blob: 38479b323fadfeedf120613ed3854f2ae3fd13dd [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package walk
import (
"unicode/utf8"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/reflectdata"
"cmd/compile/internal/ssagen"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/internal/src"
"cmd/internal/sys"
)
func cheapComputableIndex(width int64) bool {
switch ssagen.Arch.LinkArch.Family {
// MIPS does not have R+R addressing
// Arm64 may lack ability to generate this code in our assembler,
// but the architecture supports it.
case sys.PPC64, sys.S390X:
return width == 1
case sys.AMD64, sys.I386, sys.ARM64, sys.ARM:
switch width {
case 1, 2, 4, 8:
return true
}
}
return false
}
// walkRange transforms various forms of ORANGE into
// simpler forms. The result must be assigned back to n.
// Node n may also be modified in place, and may also be
// the returned node.
func walkRange(nrange *ir.RangeStmt) ir.Node {
base.Assert(!nrange.DistinctVars) // Should all be rewritten before escape analysis
if isMapClear(nrange) {
return mapRangeClear(nrange)
}
nfor := ir.NewForStmt(nrange.Pos(), nil, nil, nil, nil, nrange.DistinctVars)
nfor.SetInit(nrange.Init())
nfor.Label = nrange.Label
// variable name conventions:
// ohv1, hv1, hv2: hidden (old) val 1, 2
// ha, hit: hidden aggregate, iterator
// hn, hp: hidden len, pointer
// hb: hidden bool
// a, v1, v2: not hidden aggregate, val 1, 2
a := nrange.X
t := a.Type()
lno := ir.SetPos(a)
v1, v2 := nrange.Key, nrange.Value
if ir.IsBlank(v2) {
v2 = nil
}
if ir.IsBlank(v1) && v2 == nil {
v1 = nil
}
if v1 == nil && v2 != nil {
base.Fatalf("walkRange: v2 != nil while v1 == nil")
}
var body []ir.Node
var init []ir.Node
switch t.Kind() {
default:
base.Fatalf("walkRange")
case types.TARRAY, types.TSLICE, types.TPTR: // TPTR is pointer-to-array
if nn := arrayRangeClear(nrange, v1, v2, a); nn != nil {
base.Pos = lno
return nn
}
// Element type of the iteration
var elem *types.Type
switch t.Kind() {
case types.TSLICE, types.TARRAY:
elem = t.Elem()
case types.TPTR:
elem = t.Elem().Elem()
}
// order.stmt arranged for a copy of the array/slice variable if needed.
ha := a
hv1 := typecheck.Temp(types.Types[types.TINT])
hn := typecheck.Temp(types.Types[types.TINT])
init = append(init, ir.NewAssignStmt(base.Pos, hv1, nil))
init = append(init, ir.NewAssignStmt(base.Pos, hn, ir.NewUnaryExpr(base.Pos, ir.OLEN, ha)))
nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv1, hn)
nfor.Post = ir.NewAssignStmt(base.Pos, hv1, ir.NewBinaryExpr(base.Pos, ir.OADD, hv1, ir.NewInt(base.Pos, 1)))
// for range ha { body }
if v1 == nil {
break
}
// for v1 := range ha { body }
if v2 == nil {
body = []ir.Node{rangeAssign(nrange, hv1)}
break
}
// for v1, v2 := range ha { body }
if cheapComputableIndex(elem.Size()) {
// v1, v2 = hv1, ha[hv1]
tmp := ir.NewIndexExpr(base.Pos, ha, hv1)
tmp.SetBounded(true)
body = []ir.Node{rangeAssign2(nrange, hv1, tmp)}
break
}
// Slice to iterate over
var hs ir.Node
if t.IsSlice() {
hs = ha
} else {
var arr ir.Node
if t.IsPtr() {
arr = ha
} else {
arr = typecheck.NodAddr(ha)
arr.SetType(t.PtrTo())
arr.SetTypecheck(1)
}
hs = ir.NewSliceExpr(base.Pos, ir.OSLICEARR, arr, nil, nil, nil)
// old typechecker doesn't know OSLICEARR, so we set types explicitly
hs.SetType(types.NewSlice(elem))
hs.SetTypecheck(1)
}
// We use a "pointer" to keep track of where we are in the backing array
// of the slice hs. This pointer starts at hs.ptr and gets incremented
// by the element size each time through the loop.
