|  | /* Target-dependent code for GNU/Linux i386. | 
|  |  | 
|  | Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005 | 
|  | Free Software Foundation, Inc. | 
|  |  | 
|  | This file is part of GDB. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 2 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program; if not, write to the Free Software | 
|  | Foundation, Inc., 51 Franklin Street, Fifth Floor, | 
|  | Boston, MA 02110-1301, USA.  */ | 
|  |  | 
|  | #include "defs.h" | 
|  | #include "gdbcore.h" | 
|  | #include "frame.h" | 
|  | #include "value.h" | 
|  | #include "regcache.h" | 
|  | #include "inferior.h" | 
|  | #include "osabi.h" | 
|  | #include "reggroups.h" | 
|  | #include "dwarf2-frame.h" | 
|  | #include "gdb_string.h" | 
|  |  | 
|  | #include "i386-tdep.h" | 
|  | #include "i386-linux-tdep.h" | 
|  | #include "glibc-tdep.h" | 
|  | #include "solib-svr4.h" | 
|  |  | 
|  | /* Return the name of register REG.  */ | 
|  |  | 
|  | static const char * | 
|  | i386_linux_register_name (int reg) | 
|  | { | 
|  | /* Deal with the extra "orig_eax" pseudo register.  */ | 
|  | if (reg == I386_LINUX_ORIG_EAX_REGNUM) | 
|  | return "orig_eax"; | 
|  |  | 
|  | return i386_register_name (reg); | 
|  | } | 
|  |  | 
|  | /* Return non-zero, when the register is in the corresponding register | 
|  | group.  Put the LINUX_ORIG_EAX register in the system group.  */ | 
|  | static int | 
|  | i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | 
|  | struct reggroup *group) | 
|  | { | 
|  | if (regnum == I386_LINUX_ORIG_EAX_REGNUM) | 
|  | return (group == system_reggroup | 
|  | || group == save_reggroup | 
|  | || group == restore_reggroup); | 
|  | return i386_register_reggroup_p (gdbarch, regnum, group); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Recognizing signal handler frames.  */ | 
|  |  | 
|  | /* GNU/Linux has two flavors of signals.  Normal signal handlers, and | 
|  | "realtime" (RT) signals.  The RT signals can provide additional | 
|  | information to the signal handler if the SA_SIGINFO flag is set | 
|  | when establishing a signal handler using `sigaction'.  It is not | 
|  | unlikely that future versions of GNU/Linux will support SA_SIGINFO | 
|  | for normal signals too.  */ | 
|  |  | 
|  | /* When the i386 Linux kernel calls a signal handler and the | 
|  | SA_RESTORER flag isn't set, the return address points to a bit of | 
|  | code on the stack.  This function returns whether the PC appears to | 
|  | be within this bit of code. | 
|  |  | 
|  | The instruction sequence for normal signals is | 
|  | pop    %eax | 
|  | mov    $0x77, %eax | 
|  | int    $0x80 | 
|  | or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80. | 
|  |  | 
|  | Checking for the code sequence should be somewhat reliable, because | 
|  | the effect is to call the system call sigreturn.  This is unlikely | 
|  | to occur anywhere other than in a signal trampoline. | 
|  |  | 
|  | It kind of sucks that we have to read memory from the process in | 
|  | order to identify a signal trampoline, but there doesn't seem to be | 
|  | any other way.  Therefore we only do the memory reads if no | 
|  | function name could be identified, which should be the case since | 
|  | the code is on the stack. | 
|  |  | 
|  | Detection of signal trampolines for handlers that set the | 
|  | SA_RESTORER flag is in general not possible.  Unfortunately this is | 
