blob: ba8e1e42622a84d29c6bd368e894d826eb69e6ff [file] [log] [blame]
/* Native-dependent code for GNU/Linux on MIPS processors.
Copyright (C) 2001-2016 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "command.h"
#include "gdbcmd.h"
#include "inferior.h"
#include "mips-tdep.h"
#include "target.h"
#include "regcache.h"
#include "linux-nat.h"
#include "mips-linux-tdep.h"
#include "target-descriptions.h"
#include "elf/common.h"
#include "gdb_proc_service.h"
#include "gregset.h"
#include <sgidefs.h>
#include "nat/gdb_ptrace.h"
#include <asm/ptrace.h>
#include "nat/mips-linux-watch.h"
#include "features/mips-linux.c"
#include "features/mips-dsp-linux.c"
#include "features/mips-fpu64-linux.c"
#include "features/mips-fpu64-dsp-linux.c"
#include "features/mips-msa-linux.c"
#include "features/mips64-linux.c"
#include "features/mips64-dsp-linux.c"
#include "features/mips64-msa-linux.c"
#ifndef PTRACE_GET_THREAD_AREA
#define PTRACE_GET_THREAD_AREA 25
#endif
#ifndef PTRACE_GETREGSET
#define PTRACE_GETREGSET 0x4204
#endif
#ifndef PTRACE_SETREGSET
#define PTRACE_SETREGSET 0x4205
#endif
#define FIR_F64 (1 << 22)
/* Assume that we have PTRACE_GETREGS et al. support. If we do not,
we'll clear this and use PTRACE_PEEKUSER instead. */
static int have_ptrace_regsets = 1;
/* Does the current host support PTRACE_GETREGSET? */
static int have_ptrace_getregset = 1;
static int have_ptrace_getregset_fp = 1;
static int have_ptrace_getregset_msa = 1;
/* Saved function pointers to fetch and store a single register using
PTRACE_PEEKUSER and PTRACE_POKEUSER. */
static void (*super_fetch_registers) (struct target_ops *,
struct regcache *, int);
static void (*super_store_registers) (struct target_ops *,
struct regcache *, int);
static void (*super_close) (struct target_ops *);
/* Map gdb internal register number to ptrace ``address''.
These ``addresses'' are normally defined in <asm/ptrace.h>.
ptrace does not provide a way to read (or set) MIPS_PS_REGNUM,
and there's no point in reading or setting MIPS_ZERO_REGNUM.
We also can not set BADVADDR, CAUSE, or FCRIR via ptrace(). */
static CORE_ADDR
mips_linux_register_addr (struct gdbarch *gdbarch, int regno, int store)
{
CORE_ADDR regaddr;
if (regno < 0 || regno >= gdbarch_num_regs (gdbarch))
error (_("Bogon register number %d."), regno);
if (regno > MIPS_ZERO_REGNUM && regno < MIPS_ZERO_REGNUM + 32)
regaddr = regno;
else if ((regno >= mips_regnum (gdbarch)->fp0)
&& (regno < mips_regnum (gdbarch)->fp0 + 32))
regaddr = FPR_BASE + (regno - mips_regnum (gdbarch)->fp0);
else if (regno == mips_regnum (gdbarch)->pc)
regaddr = PC;
else if (regno == mips_regnum (gdbarch)->cause)
regaddr = store? (CORE_ADDR) -1 : CAUSE;
else if (regno == mips_regnum (gdbarch)->badvaddr)
regaddr = store? (CORE_ADDR) -1 : BADVADDR;
else if (regno == mips_regnum (gdbarch)->lo)
regaddr = MMLO;
else if (regno == mips_regnum (gdbarch)->hi)
regaddr = MMHI;
else if (regno == mips_regnum (gdbarch)->fp_control_status)
regaddr = FPC_CSR;
else if (regno == mips_regnum (gdbarch)->fp_implementation_revision)
regaddr = store? (CORE_ADDR) -1 : FPC_EIR;
else if (mips_regnum (gdbarch)->dspacc != -1
&& regno >= mips_regnum (gdbarch)->dspacc
&& regno < mips_regnum (gdbarch)->dspacc + 6)
regaddr = DSP_BASE + (regno - mips_regnum (gdbarch)->dspacc);
else if (regno == mips_regnum (gdbarch)->dspctl)
regaddr = DSP_CONTROL;
else if (regno == mips_regnum (gdbarch)->linux_restart)
