blob: e93924d34937199809c55e23700dcd7dc79f8b53 [file] [log] [blame]
/*
* Copyright (c) 2014, Red Hat Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef _DECODE_H
#define _DECODE_H
#include <sys/types.h>
#include "cpustate_aarch64.hpp"
// bitfield immediate expansion helper
extern int expandLogicalImmediate(u_int32_t immN, u_int32_t immr,
u_int32_t imms, u_int64_t &bimm);
/*
* codes used in conditional instructions
*
* these are passed to conditional operations to identify which
* condition to test for
*/
enum CondCode {
EQ = 0b0000, // meaning Z == 1
NE = 0b0001, // meaning Z == 0
HS = 0b0010, // meaning C == 1
CS = HS,
LO = 0b0011, // meaning C == 0
CC = LO,
MI = 0b0100, // meaning N == 1
PL = 0b0101, // meaning N == 0
VS = 0b0110, // meaning V == 1
VC = 0b0111, // meaning V == 0
HI = 0b1000, // meaning C == 1 && Z == 0
LS = 0b1001, // meaning !(C == 1 && Z == 0)
GE = 0b1010, // meaning N == V
LT = 0b1011, // meaning N != V
GT = 0b1100, // meaning Z == 0 && N == V
LE = 0b1101, // meaning !(Z == 0 && N == V)
AL = 0b1110, // meaning ANY
NV = 0b1111 // ditto
};
/*
* certain addressing modes for load require pre or post writeback of
* the computed address to a base register
*/
enum WriteBack {
Post = 0,
Pre = 1
};
/*
* certain addressing modes for load require an offset to
* be optionally scaled so the decode needs to pass that
* through to the execute routine
*/
enum Scaling {
Unscaled = 0,
Scaled = 1
};
/*
* when we do have to scale we do so by shifting using
* log(bytes in data element - 1) as the shift count.
* so we don't have to scale offsets when loading
* bytes.
*/
enum ScaleShift {
ScaleShift16 = 1,
ScaleShift32 = 2,
ScaleShift64 = 3,
ScaleShift128 = 4
};
/*
* one of the addressing modes for load requires a 32-bit register
* value to be either zero- or sign-extended for these instructions
* UXTW or SXTW should be passed
*
* arithmetic register data processing operations can optionally
* extend a portion of the second register value for these
* instructions the value supplied must identify the portion of the
* register which is to be zero- or sign-exended
*/
enum Extension {
UXTB = 0,
UXTH = 1,
UXTW = 2,
UXTX = 3,
SXTB = 4,
SXTH = 5,
SXTW = 6,
SXTX = 7
};
/*
* arithmetic and logical register data processing operations
* optionally perform a shift on the second register value
*/
enum Shift {
LSL = 0,
LSR = 1,
ASR = 2,
ROR = 3
};
/*
* bit twiddling helpers for instruction decode
*/
// 32 bit mask with bits [hi,...,lo] set
static inline u_int32_t mask32(int hi = 31, int lo = 0)
{
int nbits = (hi + 1) - lo;
return ((1 << nbits) - 1) << lo;
}
static inline u_int64_t mask64(int hi = 63, int lo = 0)
{
int nbits = (hi + 1) - lo;
return ((1L << nbits) - 1) << lo;
}
// pick bits [hi,...,lo] from val
static inline u_int32_t pick32(u_int32_t val, int hi = 31, int lo = 0)
{
return (val & mask32(hi, lo));
}
// pick bits [hi,...,lo] from val