|  | what the GNU C Library has been doing for quite some time now. | 
|  | However, as of version 2.1.2, the GNU C Library uses signal | 
|  | trampolines (named __restore and __restore_rt) that are identical | 
|  | to the ones used by the kernel.  Therefore, these trampolines are | 
|  | supported too.  */ | 
|  |  | 
|  | #define LINUX_SIGTRAMP_INSN0	0x58	/* pop %eax */ | 
|  | #define LINUX_SIGTRAMP_OFFSET0	0 | 
|  | #define LINUX_SIGTRAMP_INSN1	0xb8	/* mov $NNNN, %eax */ | 
|  | #define LINUX_SIGTRAMP_OFFSET1	1 | 
|  | #define LINUX_SIGTRAMP_INSN2	0xcd	/* int */ | 
|  | #define LINUX_SIGTRAMP_OFFSET2	6 | 
|  |  | 
|  | static const gdb_byte linux_sigtramp_code[] = | 
|  | { | 
|  | LINUX_SIGTRAMP_INSN0,					/* pop %eax */ | 
|  | LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00,		/* mov $0x77, %eax */ | 
|  | LINUX_SIGTRAMP_INSN2, 0x80				/* int $0x80 */ | 
|  | }; | 
|  |  | 
|  | #define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code) | 
|  |  | 
|  | /* If NEXT_FRAME unwinds into a sigtramp routine, return the address | 
|  | of the start of the routine.  Otherwise, return 0.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | i386_linux_sigtramp_start (struct frame_info *next_frame) | 
|  | { | 
|  | CORE_ADDR pc = frame_pc_unwind (next_frame); | 
|  | gdb_byte buf[LINUX_SIGTRAMP_LEN]; | 
|  |  | 
|  | /* We only recognize a signal trampoline if PC is at the start of | 
|  | one of the three instructions.  We optimize for finding the PC at | 
|  | the start, as will be the case when the trampoline is not the | 
|  | first frame on the stack.  We assume that in the case where the | 
|  | PC is not at the start of the instruction sequence, there will be | 
|  | a few trailing readable bytes on the stack.  */ | 
|  |  | 
|  | if (!safe_frame_unwind_memory (next_frame, pc, buf, LINUX_SIGTRAMP_LEN)) | 
|  | return 0; | 
|  |  | 
|  | if (buf[0] != LINUX_SIGTRAMP_INSN0) | 
|  | { | 
|  | int adjust; | 
|  |  | 
|  | switch (buf[0]) | 
|  | { | 
|  | case LINUX_SIGTRAMP_INSN1: | 
|  | adjust = LINUX_SIGTRAMP_OFFSET1; | 
|  | break; | 
|  | case LINUX_SIGTRAMP_INSN2: | 
|  | adjust = LINUX_SIGTRAMP_OFFSET2; | 
|  | break; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | pc -= adjust; | 
|  |  | 
|  | if (!safe_frame_unwind_memory (next_frame, pc, buf, LINUX_SIGTRAMP_LEN)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0) | 
|  | return 0; | 
|  |  | 
|  | return pc; | 
|  | } | 
|  |  | 
|  | /* This function does the same for RT signals.  Here the instruction | 
|  | sequence is | 
|  | mov    $0xad, %eax | 
|  | int    $0x80 | 
|  | or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80. | 
|  |  | 
|  | The effect is to call the system call rt_sigreturn.  */ | 
|  |  | 
|  | #define LINUX_RT_SIGTRAMP_INSN0		0xb8 /* mov $NNNN, %eax */ | 
|  | #define LINUX_RT_SIGTRAMP_OFFSET0	0 | 
|  | #define LINUX_RT_SIGTRAMP_INSN1		0xcd /* int */ | 
|  | #define LINUX_RT_SIGTRAMP_OFFSET1	5 | 
|  |  | 
|  | static const gdb_byte linux_rt_sigtramp_code[] = | 
|  | { | 
|  | LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00,	/* mov $0xad, %eax */ | 
|  | LINUX_RT_SIGTRAMP_INSN1, 0x80				/* int $0x80 */ | 
|  | }; | 
|  |  | 
|  | #define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code) | 
|  |  | 
|  | /* If NEXT_FRAME unwinds into an RT sigtramp routine, return the | 
