!stopped()) {
// Generate the fast path, if possible.
PreserveJVMState pjvms(this);
generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
src, src_offset, dest, dest_offset,
ConvI2X(copy_length), dest_uninitialized);
// Present the results of the fast call.
result_region->init_req(fast_path, control());
result_i_o ->init_req(fast_path, i_o());
result_memory->init_req(fast_path, memory(adr_type));
}
// Here are all the slow paths up to this point, in one bundle:
slow_control = top();
if (slow_region != NULL)
slow_control = _gvn.transform(slow_region);
debug_only(slow_region = (RegionNode*)badAddress);
set_control(checked_control);
if (!stopped()) {
// Clean up after the checked call.
// The returned value is either 0 or -1^K,
// where K = number of partially transferred array elements.
Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
// If it is 0, we are done, so transfer to the end.
Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
result_region->init_req(checked_path, checks_done);
result_i_o ->init_req(checked_path, checked_i_o);
result_memory->init_req(checked_path, checked_mem);
// If it is not zero, merge into the slow call.
set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
PhiNode* slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
PhiNode* slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
record_for_igvn(slow_reg2);
slow_reg2 ->init_req(1, slow_control);
slow_i_o2 ->init_req(1, slow_i_o);
slow_mem2 ->init_req(1, slow_mem);
slow_reg2 ->init_req(2, control());
slow_i_o2 ->init_req(2, checked_i_o);
slow_mem2 ->init_req(2, checked_mem);
slow_control = _gvn.transform(slow_reg2);
slow_i_o = _gvn.transform(slow_i_o2);
slow_mem = _gvn.transform(slow_mem2);
if (alloc != NULL) {
// We'll restart from the very beginning, after zeroing the whole thing.
// This can cause double writes, but that's OK since dest is brand new.
// So we ignore the low 31 bits of the value returned from the stub.
} else {
// We must continue the copy exactly where it failed, or else
// another thread might see the wrong number of writes to dest.
Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
Node* slow_offset = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
slow_offset->init_req(1, intcon(0));
slow_offset->init_req(2, checked_offset);
slow_offset = _gvn.transform(slow_offset);
// Adjust the arguments by the conditionally incoming offset.
Node* src_off_plus = _gvn.transform( new(C, 3) AddINode(src_offset, slow_offset) );
Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
Node* length_minus = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
// Tweak the node variables to adjust the code produced below:
src_offset = src_off_plus;
dest_offset = dest_off_plus;
copy_length = length_minus;
}
}
set_control(slow_control);
if (!stopped()) {
// Generate the slow path, if needed.
PreserveJVMState pjvms(this); // replace_in_map may trash the map
set_memory(slow_mem, adr_type);
set_i_o(slow_i_o);
if (dest_uninitialized) {
generate_clear_array(adr_type, dest, basic_elem_type,
intcon(0), NULL,
alloc->in(AllocateNode::AllocSize));
}
generate_slow_arraycopy(adr_type,
src, src_offset, dest, dest_offset,
copy_length, /*dest_uninitialized*/false);
result_region->init_req(slow_call_path, control());
result_i_o ->init_req(slow_call_path, i_o());
result_memory->init_req(slow_call_path, memory(adr_type));
}
// Remove unused edges.
for (uint i = 1; i < result_region->req(); i++) {
if (result_region->in(i) == NULL)
result_region->init_req(i, top());
}
// Finished; return the combined state.
set_control( _gvn.transform(result_region) );
set_i_o( _gvn.transform(result_i_o) );
set_memory( _gvn.transform(result_memory), adr_type );
// The memory edges above are precise in order to model effects around
// array copies accurately to allow value numbering of field loads around
// arraycopy. Such field loads, both before and after, are common in Java
// collections and similar classes involving header/array data structures.
//
// But with low number of register or when some registers are used or killed
// by arraycopy calls it causes registers spilling on stack. See 6544710.
// The next memory barrier is added to avoid it. If the arraycopy can be
// optimized away (which it can, sometimes) then we can manually remove
// the membar also.
//
// Do not let reads from the cloned object float above the arraycopy.
if (alloc != NULL) {
// Do not let stores that initialize this object be reordered with
// a subsequent store that would make this object accessible by
// other threads.