//
// It's tricky, though, as on the last iteration this pointer gets
// incremented to point past the end of the backing array. We can't
// let the garbage collector see that final out-of-bounds pointer.
//
// To avoid this, we keep the "pointer" alternately in 2 variables, one
// pointer typed and one uintptr typed. Most of the time it lives in the
// regular pointer variable, but when it might be out of bounds (after it
// has been incremented, but before the loop condition has been checked)
// it lives briefly in the uintptr variable.
//
// hp contains the pointer version (of type *T, where T is the element type).
// It is guaranteed to always be in range, keeps the backing store alive,
// and is updated on stack copies. If a GC occurs when this function is
// suspended at any safepoint, this variable ensures correct operation.
//
// hu contains the equivalent uintptr version. It may point past the
// end, but doesn't keep the backing store alive and doesn't get updated
// on a stack copy. If a GC occurs while this function is on the top of
// the stack, then the last frame is scanned conservatively and hu will
// act as a reference to the backing array to ensure it is not collected.
//
// The "pointer" we're moving across the backing array lives in one
// or the other of hp and hu as the loop proceeds.
//
// hp is live during most of the body of the loop. But it isn't live
// at the very top of the loop, when we haven't checked i<n yet, and
// it could point off the end of the backing store.
// hu is live only at the very top and very bottom of the loop.
// In particular, only when it cannot possibly be live across a call.
//
// So we do
// hu = uintptr(unsafe.Pointer(hs.ptr))
// for i := 0; i < hs.len; i++ {
// hp = (*T)(unsafe.Pointer(hu))
// v1, v2 = i, *hp
// ... body of loop ...
// hu = uintptr(unsafe.Pointer(hp)) + elemsize
// }
//
// Between the assignments to hu and the assignment back to hp, there
// must not be any calls.
// Pointer to current iteration position. Start on entry to the loop
// with the pointer in hu.
ptr := ir.NewUnaryExpr(base.Pos, ir.OSPTR, hs)
ptr.SetBounded(true)
huVal := ir.NewConvExpr(base.Pos, ir.OCONVNOP, types.Types[types.TUNSAFEPTR], ptr)
huVal = ir.NewConvExpr(base.Pos, ir.OCONVNOP, types.Types[types.TUINTPTR], huVal)
hu := typecheck.Temp(types.Types[types.TUINTPTR])
init = append(init, ir.NewAssignStmt(base.Pos, hu, huVal))
// Convert hu to hp at the top of the loop (after the condition has been checked).
hpVal := ir.NewConvExpr(base.Pos, ir.OCONVNOP, types.Types[types.TUNSAFEPTR], hu)
hpVal.SetCheckPtr(true) // disable checkptr on this conversion
hpVal = ir.NewConvExpr(base.Pos, ir.OCONVNOP, elem.PtrTo(), hpVal)
hp := typecheck.Temp(elem.PtrTo())
body = append(body, ir.NewAssignStmt(base.Pos, hp, hpVal))
// Assign variables on the LHS of the range statement. Use *hp to get the element.
e := ir.NewStarExpr(base.Pos, hp)
e.SetBounded(true)
a := rangeAssign2(nrange, hv1, e)
body = append(body, a)
// Advance pointer for next iteration of the loop.
// This reads from hp and writes to hu.
huVal = ir.NewConvExpr(base.Pos, ir.OCONVNOP, types.Types[types.TUNSAFEPTR], hp)
huVal = ir.NewConvExpr(base.Pos, ir.OCONVNOP, types.Types[types.TUINTPTR], huVal)
as := ir.NewAssignStmt(base.Pos, hu, ir.NewBinaryExpr(base.Pos, ir.OADD, huVal, ir.NewInt(base.Pos, elem.Size())))
nfor.Post = ir.NewBlockStmt(base.Pos, []ir.Node{nfor.Post, as})
case types.TMAP:
// order.stmt allocated the iterator for us.
// we only use a once, so no copy needed.
ha := a
hit := nrange.Prealloc
th := hit.Type()
// depends on layout of iterator struct.