regaddr = 0;
else
regaddr = (CORE_ADDR) -1;
return regaddr;
}
static CORE_ADDR
mips64_linux_register_addr (struct gdbarch *gdbarch, int regno, int store)
{
CORE_ADDR regaddr;
if (regno < 0 || regno >= gdbarch_num_regs (gdbarch))
error (_("Bogon register number %d."), regno);
if (regno > MIPS_ZERO_REGNUM && regno < MIPS_ZERO_REGNUM + 32)
regaddr = regno;
else if ((regno >= mips_regnum (gdbarch)->fp0)
&& (regno < mips_regnum (gdbarch)->fp0 + 32))
regaddr = MIPS64_FPR_BASE + (regno - gdbarch_fp0_regnum (gdbarch));
else if (regno == mips_regnum (gdbarch)->pc)
regaddr = MIPS64_PC;
else if (regno == mips_regnum (gdbarch)->cause)
regaddr = store? (CORE_ADDR) -1 : MIPS64_CAUSE;
else if (regno == mips_regnum (gdbarch)->badvaddr)
regaddr = store? (CORE_ADDR) -1 : MIPS64_BADVADDR;
else if (regno == mips_regnum (gdbarch)->lo)
regaddr = MIPS64_MMLO;
else if (regno == mips_regnum (gdbarch)->hi)
regaddr = MIPS64_MMHI;
else if (regno == mips_regnum (gdbarch)->fp_control_status)
regaddr = MIPS64_FPC_CSR;
else if (regno == mips_regnum (gdbarch)->fp_implementation_revision)
regaddr = store? (CORE_ADDR) -1 : MIPS64_FPC_EIR;
else if (mips_regnum (gdbarch)->dspacc != -1
&& regno >= mips_regnum (gdbarch)->dspacc
&& regno < mips_regnum (gdbarch)->dspacc + 6)
regaddr = DSP_BASE + (regno - mips_regnum (gdbarch)->dspacc);
else if (regno == mips_regnum (gdbarch)->dspctl)
regaddr = DSP_CONTROL;
else if (regno == mips_regnum (gdbarch)->linux_restart)
regaddr = 0;
else
regaddr = (CORE_ADDR) -1;
return regaddr;
}
/* Fetch the thread-local storage pointer for libthread_db. */
ps_err_e
ps_get_thread_area (const struct ps_prochandle *ph,
lwpid_t lwpid, int idx, void **base)
{
if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, NULL, base) != 0)
return PS_ERR;
/* IDX is the bias from the thread pointer to the beginning of the
thread descriptor. It has to be subtracted due to implementation
quirks in libthread_db. */
*base = (void *) ((char *)*base - idx);
return PS_OK;
}
/* Wrapper functions. These are only used by libthread_db. */
void
supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
{
if (mips_isa_regsize (get_regcache_arch (regcache)) == 4)
mips_supply_gregset (regcache, (const mips_elf_gregset_t *) gregsetp);
else
mips64_supply_gregset (regcache, (const mips64_elf_gregset_t *) gregsetp);
}
void
fill_gregset (const struct regcache *regcache,
gdb_gregset_t *gregsetp, int regno)
{
if (mips_isa_regsize (get_regcache_arch (regcache)) == 4)
mips_fill_gregset (regcache, (mips_elf_gregset_t *) gregsetp, regno);
else
mips64_fill_gregset (regcache, (mips64_elf_gregset_t *) gregsetp, regno);
}
void
supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
{
mips64_supply_fpregset (regcache,
(const mips64_elf_fpregset_t *) fpregsetp);
}
void
fill_fpregset (const struct regcache *regcache,
gdb_fpregset_t *fpregsetp, int regno)
{
mips64_fill_fpregset (regcache,
(mips64_elf_fpregset_t *) fpregsetp, regno);
}
/* Fetch REGNO (or all registers if REGNO == -1) from the target
using PTRACE_GETREGS et al. */
static void
mips64_linux_regsets_fetch_registers (struct target_ops *ops,
struct regcache *regcache, int regno)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
int big_endian = (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG);
int is_fp, is_dsp, is_vec;
int have_dsp;
int regi;
int tid;
/* FP registers can be obtained in several ways.
