blob: 68f4a023795db1ba9ce6866ec22d76e05a1e3eb9 [file] [log] [blame]
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build unix
#include <pthread.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h> // strerror
#include <time.h>
#include "libcgo.h"
#include "libcgo_unix.h"
static pthread_cond_t runtime_init_cond = PTHREAD_COND_INITIALIZER;
static pthread_mutex_t runtime_init_mu = PTHREAD_MUTEX_INITIALIZER;
static int runtime_init_done;
// pthread_g is a pthread specific key, for storing the g that binded to the C thread.
// The registered pthread_key_destructor will dropm, when the pthread-specified value g is not NULL,
// while a C thread is exiting.
static pthread_key_t pthread_g;
static void pthread_key_destructor(void* g);
uintptr_t x_cgo_pthread_key_created;
void (*x_crosscall2_ptr)(void (*fn)(void *), void *, int, size_t);
// The context function, used when tracing back C calls into Go.
static void (*cgo_context_function)(struct context_arg*);
void
x_cgo_sys_thread_create(void* (*func)(void*), void* arg) {
pthread_t p;
int err = _cgo_try_pthread_create(&p, NULL, func, arg);
if (err != 0) {
fprintf(stderr, "pthread_create failed: %s", strerror(err));
abort();
}
}
uintptr_t
_cgo_wait_runtime_init_done(void) {
void (*pfn)(struct context_arg*);
pfn = __atomic_load_n(&cgo_context_function, __ATOMIC_CONSUME);
int done = 2;
if (__atomic_load_n(&runtime_init_done, __ATOMIC_CONSUME) != done) {
pthread_mutex_lock(&runtime_init_mu);
while (__atomic_load_n(&runtime_init_done, __ATOMIC_CONSUME) == 0) {
pthread_cond_wait(&runtime_init_cond, &runtime_init_mu);
}
// The key and x_cgo_pthread_key_created are for the whole program,
// whereas the specific and destructor is per thread.
if (x_cgo_pthread_key_created == 0 && pthread_key_create(&pthread_g, pthread_key_destructor) == 0) {
x_cgo_pthread_key_created = 1;
}
// TODO(iant): For the case of a new C thread calling into Go, such
// as when using -buildmode=c-archive, we know that Go runtime
// initialization is complete but we do not know that all Go init
// functions have been run. We should not fetch cgo_context_function
// until they have been, because that is where a call to
// SetCgoTraceback is likely to occur. We are going to wait for Go
// initialization to be complete anyhow, later, by waiting for
// main_init_done to be closed in cgocallbackg1. We should wait here
// instead. See also issue #15943.
pfn = __atomic_load_n(&cgo_context_function, __ATOMIC_CONSUME);
__atomic_store_n(&runtime_init_done, done, __ATOMIC_RELEASE);
pthread_mutex_unlock(&runtime_init_mu);
}
if (pfn != nil) {
struct context_arg arg;
arg.Context = 0;
(*pfn)(&arg);
return arg.Context;
}
return 0;
}
// _cgo_set_stacklo sets g->stacklo based on the stack size.
// This is common code called from x_cgo_init, which is itself
// called by rt0_go in the runtime package.
void _cgo_set_stacklo(G *g, uintptr *pbounds)
{
uintptr bounds[2];
// pbounds can be passed in by the caller; see gcc_linux_amd64.c.
if (pbounds == NULL) {
pbounds = &bounds[0];
}
x_cgo_getstackbound(pbounds);
g->stacklo = *pbounds;
// Sanity check the results now, rather than getting a
// morestack on g0 crash.
if (g->stacklo >= g->stackhi) {
fprintf(stderr, "runtime/cgo: bad stack bounds: lo=%p hi=%p\n", (void*)(g->stacklo), (void*)(g->stackhi));
abort();
}
}
// Store the g into a thread-specific value associated with the pthread key pthread_g.
// And pthread_key_destructor will dropm when the thread is exiting.
void x_cgo_bindm(void* g) {
// We assume this will always succeed, otherwise, there might be extra M leaking,
// when a C thread exits after a cgo call.
// We only invoke this function once per thread in runtime.needAndBindM,
// and the next calls just reuse the bound m.
pthread_setspecific(pthread_g, g);
}
void
x_cgo_notify_runtime_init_done(void* dummy __attribute__ ((unused))) {
pthread_mutex_lock(&runtime_init_mu);
__atomic_store_n(&runtime_init_done, 1, __ATOMIC_RELEASE);
pthread_cond_broadcast(&runtime_init_cond);
pthread_mutex_unlock(&runtime_init_mu);
}
// Sets the context function to call to record the traceback context
// when calling a Go function from C code. Called from runtime.SetCgoTraceback.
void x_cgo_set_context_function(void (*context)(struct context_arg*)) {
__atomic_store_n(&cgo_context_function, context, __ATOMIC_RELEASE);
}
// Gets the context function.
void (*(_cgo_get_context_function(void)))(struct context_arg*) {
return __atomic_load_n(&cgo_context_function, __ATOMIC_CONSUME);
}
// _cgo_try_pthread_create retries pthread_create if it fails with
// EAGAIN.
int
_cgo_try_pthread_create(pthread_t* thread, const pthread_attr_t* attr, void* (*pfn)(void*), void* arg) {
int tries;
int err;
struct timespec ts;
for (tries = 0; tries < 20; tries++) {
err = pthread_create(thread, attr, pfn, arg);
if (err == 0) {
pthread_detach(*thread);
return 0;
}
if (err != EAGAIN) {
return err;
}
ts.tv_sec = 0;
ts.tv_nsec = (tries + 1) * 1000 * 1000; // Milliseconds.
nanosleep(&ts, nil);
}
return EAGAIN;
}
static void
pthread_key_destructor(void* g) {
if (x_crosscall2_ptr != NULL) {
// fn == NULL means dropm.
// We restore g by using the stored g, before dropm in runtime.cgocallback,
// since the g stored in the TLS by Go might be cleared in some platforms,
// before this destructor invoked.
x_crosscall2_ptr(NULL, g, 0, 0);
}
}