// See cmd/compile/internal/reflectdata/reflect.go:MapIterType
keysym := th.Field(0).Sym
elemsym := th.Field(1).Sym // ditto
fn := typecheck.LookupRuntime("mapiterinit")
fn = typecheck.SubstArgTypes(fn, t.Key(), t.Elem(), th)
init = append(init, mkcallstmt1(fn, reflectdata.RangeMapRType(base.Pos, nrange), ha, typecheck.NodAddr(hit)))
nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, ir.NewSelectorExpr(base.Pos, ir.ODOT, hit, keysym), typecheck.NodNil())
fn = typecheck.LookupRuntime("mapiternext")
fn = typecheck.SubstArgTypes(fn, th)
nfor.Post = mkcallstmt1(fn, typecheck.NodAddr(hit))
key := ir.NewStarExpr(base.Pos, ir.NewSelectorExpr(base.Pos, ir.ODOT, hit, keysym))
if v1 == nil {
body = nil
} else if v2 == nil {
body = []ir.Node{rangeAssign(nrange, key)}
} else {
elem := ir.NewStarExpr(base.Pos, ir.NewSelectorExpr(base.Pos, ir.ODOT, hit, elemsym))
body = []ir.Node{rangeAssign2(nrange, key, elem)}
}
case types.TCHAN:
// order.stmt arranged for a copy of the channel variable.
ha := a
hv1 := typecheck.Temp(t.Elem())
hv1.SetTypecheck(1)
if t.Elem().HasPointers() {
init = append(init, ir.NewAssignStmt(base.Pos, hv1, nil))
}
hb := typecheck.Temp(types.Types[types.TBOOL])
nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, hb, ir.NewBool(base.Pos, false))
lhs := []ir.Node{hv1, hb}
rhs := []ir.Node{ir.NewUnaryExpr(base.Pos, ir.ORECV, ha)}
a := ir.NewAssignListStmt(base.Pos, ir.OAS2RECV, lhs, rhs)
a.SetTypecheck(1)
nfor.Cond = ir.InitExpr([]ir.Node{a}, nfor.Cond)
if v1 == nil {
body = nil
} else {
body = []ir.Node{rangeAssign(nrange, hv1)}
}
// Zero hv1. This prevents hv1 from being the sole, inaccessible
// reference to an otherwise GC-able value during the next channel receive.
// See issue 15281.
body = append(body, ir.NewAssignStmt(base.Pos, hv1, nil))
case types.TSTRING:
// Transform string range statements like "for v1, v2 = range a" into
//
// ha := a
// for hv1 := 0; hv1 < len(ha); {
// hv1t := hv1
// hv2 := rune(ha[hv1])
// if hv2 < utf8.RuneSelf {
// hv1++
// } else {
// hv2, hv1 = decoderune(ha, hv1)
// }
// v1, v2 = hv1t, hv2
// // original body
// }
// order.stmt arranged for a copy of the string variable.
ha := a
hv1 := typecheck.Temp(types.Types[types.TINT])
hv1t := typecheck.Temp(types.Types[types.TINT])
hv2 := typecheck.Temp(types.RuneType)
// hv1 := 0
init = append(init, ir.NewAssignStmt(base.Pos, hv1, nil))
// hv1 < len(ha)
nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv1, ir.NewUnaryExpr(base.Pos, ir.OLEN, ha))
if v1 != nil {
// hv1t = hv1
body = append(body, ir.NewAssignStmt(base.Pos, hv1t, hv1))
}
// hv2 := rune(ha[hv1])
nind := ir.NewIndexExpr(base.Pos, ha, hv1)
nind.SetBounded(true)
body = append(body, ir.NewAssignStmt(base.Pos, hv2, typecheck.Conv(nind, types.RuneType)))
// if hv2 < utf8.RuneSelf
nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
nif.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv2, ir.NewInt(base.Pos, utf8.RuneSelf))
// hv1++
nif.Body = []ir.Node{ir.NewAssignStmt(base.Pos, hv1, ir.NewBinaryExpr(base.Pos, ir.OADD, hv1, ir.NewInt(base.Pos, 1)))}
// } else {
// hv2, hv1 = decoderune(ha, hv1)
fn := typecheck.LookupRuntime("decoderune")
call := mkcall1(fn, fn.Type().Results(), &nif.Else, ha, hv1)
a := ir.NewAssignListStmt(base.Pos, ir.OAS2, []ir.Node{hv2, hv1}, []ir.Node{call})
nif.Else.Append(a)
body = append(body, nif)
if v1 != nil {
if v2 != nil {
// v1, v2 = hv1t, hv2
body = append(body, rangeAssign2(nrange, hv1t, hv2))
} else {
// v1 = hv1t
body = append(body, rangeAssign(nrange, hv1t))
}
}
}
typecheck.Stmts(init)
nfor.PtrInit().Append(init...)