is_fp will be cleared once the registers have been obtained. */
if (regno == -1)
is_fp = 1;
else if (regno >= mips_regnum (gdbarch)->fp0
&& regno <= mips_regnum (gdbarch)->fp0 + 32)
is_fp = 1;
else if (regno == mips_regnum (gdbarch)->fp_control_status)
is_fp = 1;
else if (regno == mips_regnum (gdbarch)->fp_implementation_revision)
is_fp = 1;
else if (regno == mips_regnum (gdbarch)->config5)
is_fp = 1;
else
is_fp = 0;
/* Vector registers are optional but overlap fp registers */
if (regno == mips_regnum (gdbarch)->msa_csr)
is_vec = 1;
else if (regno == mips_regnum (gdbarch)->msa_ir)
is_vec = 1;
else
is_vec = 0;
/* DSP registers are optional and not a part of any set. */
have_dsp = mips_regnum (gdbarch)->dspctl != -1;
if (!have_dsp)
is_dsp = 0;
else if (regno >= mips_regnum (gdbarch)->dspacc
&& regno < mips_regnum (gdbarch)->dspacc + 6)
is_dsp = 1;
else if (regno == mips_regnum (gdbarch)->dspctl)
is_dsp = 1;
else
is_dsp = 0;
tid = ptid_get_lwp (inferior_ptid);
if (tid == 0)
tid = ptid_get_pid (inferior_ptid);
if (regno == -1 || (!is_fp && !is_dsp && !is_vec))
{
mips64_elf_gregset_t regs;
if (ptrace (PTRACE_GETREGS, tid, 0L, (PTRACE_TYPE_ARG3) &regs) == -1)
{
if (errno == EIO)
{
have_ptrace_regsets = 0;
return;
}
perror_with_name (_("Couldn't get registers"));
}
mips64_supply_gregset (regcache,
(const mips64_elf_gregset_t *) &regs);
}
/* Set the default value of the Config5 register. */
if (mips_regnum (gdbarch)->config5 >= 0)
{
unsigned int config5_default = 0;
regcache_raw_supply (regcache, mips_regnum (gdbarch)->config5,
&config5_default);
}
if (is_fp || is_vec)
{
const struct mips_regnum *rn = mips_regnum (gdbarch);
int float_regnum = rn->fp0;
/* Try the MSA regset first if vector registers are desired */
if (rn->msa_csr != -1
&& have_ptrace_getregset && have_ptrace_getregset_msa)
{
unsigned char w_regs[34][16];
unsigned char buf[16];
struct iovec iovec;
int ret;
iovec.iov_base = &w_regs;
iovec.iov_len = sizeof (w_regs);
ret = ptrace (PTRACE_GETREGSET, tid, NT_MIPS_MSA, &iovec);
if (ret < 0)
{
if (errno == EIO)
have_ptrace_getregset = 0;
else if (errno == EINVAL)
have_ptrace_getregset_msa = 0;
else
perror_with_name (_("Unable to fetch FP/MSA registers."));
}
else
{
/* full vector including float */
if (big_endian)
for (regi = 0; regi < 32; regi++)
{
/* swap 64-bit halves, so it's a single word */
memcpy(buf, w_regs[regi] + 8, 8);
memcpy(buf + 8, w_regs[regi], 8);
regcache_raw_supply (regcache, float_regnum + regi, buf);
}
else
for (regi = 0; regi < 32; regi++)
regcache_raw_supply (regcache, float_regnum + regi,
(char *) w_regs[regi]);
if (iovec.iov_len >= 32*16 + 4)
regcache_raw_supply (regcache, rn->fp_implementation_revision,
(char *) (w_regs + 32) + 0);
if (iovec.iov_len >= 32*16 + 8)
regcache_raw_supply (regcache, rn->fp_control_status,
(char *) (w_regs + 32) + 4);
if (iovec.iov_len >= 32*16 + 12)
regcache_raw_supply (regcache, rn->msa_ir,
(char *) (w_regs + 32) + 8);
if (iovec.iov_len >= 32*16 + 16)
regcache_raw_supply (regcache, rn->msa_csr,
(char *) (w_regs + 32) + 12);
if (iovec.iov_len >= 33*16 + 4)
regcache_raw_supply (regcache, rn->config5,
(char *) (w_regs + 33) + 0);
/* we've got fp registers now */
is_fp = 0;
}
}
/* Try the FP regset next as it may contain Config5 */
if (is_fp && have_ptrace_getregset && have_ptrace_getregset_fp)
{
unsigned char fp_regs[34][8];
struct iovec iovec;
int ret;
iovec.iov_base = &fp_regs;
iovec.iov_len = sizeof (fp_regs);
ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
if (ret < 0)
{
if (errno == EIO)
have_ptrace_getregset = 0;
else if (errno == EINVAL)
have_ptrace_getregset_fp = 0;
else
perror_with_name (_("Unable to fetch FP registers."));
}
else
{