static inline u_int64_t pick64(u_int64_t val, int hi = 31, int lo = 0)
{
return (val & mask64(hi, lo));
}
// pick bits [hi,...,lo] from val and shift to [(hi-(newlo - lo)),newlo]
static inline u_int32_t pickshift32(u_int32_t val, int hi = 31,
int lo = 0, int newlo = 0)
{
u_int32_t bits = pick32(val, hi, lo);
if (lo < newlo) {
return (bits << (newlo - lo));
} else {
return (bits >> (lo - newlo));
}
}
// mask [hi,lo] and shift down to start at bit 0
static inline u_int32_t pickbits32(u_int32_t val, int hi = 31, int lo = 0)
{
return (pick32(val, hi, lo) >> lo);
}
// mask [hi,lo] and shift down to start at bit 0
static inline u_int64_t pickbits64(u_int64_t val, int hi = 63, int lo = 0)
{
return (pick64(val, hi, lo) >> lo);
}
/*
* decode registers, immediates and constants of various types
*/
static inline GReg greg(u_int32_t val, int lo)
{
return (GReg)pickbits32(val, lo + 4, lo);
}
static inline VReg vreg(u_int32_t val, int lo)
{
return (VReg)pickbits32(val, lo + 4, lo);
}
static inline u_int32_t uimm(u_int32_t val, int hi, int lo)
{
return pickbits32(val, hi, lo);
}
static inline int32_t simm(u_int32_t val, int hi = 31, int lo = 0) {
union {
u_int32_t u;
int32_t n;
};
u = val << (31 - hi);
n = n >> (31 - hi + lo);
return n;
}
static inline int64_t simm(u_int64_t val, int hi = 63, int lo = 0) {
union {
u_int64_t u;
int64_t n;
};
u = val << (63 - hi);
n = n >> (63 - hi + lo);
return n;
}
static inline Shift shift(u_int32_t val, int lo)
{
return (Shift)pickbits32(val, lo+1, lo);
}
static inline Extension extension(u_int32_t val, int lo)
{
return (Extension)pickbits32(val, lo+2, lo);
}
static inline Scaling scaling(u_int32_t val, int lo)
{
return (Scaling)pickbits32(val, lo, lo);
}
static inline WriteBack writeback(u_int32_t val, int lo)
{
return (WriteBack)pickbits32(val, lo, lo);
}
static inline CondCode condcode(u_int32_t val, int lo)
{
return (CondCode)pickbits32(val, lo+3, lo);
}
/*
* operation decode
*/
// bits [28,25] are the primary dispatch vector
static inline u_int32_t dispatchGroup(u_int32_t val)
{
return pickshift32(val, 28, 25, 0);
}
/*
* the 16 possible values for bits [28,25] identified by tags which
* map them to the 5 main instruction groups LDST, DPREG, ADVSIMD,
* BREXSYS and DPIMM.
*
* An extra group PSEUDO is included in one of the unallocated ranges
* for simulator-specific pseudo-instructions.
*/
enum DispatchGroup {
GROUP_PSEUDO_0000,
GROUP_UNALLOC_0001,
GROUP_UNALLOC_0010,
GROUP_UNALLOC_0011,
GROUP_LDST_0100,
GROUP_DPREG_0101,
GROUP_LDST_0110,
GROUP_ADVSIMD_0111,
GROUP_DPIMM_1000,
GROUP_DPIMM_1001,
GROUP_BREXSYS_1010,
GROUP_BREXSYS_1011,
GROUP_LDST_1100,
GROUP_DPREG_1101,
GROUP_LDST_1110,
GROUP_ADVSIMD_1111
};
// bits [31, 29] of a Pseudo are the secondary dispatch vector
static inline u_int32_t dispatchPseudo(u_int32_t val)
{
return pickshift32(val, 31, 29, 0);
}
/*
* the 8 possible values for bits [31,29] in a Pseudo Instruction.
* Bits [28,25] are always 0000.