typecheck.Stmts(nfor.Cond.Init())
nfor.Cond = typecheck.Expr(nfor.Cond)
nfor.Cond = typecheck.DefaultLit(nfor.Cond, nil)
nfor.Post = typecheck.Stmt(nfor.Post)
typecheck.Stmts(body)
nfor.Body.Append(body...)
nfor.Body.Append(nrange.Body...)
var n ir.Node = nfor
n = walkStmt(n)
base.Pos = lno
return n
}
// rangeAssign returns "n.Key = key".
func rangeAssign(n *ir.RangeStmt, key ir.Node) ir.Node {
key = rangeConvert(n, n.Key.Type(), key, n.KeyTypeWord, n.KeySrcRType)
return ir.NewAssignStmt(n.Pos(), n.Key, key)
}
// rangeAssign2 returns "n.Key, n.Value = key, value".
func rangeAssign2(n *ir.RangeStmt, key, value ir.Node) ir.Node {
// Use OAS2 to correctly handle assignments
// of the form "v1, a[v1] = range".
key = rangeConvert(n, n.Key.Type(), key, n.KeyTypeWord, n.KeySrcRType)
value = rangeConvert(n, n.Value.Type(), value, n.ValueTypeWord, n.ValueSrcRType)
return ir.NewAssignListStmt(n.Pos(), ir.OAS2, []ir.Node{n.Key, n.Value}, []ir.Node{key, value})
}
// rangeConvert returns src, converted to dst if necessary. If a
// conversion is necessary, then typeWord and srcRType are copied to
// their respective ConvExpr fields.
func rangeConvert(nrange *ir.RangeStmt, dst *types.Type, src, typeWord, srcRType ir.Node) ir.Node {
src = typecheck.Expr(src)
if dst.Kind() == types.TBLANK || types.Identical(dst, src.Type()) {
return src
}
n := ir.NewConvExpr(nrange.Pos(), ir.OCONV, dst, src)
n.TypeWord = typeWord
n.SrcRType = srcRType
return typecheck.Expr(n)
}
// isMapClear checks if n is of the form:
//
// for k := range m {
// delete(m, k)
// }
//
// where == for keys of map m is reflexive.
func isMapClear(n *ir.RangeStmt) bool {
if base.Flag.N != 0 || base.Flag.Cfg.Instrumenting {
return false
}
t := n.X.Type()
if n.Op() != ir.ORANGE || t.Kind() != types.TMAP || n.Key == nil || n.Value != nil {
return false
}
k := n.Key
// Require k to be a new variable name.
if !ir.DeclaredBy(k, n) {
return false
}
if len(n.Body) != 1 {
return false
}
stmt := n.Body[0] // only stmt in body
if stmt == nil || stmt.Op() != ir.ODELETE {
return false
}
m := n.X
if delete := stmt.(*ir.CallExpr); !ir.SameSafeExpr(delete.Args[0], m) || !ir.SameSafeExpr(delete.Args[1], k) {
return false
}
// Keys where equality is not reflexive can not be deleted from maps.
if !types.IsReflexive(t.Key()) {
return false
}
return true
}
// mapRangeClear constructs a call to runtime.mapclear for the map range idiom.
func mapRangeClear(nrange *ir.RangeStmt) ir.Node {
m := nrange.X
origPos := ir.SetPos(m)
defer func() { base.Pos = origPos }()
return mapClear(m, reflectdata.RangeMapRType(base.Pos, nrange))
}
// mapClear constructs a call to runtime.mapclear for the map m.
func mapClear(m, rtyp ir.Node) ir.Node {
t := m.Type()
// instantiate mapclear(typ *type, hmap map[any]any)
fn := typecheck.LookupRuntime("mapclear")
fn = typecheck.SubstArgTypes(fn, t.Key(), t.Elem())
n := mkcallstmt1(fn, rtyp, m)
return walkStmt(typecheck.Stmt(n))
}
// Lower n into runtime·memclr if possible, for
// fast zeroing of slices and arrays (issue 5373).
// Look for instances of
//
// for i := range a {
// a[i] = zero
// }
//
// in which the evaluation of a is side-effect-free.