for (regi = 0; regi < 32; regi++)
{
if (register_size (gdbarch, float_regnum + regi) == 8)
{
/* FR = 1
copy entire double */
regcache_raw_supply (regcache, float_regnum + regi,
(char *) fp_regs[regi]);
}
else if (regi & 1)
{
/* FR = 0
odd single from top of even double */
regcache_raw_supply (regcache, float_regnum + regi,
(char *) fp_regs[regi - 1] +
4 - 4*big_endian);
}
else
{
/* FR = 0
even single from bottom of even double */
regcache_raw_supply (regcache, float_regnum + regi,
(char *) fp_regs[regi] + 4 * big_endian);
}
}
if (iovec.iov_len >= 32*8 + 4)
regcache_raw_supply (regcache, rn->fp_control_status,
(char *) (fp_regs + 32) + 0);
if (iovec.iov_len >= 32*8 + 8)
regcache_raw_supply (regcache, rn->fp_implementation_revision,
(char *) (fp_regs + 32) + 4);
if (iovec.iov_len >= 33*8 + 4 && rn->config5 >= 0)
regcache_raw_supply (regcache, rn->config5,
(char *) (fp_regs + 33) + 0);
/* we've got fp registers now */
is_fp = 0;
}
}
/* Fall back to GETFPREGS. */
if (is_fp)
{
mips64_elf_fpregset_t fp_regs;
if (ptrace (PTRACE_GETFPREGS, tid, 0L,
(PTRACE_TYPE_ARG3) &fp_regs) == -1)
{
if (errno == EIO)
{
have_ptrace_regsets = 0;
return;
}
perror_with_name (_("Couldn't get FP registers"));
}
mips64_supply_fpregset (regcache,
(const mips64_elf_fpregset_t *) &fp_regs);
}
}
if (is_dsp)
super_fetch_registers (ops, regcache, regno);
else if (regno == -1 && have_dsp)
{
for (regi = mips_regnum (gdbarch)->dspacc;
regi < mips_regnum (gdbarch)->dspacc + 6;
regi++)
super_fetch_registers (ops, regcache, regi);
super_fetch_registers (ops, regcache, mips_regnum (gdbarch)->dspctl);
}
}
/* Store REGNO (or all registers if REGNO == -1) to the target
using PTRACE_SETREGS et al. */
static void
mips64_linux_regsets_store_registers (struct target_ops *ops,
struct regcache *regcache, int regno)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
int big_endian = (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG);
int is_fp, is_dsp, is_vec;
int have_dsp;
int regi;
int tid;
/* FP registers can be written in several ways.
is_fp will be cleared once the registers have been written. */
if (regno == -1)
is_fp = 1;
if (regno >= mips_regnum (gdbarch)->fp0
&& regno <= mips_regnum (gdbarch)->fp0 + 32)
is_fp = 1;
else if (regno == mips_regnum (gdbarch)->fp_control_status)
is_fp = 1;
else if (regno == mips_regnum (gdbarch)->fp_implementation_revision)
is_fp = 1;
else if (regno == mips_regnum (gdbarch)->config5)
is_fp = 1;
else
is_fp = 0;
/* Vector registers are optional but overlap fp registers */
if (regno >= mips_regnum (gdbarch)->w0
&& regno <= mips_regnum (gdbarch)->w0 + 32)
is_vec = 1;
else if (regno == mips_regnum (gdbarch)->msa_csr)
is_vec = 1;
else if (regno == mips_regnum (gdbarch)->msa_ir)
is_vec = 1;
else
is_vec = 0;
/* DSP registers are optional and not a part of any set. */
have_dsp = mips_regnum (gdbarch)->dspctl != -1;
if (!have_dsp)
is_dsp = 0;
else if (regno >= mips_regnum (gdbarch)->dspacc
&& regno < mips_regnum (gdbarch)->dspacc + 6)
is_dsp = 1;
else if (regno == mips_regnum (gdbarch)->dspctl)
is_dsp = 1;
else
is_dsp = 0;
tid = ptid_get_lwp (inferior_ptid);
if (tid == 0)
tid = ptid_get_pid (inferior_ptid);
if (regno == -1 || (!is_fp && !is_dsp && !is_vec))
{
mips64_elf_gregset_t regs;
if (ptrace (PTRACE_GETREGS, tid, 0L, (PTRACE_TYPE_ARG3) &regs) == -1)
perror_with_name (_("Couldn't get registers"));
mips64_fill_gregset (regcache, &regs, regno);
if (ptrace (PTRACE_SETREGS, tid, 0L, (PTRACE_TYPE_ARG3) &regs) == -1)
perror_with_name (_("Couldn't set registers"));
}
if (is_fp || is_vec)
{
const struct mips_regnum *rn = mips_regnum (gdbarch);
int float_regnum = rn->fp0;
/* Try the MSA regset first if vector registers are desired */