// Record what AllocateNode this StoreStore protects so that
// escape analysis can go from the MemBarStoreStoreNode to the
// AllocateNode and eliminate the MemBarStoreStoreNode if possible
// based on the escape status of the AllocateNode.
insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
} else if (InsertMemBarAfterArraycopy)
insert_mem_bar(Op_MemBarCPUOrder);
}
// Helper function which determines if an arraycopy immediately follows
// an allocation, with no intervening tests or other escapes for the object.
AllocateArrayNode*
LibraryCallKit::tightly_coupled_allocation(Node* ptr,
RegionNode* slow_region) {
if (stopped()) return NULL; // no fast path
if (C->AliasLevel() == 0) return NULL; // no MergeMems around
AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
if (alloc == NULL) return NULL;
Node* rawmem = memory(Compile::AliasIdxRaw);
// Is the allocation's memory state untouched?
if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
// Bail out if there have been raw-memory effects since the allocation.
// (Example: There might have been a call or safepoint.)
return NULL;
}
rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
return NULL;
}
// There must be no unexpected observers of this allocation.
for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
Node* obs = ptr->fast_out(i);
if (obs != this->map()) {
return NULL;
}
}
// This arraycopy must unconditionally follow the allocation of the ptr.
Node* alloc_ctl = ptr->in(0);
assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
Node* ctl = control();
while (ctl != alloc_ctl) {
// There may be guards which feed into the slow_region.
// Any other control flow means that we might not get a chance
// to finish initializing the allocated object.
if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
IfNode* iff = ctl->in(0)->as_If();
Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
ctl = iff->in(0); // This test feeds the known slow_region.
continue;
}
// One more try: Various low-level checks bottom out in
// uncommon traps. If the debug-info of the trap omits
// any reference to the allocation, as we've already
// observed, then there can be no objection to the trap.
bool found_trap = false;
for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
Node* obs = not_ctl->fast_out(j);
if (obs->in(0) == not_ctl && obs->is_Call() &&
(obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
found_trap = true; break;
}
}
if (found_trap) {
ctl = iff->in(0); // This test feeds a harmless uncommon trap.
continue;
}
}
return NULL;
}
// If we get this far, we have an allocation which immediately
// precedes the arraycopy, and we can take over zeroing the new object.
// The arraycopy will finish the initialization, and provide
// a new control state to which we will anchor the destination pointer.
return alloc;
}
// Helper for initialization of arrays, creating a ClearArray.
// It writes zero bits in [start..end), within the body of an array object.
// The memory effects are all chained onto the 'adr_type' alias category.
//
// Since the object is otherwise uninitialized, we are free
// to put a little "slop" around the edges of the cleared area,
// as long as it does not go back into the array's header,
// or beyond the array end within the heap.
//
// The lower edge can be rounded down to the nearest jint and the
// upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
//
// Arguments:
// adr_type memory slice where writes are generated
// dest oop of the destination array
// basic_elem_type element type of the destination
// slice_idx array index of first element to store
// slice_len number of elements to store (or NULL)
// dest_size total size in bytes of the array object
//
// Exactly one of slice_len or dest_size must be non-NULL.
// If dest_size is non-NULL, zeroing extends to the end of the object.
// If slice_len is non-NULL, the slice_idx value must be a constant.
void
LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
Node* dest,
BasicType basic_elem_type,
Node* slice_idx,
Node* slice_len,
Node* dest_size) {
// one or the other but not both of slice_len and dest_size:
assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
if (slice_len == NULL) slice_len = top();
if (dest_size == NULL) dest_size = top();
// operate on this memory slice:
Node* mem = memory(adr_type); // memory slice to operate on
// scaling and rounding of indexes:
int scale = exact_log2(type2aelembytes(basic_elem_type));
int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
int clear_low = (-1 << scale) & (BytesPerInt - 1);
int bump_bit = (-1 << scale) & BytesPerInt;
// determine constant starts and ends
const intptr_t BIG_NEG = -128;
assert(BIG_NEG + 2*abase < 0, "neg enough");
intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
if (slice_len_con == 0) {
return; // nothing to do here
}
intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
intptr_t end_con = find_intptr_t_con(dest_size, -1);
if (slice_idx_con >= 0 && slice_len_con >= 0) {
assert(end_con < 0, "not two cons");
end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
BytesPerLong);
}
if (start_con >= 0 && end_con >= 0) {
// Constant start and end. Simple.
mem = ClearArrayNode::clear_memory(control(), mem, dest,
start_con, end_con, &_gvn);
} else if (start_con >= 0 && dest_size != top()) {
// Constant start, pre-rounded end after the tail of the array.