|  | address of the start of the routine.  Otherwise, return 0.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | i386_linux_rt_sigtramp_start (struct frame_info *next_frame) | 
|  | { | 
|  | CORE_ADDR pc = frame_pc_unwind (next_frame); | 
|  | gdb_byte buf[LINUX_RT_SIGTRAMP_LEN]; | 
|  |  | 
|  | /* We only recognize a signal trampoline if PC is at the start of | 
|  | one of the two instructions.  We optimize for finding the PC at | 
|  | the start, as will be the case when the trampoline is not the | 
|  | first frame on the stack.  We assume that in the case where the | 
|  | PC is not at the start of the instruction sequence, there will be | 
|  | a few trailing readable bytes on the stack.  */ | 
|  |  | 
|  | if (!safe_frame_unwind_memory (next_frame, pc, buf, LINUX_RT_SIGTRAMP_LEN)) | 
|  | return 0; | 
|  |  | 
|  | if (buf[0] != LINUX_RT_SIGTRAMP_INSN0) | 
|  | { | 
|  | if (buf[0] != LINUX_RT_SIGTRAMP_INSN1) | 
|  | return 0; | 
|  |  | 
|  | pc -= LINUX_RT_SIGTRAMP_OFFSET1; | 
|  |  | 
|  | if (!safe_frame_unwind_memory (next_frame, pc, buf, | 
|  | LINUX_RT_SIGTRAMP_LEN)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0) | 
|  | return 0; | 
|  |  | 
|  | return pc; | 
|  | } | 
|  |  | 
|  | /* Return whether the frame preceding NEXT_FRAME corresponds to a | 
|  | GNU/Linux sigtramp routine.  */ | 
|  |  | 
|  | static int | 
|  | i386_linux_sigtramp_p (struct frame_info *next_frame) | 
|  | { | 
|  | CORE_ADDR pc = frame_pc_unwind (next_frame); | 
|  | char *name; | 
|  |  | 
|  | find_pc_partial_function (pc, &name, NULL, NULL); | 
|  |  | 
|  | /* If we have NAME, we can optimize the search.  The trampolines are | 
|  | named __restore and __restore_rt.  However, they aren't dynamically | 
|  | exported from the shared C library, so the trampoline may appear to | 
|  | be part of the preceding function.  This should always be sigaction, | 
|  | __sigaction, or __libc_sigaction (all aliases to the same function).  */ | 
|  | if (name == NULL || strstr (name, "sigaction") != NULL) | 
|  | return (i386_linux_sigtramp_start (next_frame) != 0 | 
|  | || i386_linux_rt_sigtramp_start (next_frame) != 0); | 
|  |  | 
|  | return (strcmp ("__restore", name) == 0 | 
|  | || strcmp ("__restore_rt", name) == 0); | 
|  | } | 
|  |  | 
|  | /* Return one if the unwound PC from NEXT_FRAME is in a signal trampoline | 
|  | which may have DWARF-2 CFI.  */ | 
|  |  | 
|  | static int | 
|  | i386_linux_dwarf_signal_frame_p (struct gdbarch *gdbarch, | 
|  | struct frame_info *next_frame) | 
|  | { | 
|  | CORE_ADDR pc = frame_pc_unwind (next_frame); | 
|  | char *name; | 
|  |  | 
|  | find_pc_partial_function (pc, &name, NULL, NULL); | 
|  |  | 
|  | /* If a vsyscall DSO is in use, the signal trampolines may have these | 
|  | names.  */ | 
|  | if (name && (strcmp (name, "__kernel_sigreturn") == 0 | 
|  | || strcmp (name, "__kernel_rt_sigreturn") == 0)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>.  */ | 
|  | #define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20 | 
|  |  | 
|  | /* Assuming NEXT_FRAME is a frame following a GNU/Linux sigtramp | 
|  | routine, return the address of the associated sigcontext structure.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | i386_linux_sigcontext_addr (struct frame_info *next_frame) | 
|  | { | 
|  | CORE_ADDR pc; | 
|  | CORE_ADDR sp; | 
|  | gdb_byte buf[4]; | 