if (rn->msa_csr != -1
&& have_ptrace_getregset && have_ptrace_getregset_msa)
{
unsigned char w_regs[34][16];
unsigned char buf[16];
struct iovec iovec;
int ret;
iovec.iov_base = &w_regs;
iovec.iov_len = sizeof (w_regs);
ret = ptrace (PTRACE_GETREGSET, tid, NT_MIPS_MSA, &iovec);
if (ret < 0)
{
if (errno == EIO)
have_ptrace_getregset = 0;
else if (errno == EINVAL)
have_ptrace_getregset_msa = 0;
else
perror_with_name (_("Unable to fetch FP/MSA registers."));
}
else
{
/* full vector including float */
if (big_endian)
for (regi = 0; regi < 32; regi++)
{
regcache_raw_collect (regcache, float_regnum + regi, buf);
/* swap 64-bit halves, as it's a single word */
memcpy(w_regs[regi], buf + 8, 8);
memcpy(w_regs[regi] + 8, buf, 8);
}
else
for (regi = 0; regi < 32; regi++)
regcache_raw_collect (regcache, float_regnum + regi,
(char *) w_regs[regi]);
regcache_raw_collect (regcache, rn->fp_implementation_revision,
(char *) (w_regs + 32) + 0);
regcache_raw_collect (regcache, rn->fp_control_status,
(char *) (w_regs + 32) + 4);
regcache_raw_collect (regcache, rn->msa_ir,
(char *) (w_regs + 32) + 8);
regcache_raw_collect (regcache, rn->msa_csr,
(char *) (w_regs + 32) + 12);
regcache_raw_collect (regcache, rn->config5,
(char *) (w_regs + 33) + 0);
/* don't modify iovec length from amount of data returned */
ret = ptrace (PTRACE_SETREGSET, tid, NT_MIPS_MSA, &iovec);
if (ret < 0)
{
if (errno == EIO)
have_ptrace_getregset = 0;
if (errno == EINVAL)
have_ptrace_getregset_msa = 0;
else
perror_with_name (_("Unable to store FP/MSA registers."));
}
else
{
/* we've written fp registers now */
is_fp = 0;
}
}
}
/* Try the FP regset next as it may contain Config5 */
if (is_fp && have_ptrace_getregset && have_ptrace_getregset_fp)
{
unsigned char fp_regs[34][8];
struct iovec iovec;
int ret;
iovec.iov_base = &fp_regs;
iovec.iov_len = sizeof (fp_regs);
ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iovec);
if (ret < 0)
{
if (errno == EIO)
have_ptrace_getregset = 0;
else if (errno == EINVAL)
have_ptrace_getregset_fp = 0;
else
perror_with_name (_("Unable to fetch FP registers."));
}
else
{
for (regi = 0; regi < 32; regi++)
{
if (register_size (gdbarch, float_regnum + regi) == 8)
{
/* FR = 1
copy entire double */
regcache_raw_collect (regcache, float_regnum + regi,
(char *) fp_regs[regi]);
}
else if (regi & 1)
{
/* FR = 0
odd single from top of even double */
regcache_raw_collect (regcache, float_regnum + regi,
(char *) fp_regs[regi - 1] +
4 - 4*big_endian);
}
else
{
/* FR = 0
even single from bottom of even double */
regcache_raw_collect (regcache, float_regnum + regi,
(char *) fp_regs[regi] + 4 * big_endian);
}
}
regcache_raw_collect (regcache, rn->fp_control_status,
(char *) (fp_regs + 32) + 0);
regcache_raw_collect (regcache, rn->fp_implementation_revision,
(char *) (fp_regs + 32) + 4);
if (rn->config5 >= 0)
regcache_raw_collect (regcache, rn->config5,
(char *) (fp_regs + 33) + 0);
/* don't modify iovec length from amount of data returned */
ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iovec);
if (ret < 0)
{
if (errno == EIO)
have_ptrace_getregset = 0;
else if (errno == EINVAL)
have_ptrace_getregset_fp = 0;
else
perror_with_name (_("Unable to store FP/MSA registers."));
}
else
{
/* we've got fp registers now */
is_fp = 0;
}
}
}
/* Fall back to SETFPREGS. */
if (is_fp)
{
mips64_elf_fpregset_t fp_regs;
if (ptrace (PTRACE_GETFPREGS, tid, 0L,
(PTRACE_TYPE_ARG3) &fp_regs) == -1)
perror_with_name (_("Couldn't get FP registers"));
mips64_fill_fpregset (regcache, &fp_regs, regno);
if (ptrace (PTRACE_SETFPREGS, tid, 0L,
(PTRACE_TYPE_ARG3) &fp_regs) == -1)
perror_with_name (_("Couldn't set FP registers"));
}
}
if (is_dsp)