Node* end = dest_size;
mem = ClearArrayNode::clear_memory(control(), mem, dest,
start_con, end, &_gvn);
} else if (start_con >= 0 && slice_len != top()) {
// Constant start, non-constant end. End needs rounding up.
// End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
intptr_t end_base = abase + (slice_idx_con << scale);
int end_round = (-1 << scale) & (BytesPerLong - 1);
Node* end = ConvI2X(slice_len);
if (scale != 0)
end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
end_base += end_round;
end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
mem = ClearArrayNode::clear_memory(control(), mem, dest,
start_con, end, &_gvn);
} else if (start_con < 0 && dest_size != top()) {
// Non-constant start, pre-rounded end after the tail of the array.
// This is almost certainly a "round-to-end" operation.
Node* start = slice_idx;
start = ConvI2X(start);
if (scale != 0)
start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
if ((bump_bit | clear_low) != 0) {
int to_clear = (bump_bit | clear_low);
// Align up mod 8, then store a jint zero unconditionally
// just before the mod-8 boundary.
if (((abase + bump_bit) & ~to_clear) - bump_bit
< arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
bump_bit = 0;
assert((abase & to_clear) == 0, "array base must be long-aligned");
} else {
// Bump 'start' up to (or past) the next jint boundary:
start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
assert((abase & clear_low) == 0, "array base must be int-aligned");
}
// Round bumped 'start' down to jlong boundary in body of array.
start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
if (bump_bit != 0) {
// Store a zero to the immediately preceding jint:
Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
Node* p1 = basic_plus_adr(dest, x1);
mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
mem = _gvn.transform(mem);
}
}
Node* end = dest_size; // pre-rounded
mem = ClearArrayNode::clear_memory(control(), mem, dest,
start, end, &_gvn);
} else {
// Non-constant start, unrounded non-constant end.
// (Nobody zeroes a random midsection of an array using this routine.)
ShouldNotReachHere(); // fix caller
}
// Done.
set_memory(mem, adr_type);
}
bool
LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
BasicType basic_elem_type,
AllocateNode* alloc,
Node* src, Node* src_offset,
Node* dest, Node* dest_offset,
Node* dest_size, bool dest_uninitialized) {
// See if there is an advantage from block transfer.
int scale = exact_log2(type2aelembytes(basic_elem_type));
if (scale >= LogBytesPerLong)
return false; // it is already a block transfer
// Look at the alignment of the starting offsets.
int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
intptr_t src_off_con = (intptr_t) find_int_con(src_offset, -1);
intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
if (src_off_con < 0 || dest_off_con < 0)
// At present, we can only understand constants.
return false;
intptr_t src_off = abase + (src_off_con << scale);
intptr_t dest_off = abase + (dest_off_con << scale);
if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
// Non-aligned; too bad.
// One more chance: Pick off an initial 32-bit word.
// This is a common case, since abase can be odd mod 8.
if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
Node* sptr = basic_plus_adr(src, src_off);
Node* dptr = basic_plus_adr(dest, dest_off);
Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
store_to_memory(control(), dptr, sval, T_INT, adr_type);
src_off += BytesPerInt;
dest_off += BytesPerInt;
} else {
return false;
}
}
assert(src_off % BytesPerLong == 0, "");
assert(dest_off % BytesPerLong == 0, "");
// Do this copy by giant steps.
Node* sptr = basic_plus_adr(src, src_off);
Node* dptr = basic_plus_adr(dest, dest_off);
Node* countx = dest_size;
countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
bool disjoint_bases = true; // since alloc != NULL
generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
sptr, NULL, dptr, NULL, countx, dest_uninitialized);
return true;
}
// Helper function; generates code for the slow case.