|  |  | 
|  | frame_unwind_register (next_frame, I386_ESP_REGNUM, buf); | 
|  | sp = extract_unsigned_integer (buf, 4); | 
|  |  | 
|  | pc = i386_linux_sigtramp_start (next_frame); | 
|  | if (pc) | 
|  | { | 
|  | /* The sigcontext structure lives on the stack, right after | 
|  | the signum argument.  We determine the address of the | 
|  | sigcontext structure by looking at the frame's stack | 
|  | pointer.  Keep in mind that the first instruction of the | 
|  | sigtramp code is "pop %eax".  If the PC is after this | 
|  | instruction, adjust the returned value accordingly.  */ | 
|  | if (pc == frame_pc_unwind (next_frame)) | 
|  | return sp + 4; | 
|  | return sp; | 
|  | } | 
|  |  | 
|  | pc = i386_linux_rt_sigtramp_start (next_frame); | 
|  | if (pc) | 
|  | { | 
|  | CORE_ADDR ucontext_addr; | 
|  |  | 
|  | /* The sigcontext structure is part of the user context.  A | 
|  | pointer to the user context is passed as the third argument | 
|  | to the signal handler.  */ | 
|  | read_memory (sp + 8, buf, 4); | 
|  | ucontext_addr = extract_unsigned_integer (buf, 4); | 
|  | return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET; | 
|  | } | 
|  |  | 
|  | error (_("Couldn't recognize signal trampoline.")); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Set the program counter for process PTID to PC.  */ | 
|  |  | 
|  | static void | 
|  | i386_linux_write_pc (CORE_ADDR pc, ptid_t ptid) | 
|  | { | 
|  | write_register_pid (I386_EIP_REGNUM, pc, ptid); | 
|  |  | 
|  | /* We must be careful with modifying the program counter.  If we | 
|  | just interrupted a system call, the kernel might try to restart | 
|  | it when we resume the inferior.  On restarting the system call, | 
|  | the kernel will try backing up the program counter even though it | 
|  | no longer points at the system call.  This typically results in a | 
|  | SIGSEGV or SIGILL.  We can prevent this by writing `-1' in the | 
|  | "orig_eax" pseudo-register. | 
|  |  | 
|  | Note that "orig_eax" is saved when setting up a dummy call frame. | 
|  | This means that it is properly restored when that frame is | 
|  | popped, and that the interrupted system call will be restarted | 
|  | when we resume the inferior on return from a function call from | 
|  | within GDB.  In all other cases the system call will not be | 
|  | restarted.  */ | 
|  | write_register_pid (I386_LINUX_ORIG_EAX_REGNUM, -1, ptid); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* The register sets used in GNU/Linux ELF core-dumps are identical to | 
|  | the register sets in `struct user' that are used for a.out | 
|  | core-dumps.  These are also used by ptrace(2).  The corresponding | 
|  | types are `elf_gregset_t' for the general-purpose registers (with | 
|  | `elf_greg_t' the type of a single GP register) and `elf_fpregset_t' | 
|  | for the floating-point registers. | 
|  |  | 
|  | Those types used to be available under the names `gregset_t' and | 
|  | `fpregset_t' too, and GDB used those names in the past.  But those | 
|  | names are now used for the register sets used in the `mcontext_t' | 
|  | type, which have a different size and layout.  */ | 
|  |  | 
|  | /* Mapping between the general-purpose registers in `struct user' | 
|  | format and GDB's register cache layout.  */ | 
|  |  | 
|  | /* From <sys/reg.h>.  */ | 
|  | static int i386_linux_gregset_reg_offset[] = | 