super_store_registers (ops, regcache, regno);
else if (regno == -1 && have_dsp)
{
for (regi = mips_regnum (gdbarch)->dspacc;
regi < mips_regnum (gdbarch)->dspacc + 6;
regi++)
super_store_registers (ops, regcache, regi);
super_store_registers (ops, regcache, mips_regnum (gdbarch)->dspctl);
}
}
/* Fetch REGNO (or all registers if REGNO == -1) from the target
using any working method. */
static void
mips64_linux_fetch_registers (struct target_ops *ops,
struct regcache *regcache, int regnum)
{
/* Unless we already know that PTRACE_GETREGS does not work, try it. */
if (have_ptrace_regsets)
mips64_linux_regsets_fetch_registers (ops, regcache, regnum);
/* If we know, or just found out, that PTRACE_GETREGS does not work, fall
back to PTRACE_PEEKUSER. */
if (!have_ptrace_regsets)
super_fetch_registers (ops, regcache, regnum);
}
/* Store REGNO (or all registers if REGNO == -1) to the target
using any working method. */
static void
mips64_linux_store_registers (struct target_ops *ops,
struct regcache *regcache, int regnum)
{
/* Unless we already know that PTRACE_GETREGS does not work, try it. */
if (have_ptrace_regsets)
mips64_linux_regsets_store_registers (ops, regcache, regnum);
/* If we know, or just found out, that PTRACE_GETREGS does not work, fall
back to PTRACE_PEEKUSER. */
if (!have_ptrace_regsets)
super_store_registers (ops, regcache, regnum);
}
/* Return the address in the core dump or inferior of register
REGNO. */
static CORE_ADDR
mips_linux_register_u_offset (struct gdbarch *gdbarch, int regno, int store_p)
{
if (mips_abi_regsize (gdbarch) == 8)
return mips64_linux_register_addr (gdbarch, regno, store_p);
else
return mips_linux_register_addr (gdbarch, regno, store_p);
}
static const struct target_desc *
mips_linux_read_description (struct target_ops *ops)
{
const struct target_desc *tdescs[2][2] =
{
/* have_fpu64 = 0 have_fpu64 = 1 */
{ tdesc_mips_linux, tdesc_mips_fpu64_linux }, /* have_dsp = 0 */
{ tdesc_mips_dsp_linux, tdesc_mips_fpu64_dsp_linux }, /* have_dsp = 1 */
};
static int have_dsp = -1;
static int have_fpu64 = -1;
static int have_msa = -1;
if (have_fpu64 < 0)
{
int tid;
long fir;
tid = ptid_get_lwp (inferior_ptid);
if (tid == 0)
tid = ptid_get_pid (inferior_ptid);
/* Try peeking at FIR.F64 bit */
errno = 0;
fir = ptrace (PTRACE_PEEKUSER, tid, FPC_EIR, 0);
switch (errno)
{
case 0:
have_fpu64 = !!(fir & FIR_F64);
break;
case EIO:
have_fpu64 = 0;
have_msa = 0;
break;
default:
perror_with_name ("ptrace");
break;
}
}
/* Check for MSA, which requires FR=1 */
if (have_msa < 0)
{
int tid;
int res;
uint32_t regs[32*4 + 8];
struct iovec iov;
tid = ptid_get_lwp (inferior_ptid);
if (tid == 0)
tid = ptid_get_pid (inferior_ptid);
/* this'd probably be better */
//have_msa = (getauxval(AT_HWCAP) & 0x2) != 0;
/* Test MSAIR */
iov.iov_base = regs;
iov.iov_len = sizeof(regs);
res = ptrace (PTRACE_GETREGSET, tid, NT_MIPS_MSA, &iov);
have_msa = (res >= 0) && regs[32*4 + 0];
}
if (have_dsp < 0)
{
int tid;
tid = ptid_get_lwp (inferior_ptid);
if (tid == 0)
tid = ptid_get_pid (inferior_ptid);
errno = 0;
ptrace (PTRACE_PEEKUSER, tid, DSP_CONTROL, 0);
switch (errno)
{
case 0:
have_dsp = 1;
break;
case EIO:
have_dsp = 0;
break;
default:
perror_with_name (_("Couldn't check DSP support"));
break;
}
}
/* Report that target registers are a size we know for sure
that we can get from ptrace. */
if (_MIPS_SIM == _ABIO32)
return have_msa ? tdesc_mips_msa_linux
: tdescs[have_dsp][have_fpu64];
else
return have_msa ? tdesc_mips64_msa_linux :
have_dsp ? tdesc_mips64_dsp_linux : tdesc_mips64_linux;
}
/* -1 if the kernel and/or CPU do not support watch registers.
1 if watch_readback is valid and we can read style, num_valid
and the masks.