// We make a call to a runtime method which emulates the native method,
// but without the native wrapper overhead.
void
LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
Node* src, Node* src_offset,
Node* dest, Node* dest_offset,
Node* copy_length, bool dest_uninitialized) {
assert(!dest_uninitialized, "Invariant");
Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
OptoRuntime::slow_arraycopy_Type(),
OptoRuntime::slow_arraycopy_Java(),
"slow_arraycopy", adr_type,
src, src_offset, dest, dest_offset,
copy_length);
// Handle exceptions thrown by this fellow:
make_slow_call_ex(call, env()->Throwable_klass(), false);
}
// Helper function; generates code for cases requiring runtime checks.
Node*
LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
Node* dest_elem_klass,
Node* src, Node* src_offset,
Node* dest, Node* dest_offset,
Node* copy_length, bool dest_uninitialized) {
if (stopped()) return NULL;
address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
return NULL;
}
// Pick out the parameters required to perform a store-check
// for the target array. This is an optimistic check. It will
// look in each non-null element's class, at the desired klass's
// super_check_offset, for the desired klass.
int sco_offset = in_bytes(Klass::super_check_offset_offset());
Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
Node* n3 = new(C, 3) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
Node* check_offset = ConvI2X(_gvn.transform(n3));
Node* check_value = dest_elem_klass;
Node* src_start = array_element_address(src, src_offset, T_OBJECT);
Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
// (We know the arrays are never conjoint, because their types differ.)
Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
OptoRuntime::checkcast_arraycopy_Type(),
copyfunc_addr, "checkcast_arraycopy", adr_type,
// five arguments, of which two are
// intptr_t (jlong in LP64)
src_start, dest_start,
copy_length XTOP,
check_offset XTOP,
check_value);
return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
}
// Helper function; generates code for cases requiring runtime checks.
Node*
LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
Node* src, Node* src_offset,
Node* dest, Node* dest_offset,
Node* copy_length, bool dest_uninitialized) {
assert(!dest_uninitialized, "Invariant");
if (stopped()) return NULL;
address copyfunc_addr = StubRoutines::generic_arraycopy();
if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
return NULL;
}
Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
OptoRuntime::generic_arraycopy_Type(),
copyfunc_addr, "generic_arraycopy", adr_type,
src, src_offset, dest, dest_offset, copy_length);
return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
}
// Helper function; generates the fast out-of-line call to an arraycopy stub.
void
LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
BasicType basic_elem_type,
bool disjoint_bases,
Node* src, Node* src_offset,
Node* dest, Node* dest_offset,
Node* copy_length, bool dest_uninitialized) {
if (stopped()) return; // nothing to do
Node* src_start = src;
Node* dest_start = dest;
if (src_offset != NULL || dest_offset != NULL) {
assert(src_offset != NULL && dest_offset != NULL, "");
src_start = array_element_address(src, src_offset, basic_elem_type);
dest_start = array_element_address(dest, dest_offset, basic_elem_type);
}
// Figure out which arraycopy runtime method to call.
const char* copyfunc_name = "arraycopy";
address copyfunc_addr =
basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
disjoint_bases, copyfunc_name, dest_uninitialized);
// Call it. Note that the count_ix value is not scaled to a byte-size.
make_runtime_call(RC_LEAF|RC_NO_FP,
OptoRuntime::fast_arraycopy_Type(),
copyfunc_addr, copyfunc_name, adr_type,
src_start, dest_start, copy_length XTOP);
}
//----------------------------inline_reference_get----------------------------
bool LibraryCallKit::inline_reference_get() {
const int nargs = 1; // self
guarantee(java_lang_ref_Reference::referent_offset > 0,
"should have already been set");
int referent_offset = java_lang_ref_Reference::referent_offset;
// Restore the stack and pop off the argument
_sp += nargs;
Node *reference_obj = pop();
// Null check on self without removing any arguments.
_sp += nargs;
reference_obj = do_null_check(reference_obj, T_OBJECT);
_sp -= nargs;;
if (stopped()) return true;
Node *adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
ciInstanceKlass* klass = env()->Object_klass();
const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
Node* no_ctrl = NULL;
Node *result = make_load(no_ctrl, adr, object_type, T_OBJECT);
// Use the pre-barrier to record the value in the referent field
pre_barrier(false /* do_load */,
control(),
NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
result /* pre_val */,
T_OBJECT);
push(result);
return true;
}