//
// Parameters are as in walkRange: "for v1, v2 = range a".
func arrayRangeClear(loop *ir.RangeStmt, v1, v2, a ir.Node) ir.Node {
if base.Flag.N != 0 || base.Flag.Cfg.Instrumenting {
return nil
}
if v1 == nil || v2 != nil {
return nil
}
if len(loop.Body) != 1 || loop.Body[0] == nil {
return nil
}
stmt1 := loop.Body[0] // only stmt in body
if stmt1.Op() != ir.OAS {
return nil
}
stmt := stmt1.(*ir.AssignStmt)
if stmt.X.Op() != ir.OINDEX {
return nil
}
lhs := stmt.X.(*ir.IndexExpr)
x := lhs.X
if a.Type().IsPtr() && a.Type().Elem().IsArray() {
if s, ok := x.(*ir.StarExpr); ok && s.Op() == ir.ODEREF {
x = s.X
}
}
if !ir.SameSafeExpr(x, a) || !ir.SameSafeExpr(lhs.Index, v1) {
return nil
}
if !ir.IsZero(stmt.Y) {
return nil
}
return arrayClear(stmt.Pos(), a, loop)
}
// arrayClear constructs a call to runtime.memclr for fast zeroing of slices and arrays.
func arrayClear(wbPos src.XPos, a ir.Node, nrange *ir.RangeStmt) ir.Node {
elemsize := typecheck.RangeExprType(a.Type()).Elem().Size()
if elemsize <= 0 {
return nil
}
// Convert to
// if len(a) != 0 {
// hp = &a[0]
// hn = len(a)*sizeof(elem(a))
// memclr{NoHeap,Has}Pointers(hp, hn)
// i = len(a) - 1
// }
n := ir.NewIfStmt(base.Pos, nil, nil, nil)
n.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, ir.NewUnaryExpr(base.Pos, ir.OLEN, a), ir.NewInt(base.Pos, 0))
// hp = &a[0]
hp := typecheck.Temp(types.Types[types.TUNSAFEPTR])
ix := ir.NewIndexExpr(base.Pos, a, ir.NewInt(base.Pos, 0))
ix.SetBounded(true)
addr := typecheck.ConvNop(typecheck.NodAddr(ix), types.Types[types.TUNSAFEPTR])
n.Body.Append(ir.NewAssignStmt(base.Pos, hp, addr))
// hn = len(a) * sizeof(elem(a))
hn := typecheck.Temp(types.Types[types.TUINTPTR])
mul := typecheck.Conv(ir.NewBinaryExpr(base.Pos, ir.OMUL, ir.NewUnaryExpr(base.Pos, ir.OLEN, a), ir.NewInt(base.Pos, elemsize)), types.Types[types.TUINTPTR])
n.Body.Append(ir.NewAssignStmt(base.Pos, hn, mul))
var fn ir.Node
if a.Type().Elem().HasPointers() {
// memclrHasPointers(hp, hn)
ir.CurFunc.SetWBPos(wbPos)
fn = mkcallstmt("memclrHasPointers", hp, hn)
} else {
// memclrNoHeapPointers(hp, hn)
fn = mkcallstmt("memclrNoHeapPointers", hp, hn)
}
n.Body.Append(fn)
// For array range clear, also set "i = len(a) - 1"
if nrange != nil {
idx := ir.NewAssignStmt(base.Pos, nrange.Key, ir.NewBinaryExpr(base.Pos, ir.OSUB, ir.NewUnaryExpr(base.Pos, ir.OLEN, a), ir.NewInt(base.Pos, 1)))
n.Body.Append(idx)
}
n.Cond = typecheck.Expr(n.Cond)
n.Cond = typecheck.DefaultLit(n.Cond, nil)
typecheck.Stmts(n.Body)
return walkStmt(n)
}
// addptr returns (*T)(uintptr(p) + n).
func addptr(p ir.Node, n int64) ir.Node {
t := p.Type()
p = ir.NewConvExpr(base.Pos, ir.OCONVNOP, nil, p)
p.SetType(types.Types[types.TUINTPTR])
p = ir.NewBinaryExpr(base.Pos, ir.OADD, p, ir.NewInt(base.Pos, n))
p = ir.NewConvExpr(base.Pos, ir.OCONVNOP, nil, p)
p.SetType(t)
return p
}