0 if we need to read the watch_readback. */
static int watch_readback_valid;
/* Cached watch register read values. */
static struct pt_watch_regs watch_readback;
static struct mips_watchpoint *current_watches;
/* The current set of watch register values for writing the
registers. */
static struct pt_watch_regs watch_mirror;
static void
mips_show_dr (const char *func, CORE_ADDR addr,
int len, enum target_hw_bp_type type)
{
int i;
puts_unfiltered (func);
if (addr || len)
printf_unfiltered (" (addr=%s, len=%d, type=%s)",
paddress (target_gdbarch (), addr), len,
type == hw_write ? "data-write"
: (type == hw_read ? "data-read"
: (type == hw_access ? "data-read/write"
: (type == hw_execute ? "instruction-execute"
: "??unknown??"))));
puts_unfiltered (":\n");
for (i = 0; i < MAX_DEBUG_REGISTER; i++)
printf_unfiltered ("\tDR%d: lo=%s, hi=%s\n", i,
paddress (target_gdbarch (),
mips_linux_watch_get_watchlo (&watch_mirror,
i)),
paddress (target_gdbarch (),
mips_linux_watch_get_watchhi (&watch_mirror,
i)));
}
/* Target to_can_use_hw_breakpoint implementation. Return 1 if we can
handle the specified watch type. */
static int
mips_linux_can_use_hw_breakpoint (struct target_ops *self,
enum bptype type,
int cnt, int ot)
{
int i;
uint32_t wanted_mask, irw_mask;
if (!mips_linux_read_watch_registers (ptid_get_lwp (inferior_ptid),
&watch_readback,
&watch_readback_valid, 0))
return 0;
switch (type)
{
case bp_hardware_watchpoint:
wanted_mask = W_MASK;
break;
case bp_read_watchpoint:
wanted_mask = R_MASK;
break;
case bp_access_watchpoint:
wanted_mask = R_MASK | W_MASK;
break;
default:
return 0;
}
for (i = 0;
i < mips_linux_watch_get_num_valid (&watch_readback) && cnt;
i++)
{
irw_mask = mips_linux_watch_get_irw_mask (&watch_readback, i);
if ((irw_mask & wanted_mask) == wanted_mask)
cnt--;
}
return (cnt == 0) ? 1 : 0;
}
/* Target to_stopped_by_watchpoint implementation. Return 1 if
stopped by watchpoint. The watchhi R and W bits indicate the watch
register triggered. */
static int
mips_linux_stopped_by_watchpoint (struct target_ops *ops)
{
int n;
int num_valid;
if (!mips_linux_read_watch_registers (ptid_get_lwp (inferior_ptid),
&watch_readback,
&watch_readback_valid, 1))
return 0;
num_valid = mips_linux_watch_get_num_valid (&watch_readback);
for (n = 0; n < MAX_DEBUG_REGISTER && n < num_valid; n++)
if (mips_linux_watch_get_watchhi (&watch_readback, n) & (R_MASK | W_MASK))
return 1;
return 0;
}
/* Target to_stopped_data_address implementation. Set the address
where the watch triggered (if known). Return 1 if the address was
known. */
static int
mips_linux_stopped_data_address (struct target_ops *t, CORE_ADDR *paddr)
{
/* On mips we don't know the low order 3 bits of the data address,
so we must return false. */
return 0;
}
/* Target to_region_ok_for_hw_watchpoint implementation. Return 1 if
the specified region can be covered by the watch registers. */
static int
mips_linux_region_ok_for_hw_watchpoint (struct target_ops *self,
CORE_ADDR addr, int len)
{
struct pt_watch_regs dummy_regs;
int i;
if (!mips_linux_read_watch_registers (ptid_get_lwp (inferior_ptid),
&watch_readback,
&watch_readback_valid, 0))
return 0;
dummy_regs = watch_readback;
/* Clear them out. */
for (i = 0; i < mips_linux_watch_get_num_valid (&dummy_regs); i++)
mips_linux_watch_set_watchlo (&dummy_regs, i, 0);
return mips_linux_watch_try_one_watch (&dummy_regs, addr, len, 0);
}
/* Write the mirrored watch register values for each thread. */
static int
write_watchpoint_regs (void)
{
struct lwp_info *lp;
int tid;
ALL_LWPS (lp)
{
tid = ptid_get_lwp (lp->ptid);
if (ptrace (PTRACE_SET_WATCH_REGS, tid, &watch_mirror, NULL) == -1)
perror_with_name (_("Couldn't write debug register"));
}
return 0;
}
/* linux_nat new_thread implementation. Write the mirrored watch
register values for the new thread. */
static void
mips_linux_new_thread (struct lwp_info *lp)
{
int tid;
if (!mips_linux_read_watch_registers (ptid_get_lwp (inferior_ptid),
&watch_readback,
&watch_readback_valid, 0))
return;
tid = ptid_get_lwp (lp->ptid);
if (ptrace (PTRACE_SET_WATCH_REGS, tid, &watch_mirror, NULL) == -1)
perror_with_name (_("Couldn't write debug register"));
}
/* Target to_insert_watchpoint implementation. Try to insert a new
watch. Return zero on success. */
static int
mips_linux_insert_watchpoint (struct target_ops *self,
CORE_ADDR addr, int len,
enum target_hw_bp_type type,
struct expression *cond)
{
struct pt_watch_regs regs;
struct mips_watchpoint *new_watch;
struct mips_watchpoint **pw;
int i;
int retval;
if (!mips_linux_read_watch_registers (ptid_get_lwp (inferior_ptid),
&watch_readback,
&watch_readback_valid, 0))
return -1;
if (len <= 0)
return -1;
regs = watch_readback;
/* Add the current watches. */
mips_linux_watch_populate_regs (current_watches, &regs);
/* Now try to add the new watch. */
if (!mips_linux_watch_try_one_watch (&regs, addr, len,
mips_linux_watch_type_to_irw (type)))
return -1;
/* It fit. Stick it on the end of the list. */
new_watch = XNEW (struct mips_watchpoint);
new_watch->addr = addr;
new_watch->len = len;
new_watch->type = type;
new_watch->next = NULL;
pw = &current_watches;
while (*pw != NULL)
pw = &(*pw)->next;
*pw = new_watch;
watch_mirror = regs;
retval = write_watchpoint_regs ();
if (show_debug_regs)
mips_show_dr ("insert_watchpoint", addr, len, type);
return retval;
}
/* Target to_remove_watchpoint implementation. Try to remove a watch.