|  | { | 
|  | 6 * 4,			/* %eax */ | 
|  | 1 * 4,			/* %ecx */ | 
|  | 2 * 4,			/* %edx */ | 
|  | 0 * 4,			/* %ebx */ | 
|  | 15 * 4,			/* %esp */ | 
|  | 5 * 4,			/* %ebp */ | 
|  | 3 * 4,			/* %esi */ | 
|  | 4 * 4,			/* %edi */ | 
|  | 12 * 4,			/* %eip */ | 
|  | 14 * 4,			/* %eflags */ | 
|  | 13 * 4,			/* %cs */ | 
|  | 16 * 4,			/* %ss */ | 
|  | 7 * 4,			/* %ds */ | 
|  | 8 * 4,			/* %es */ | 
|  | 9 * 4,			/* %fs */ | 
|  | 10 * 4,			/* %gs */ | 
|  | -1, -1, -1, -1, -1, -1, -1, -1, | 
|  | -1, -1, -1, -1, -1, -1, -1, -1, | 
|  | -1, -1, -1, -1, -1, -1, -1, -1, | 
|  | -1, | 
|  | 11 * 4			/* "orig_eax" */ | 
|  | }; | 
|  |  | 
|  | /* Mapping between the general-purpose registers in `struct | 
|  | sigcontext' format and GDB's register cache layout.  */ | 
|  |  | 
|  | /* From <asm/sigcontext.h>.  */ | 
|  | static int i386_linux_sc_reg_offset[] = | 
|  | { | 
|  | 11 * 4,			/* %eax */ | 
|  | 10 * 4,			/* %ecx */ | 
|  | 9 * 4,			/* %edx */ | 
|  | 8 * 4,			/* %ebx */ | 
|  | 7 * 4,			/* %esp */ | 
|  | 6 * 4,			/* %ebp */ | 
|  | 5 * 4,			/* %esi */ | 
|  | 4 * 4,			/* %edi */ | 
|  | 14 * 4,			/* %eip */ | 
|  | 16 * 4,			/* %eflags */ | 
|  | 15 * 4,			/* %cs */ | 
|  | 18 * 4,			/* %ss */ | 
|  | 3 * 4,			/* %ds */ | 
|  | 2 * 4,			/* %es */ | 
|  | 1 * 4,			/* %fs */ | 
|  | 0 * 4				/* %gs */ | 
|  | }; | 
|  |  | 
|  | static void | 
|  | i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) | 
|  | { | 
|  | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | 
|  |  | 
|  | /* GNU/Linux uses ELF.  */ | 
|  | i386_elf_init_abi (info, gdbarch); | 
|  |  | 
|  | /* Since we have the extra "orig_eax" register on GNU/Linux, we have | 
|  | to adjust a few things.  */ | 
|  |  | 
|  | set_gdbarch_write_pc (gdbarch, i386_linux_write_pc); | 
|  | set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS); | 
|  | set_gdbarch_register_name (gdbarch, i386_linux_register_name); | 
|  | set_gdbarch_register_reggroup_p (gdbarch, i386_linux_register_reggroup_p); | 
|  |  | 
|  | tdep->gregset_reg_offset = i386_linux_gregset_reg_offset; | 
|  | tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset); | 
|  | tdep->sizeof_gregset = 17 * 4; | 
|  |  | 
|  | tdep->jb_pc_offset = 20;	/* From <bits/setjmp.h>.  */ | 
|  |  | 
|  | tdep->sigtramp_p = i386_linux_sigtramp_p; | 
|  | tdep->sigcontext_addr = i386_linux_sigcontext_addr; | 
|  | tdep->sc_reg_offset = i386_linux_sc_reg_offset; | 
|  | tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset); | 
|  |  | 
|  | /* GNU/Linux uses SVR4-style shared libraries.  */ | 
|  | set_solib_svr4_fetch_link_map_offsets | 
|  | (gdbarch, svr4_ilp32_fetch_link_map_offsets); | 
|  |  | 
|  | /* GNU/Linux uses the dynamic linker included in the GNU C Library.  */ | 
|  | set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver); | 
|  |  | 
|  | dwarf2_frame_set_signal_frame_p (gdbarch, i386_linux_dwarf_signal_frame_p); | 
|  |  | 
|  | /* Enable TLS support.  */ | 
|  | set_gdbarch_fetch_tls_load_module_address (gdbarch, | 
|  | svr4_fetch_objfile_link_map); | 
|  | } | 
|  |  | 
|  | /* Provide a prototype to silence -Wmissing-prototypes.  */ | 
|  | extern void _initialize_i386_linux_tdep (void); | 
|  |  | 
|  | void | 
|  | _initialize_i386_linux_tdep (void) | 
|  | { | 
|  | gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX, | 
|  | i386_linux_init_abi); | 
|  | } |