*/
enum DispatchPseudo {
PSEUDO_UNALLOC_000, // unallocated
PSEUDO_UNALLOC_001, // ditto
PSEUDO_UNALLOC_010, // ditto
PSEUDO_UNALLOC_011, // ditto
PSEUDO_UNALLOC_100, // ditto
PSEUDO_UNALLOC_101, // ditto
PSEUDO_CALLOUT_110, // CALLOUT -- bits [24,0] identify call/ret sig
PSEUDO_HALT_111 // HALT -- bits [24, 0] identify halt code
};
// bits [25, 23] of a DPImm are the secondary dispatch vector
static inline u_int32_t dispatchDPImm(u_int32_t instr)
{
return pickshift32(instr, 25, 23, 0);
}
/*
* the 8 possible values for bits [25,23] in a Data Processing Immediate
* Instruction. Bits [28,25] are always 100_.
*/
enum DispatchDPImm {
DPIMM_PCADR_000, // PC-rel-addressing
DPIMM_PCADR_001, // ditto
DPIMM_ADDSUB_010, // Add/Subtract (immediate)
DPIMM_ADDSUB_011, // ditto
DPIMM_LOG_100, // Logical (immediate)
DPIMM_MOV_101, // Move Wide (immediate)
DPIMM_BITF_110, // Bitfield
DPIMM_EXTR_111 // Extract
};
// bits [29,28:26] of a LS are the secondary dispatch vector
static inline u_int32_t dispatchLS(u_int32_t instr)
{
return (pickshift32(instr, 29, 28, 1) |
pickshift32(instr, 26, 26, 0));
}
/*
* the 8 possible values for bits [29,28:26] in a Load/Store
* Instruction. Bits [28,25] are always _1_0
*/
enum DispatchLS {
LS_EXCL_000, // Load/store exclusive (includes some unallocated)
LS_ADVSIMD_001, // AdvSIMD load/store (various -- includes some unallocated)
LS_LIT_010, // Load register literal (includes some unallocated)
LS_LIT_011, // ditto
LS_PAIR_100, // Load/store register pair (various)
LS_PAIR_101, // ditto
LS_OTHER_110, // other load/store formats
LS_OTHER_111 // ditto
};
// bits [28:24:21] of a DPReg are the secondary dispatch vector
static inline u_int32_t dispatchDPReg(u_int32_t instr)
{
return (pickshift32(instr, 28, 28, 2) |
pickshift32(instr, 24, 24, 1) |
pickshift32(instr, 21, 21, 0));
}
/*
* the 8 possible values for bits [28:24:21] in a Data Processing
* Register Instruction. Bits [28,25] are always _101
*/
enum DispatchDPReg {
DPREG_LOG_000, // Logical (shifted register)
DPREG_LOG_001, // ditto
DPREG_ADDSHF_010, // Add/subtract (shifted register)
DPREG_ADDEXT_011, // Add/subtract (extended register)
DPREG_ADDCOND_100, // Add/subtract (with carry) AND
// Cond compare/select AND
// Data Processing (1/2 source)
DPREG_UNALLOC_101, // Unallocated
DPREG_3SRC_110, // Data Processing (3 source)
DPREG_3SRC_111 // Data Processing (3 source)
};
// bits [31,29] of a BrExSys are the secondary dispatch vector
static inline u_int32_t dispatchBrExSys(u_int32_t instr)
{
return pickbits32(instr, 31, 29);
}
/*
* the 8 possible values for bits [31,29] in a Branch/Exception/System
* Instruction. Bits [28,25] are always 101_
*/
enum DispatchBr {
BR_IMM_000, // Unconditional branch (immediate)
BR_IMMCMP_001, // Compare & branch (immediate) AND
// Test & branch (immediate)
BR_IMMCOND_010, // Conditional branch (immediate) AND Unallocated
BR_UNALLOC_011, // Unallocated
BR_IMM_100, // Unconditional branch (immediate)
BR_IMMCMP_101, // Compare & branch (immediate) AND
// Test & branch (immediate)
BR_REG_110, // Unconditional branch (register) AND System AND
// Excn gen AND Unallocated
BR_UNALLOC_111 // Unallocated
};
/*
* TODO still need to provide secondary decode and dispatch for
* AdvSIMD Insructions with instr[28,25] = 0111 or 1111
*/
#endif // ifndef DECODE_H