Return zero on success. */
static int
mips_linux_remove_watchpoint (struct target_ops *self,
CORE_ADDR addr, int len,
enum target_hw_bp_type type,
struct expression *cond)
{
int retval;
int deleted_one;
struct mips_watchpoint **pw;
struct mips_watchpoint *w;
/* Search for a known watch that matches. Then unlink and free
it. */
deleted_one = 0;
pw = &current_watches;
while ((w = *pw))
{
if (w->addr == addr && w->len == len && w->type == type)
{
*pw = w->next;
xfree (w);
deleted_one = 1;
break;
}
pw = &(w->next);
}
if (!deleted_one)
return -1; /* We don't know about it, fail doing nothing. */
/* At this point watch_readback is known to be valid because we
could not have added the watch without reading it. */
gdb_assert (watch_readback_valid == 1);
watch_mirror = watch_readback;
mips_linux_watch_populate_regs (current_watches, &watch_mirror);
retval = write_watchpoint_regs ();
if (show_debug_regs)
mips_show_dr ("remove_watchpoint", addr, len, type);
return retval;
}
/* Target to_close implementation. Free any watches and call the
super implementation. */
static void
mips_linux_close (struct target_ops *self)
{
struct mips_watchpoint *w;
struct mips_watchpoint *nw;
/* Clean out the current_watches list. */
w = current_watches;
while (w)
{
nw = w->next;
xfree (w);
w = nw;
}
current_watches = NULL;
if (super_close)
super_close (self);
}
void _initialize_mips_linux_nat (void);
void
_initialize_mips_linux_nat (void)
{
struct target_ops *t;
add_setshow_boolean_cmd ("show-debug-regs", class_maintenance,
&show_debug_regs, _("\
Set whether to show variables that mirror the mips debug registers."), _("\
Show whether to show variables that mirror the mips debug registers."), _("\
Use \"on\" to enable, \"off\" to disable.\n\
If enabled, the debug registers values are shown when GDB inserts\n\
or removes a hardware breakpoint or watchpoint, and when the inferior\n\
triggers a breakpoint or watchpoint."),
NULL,
NULL,
&maintenance_set_cmdlist,
&maintenance_show_cmdlist);
t = linux_trad_target (mips_linux_register_u_offset);
super_close = t->to_close;
t->to_close = mips_linux_close;
super_fetch_registers = t->to_fetch_registers;
super_store_registers = t->to_store_registers;
t->to_fetch_registers = mips64_linux_fetch_registers;
t->to_store_registers = mips64_linux_store_registers;
t->to_can_use_hw_breakpoint = mips_linux_can_use_hw_breakpoint;
t->to_remove_watchpoint = mips_linux_remove_watchpoint;
t->to_insert_watchpoint = mips_linux_insert_watchpoint;
t->to_stopped_by_watchpoint = mips_linux_stopped_by_watchpoint;
t->to_stopped_data_address = mips_linux_stopped_data_address;
t->to_region_ok_for_hw_watchpoint = mips_linux_region_ok_for_hw_watchpoint;
t->to_read_description = mips_linux_read_description;
linux_nat_add_target (t);
linux_nat_set_new_thread (t, mips_linux_new_thread);
/* Initialize the standard target descriptions. */
initialize_tdesc_mips_linux ();
initialize_tdesc_mips_dsp_linux ();
initialize_tdesc_mips_fpu64_linux ();
initialize_tdesc_mips_fpu64_dsp_linux ();
initialize_tdesc_mips_msa_linux ();
initialize_tdesc_mips64_linux ();
initialize_tdesc_mips64_dsp_linux ();
initialize_tdesc_mips64_msa_linux ();
}