blob: a476eeb72e283c9cef69730f2b019aecf7cfe3e4 [file] [log] [blame]
//===--- ClangdUnit.cpp -----------------------------------------*- C++-*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===---------------------------------------------------------------------===//
#include "ClangdUnit.h"
#include "Logger.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/CompilerInvocation.h"
#include "clang/Frontend/FrontendActions.h"
#include "clang/Frontend/Utils.h"
#include "clang/Index/IndexDataConsumer.h"
#include "clang/Index/IndexingAction.h"
#include "clang/Lex/Lexer.h"
#include "clang/Lex/MacroInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "clang/Sema/Sema.h"
#include "clang/Serialization/ASTWriter.h"
#include "clang/Tooling/CompilationDatabase.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/CrashRecoveryContext.h"
#include "llvm/Support/Format.h"
#include <algorithm>
#include <chrono>
using namespace clang::clangd;
using namespace clang;
namespace {
class DeclTrackingASTConsumer : public ASTConsumer {
public:
DeclTrackingASTConsumer(std::vector<const Decl *> &TopLevelDecls)
: TopLevelDecls(TopLevelDecls) {}
bool HandleTopLevelDecl(DeclGroupRef DG) override {
for (const Decl *D : DG) {
// ObjCMethodDecl are not actually top-level decls.
if (isa<ObjCMethodDecl>(D))
continue;
TopLevelDecls.push_back(D);
}
return true;
}
private:
std::vector<const Decl *> &TopLevelDecls;
};
class ClangdFrontendAction : public SyntaxOnlyAction {
public:
std::vector<const Decl *> takeTopLevelDecls() {
return std::move(TopLevelDecls);
}
protected:
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) override {
return llvm::make_unique<DeclTrackingASTConsumer>(/*ref*/ TopLevelDecls);
}
private:
std::vector<const Decl *> TopLevelDecls;
};
class CppFilePreambleCallbacks : public PreambleCallbacks {
public:
std::vector<serialization::DeclID> takeTopLevelDeclIDs() {
return std::move(TopLevelDeclIDs);
}
void AfterPCHEmitted(ASTWriter &Writer) override {
TopLevelDeclIDs.reserve(TopLevelDecls.size());
for (Decl *D : TopLevelDecls) {
// Invalid top-level decls may not have been serialized.
if (D->isInvalidDecl())
continue;
TopLevelDeclIDs.push_back(Writer.getDeclID(D));
}
}
void HandleTopLevelDecl(DeclGroupRef DG) override {
for (Decl *D : DG) {
if (isa<ObjCMethodDecl>(D))
continue;
TopLevelDecls.push_back(D);
}
}
private:
std::vector<Decl *> TopLevelDecls;
std::vector<serialization::DeclID> TopLevelDeclIDs;
};
/// Convert from clang diagnostic level to LSP severity.
static int getSeverity(DiagnosticsEngine::Level L) {
switch (L) {
case DiagnosticsEngine::Remark:
return 4;
case DiagnosticsEngine::Note:
return 3;
case DiagnosticsEngine::Warning:
return 2;
case DiagnosticsEngine::Fatal:
case DiagnosticsEngine::Error:
return 1;
case DiagnosticsEngine::Ignored:
return 0;
}
llvm_unreachable("Unknown diagnostic level!");
}
/// Get the optional chunk as a string. This function is possibly recursive.
///
/// The parameter info for each parameter is appended to the Parameters.
std::string
getOptionalParameters(const CodeCompletionString &CCS,
std::vector<ParameterInformation> &Parameters) {
std::string Result;
for (const auto &Chunk : CCS) {
switch (Chunk.Kind) {
case CodeCompletionString::CK_Optional:
assert(Chunk.Optional &&
"Expected the optional code completion string to be non-null.");
Result += getOptionalParameters(*Chunk.Optional, Parameters);
break;
case CodeCompletionString::CK_VerticalSpace:
break;
case CodeCompletionString::CK_Placeholder:
// A string that acts as a placeholder for, e.g., a function call
// argument.
// Intentional fallthrough here.
case CodeCompletionString::CK_CurrentParameter: {
// A piece of text that describes the parameter that corresponds to
// the code-completion location within a function call, message send,
// macro invocation, etc.
Result += Chunk.Text;
ParameterInformation Info;
Info.label = Chunk.Text;
Parameters.push_back(std::move(Info));
break;
}
default:
Result += Chunk.Text;
break;
}
}
return Result;
}
llvm::Optional<DiagWithFixIts> toClangdDiag(StoredDiagnostic D) {
auto Location = D.getLocation();
if (!Location.isValid() || !Location.getManager().isInMainFile(Location))
return llvm::None;
Position P;
P.line = Location.getSpellingLineNumber() - 1;
P.character = Location.getSpellingColumnNumber();
Range R = {P, P};
clangd::Diagnostic Diag = {R, getSeverity(D.getLevel()), D.getMessage()};
llvm::SmallVector<tooling::Replacement, 1> FixItsForDiagnostic;
for (const FixItHint &Fix : D.getFixIts()) {
FixItsForDiagnostic.push_back(clang::tooling::Replacement(
Location.getManager(), Fix.RemoveRange, Fix.CodeToInsert));
}
return DiagWithFixIts{Diag, std::move(FixItsForDiagnostic)};
}
class StoreDiagsConsumer : public DiagnosticConsumer {
public:
StoreDiagsConsumer(std::vector<DiagWithFixIts> &Output) : Output(Output) {}
void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
const clang::Diagnostic &Info) override {
DiagnosticConsumer::HandleDiagnostic(DiagLevel, Info);
if (auto convertedDiag = toClangdDiag(StoredDiagnostic(DiagLevel, Info)))
Output.push_back(std::move(*convertedDiag));
}
private:
std::vector<DiagWithFixIts> &Output;
};
class EmptyDiagsConsumer : public DiagnosticConsumer {
public:
void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
const clang::Diagnostic &Info) override {}
};
std::unique_ptr<CompilerInvocation>
createCompilerInvocation(ArrayRef<const char *> ArgList,
IntrusiveRefCntPtr<DiagnosticsEngine> Diags,
IntrusiveRefCntPtr<vfs::FileSystem> VFS) {
auto CI = createInvocationFromCommandLine(ArgList, std::move(Diags),
std::move(VFS));
// We rely on CompilerInstance to manage the resource (i.e. free them on
// EndSourceFile), but that won't happen if DisableFree is set to true.
// Since createInvocationFromCommandLine sets it to true, we have to override
// it.
CI->getFrontendOpts().DisableFree = false;
return CI;
}
/// Creates a CompilerInstance from \p CI, with main buffer overriden to \p
/// Buffer and arguments to read the PCH from \p Preamble, if \p Preamble is not
/// null. Note that vfs::FileSystem inside returned instance may differ from \p
/// VFS if additional file remapping were set in command-line arguments.
/// On some errors, returns null. When non-null value is returned, it's expected
/// to be consumed by the FrontendAction as it will have a pointer to the \p
/// Buffer that will only be deleted if BeginSourceFile is called.
std::unique_ptr<CompilerInstance>
prepareCompilerInstance(std::unique_ptr<clang::CompilerInvocation> CI,
const PrecompiledPreamble *Preamble,
std::unique_ptr<llvm::MemoryBuffer> Buffer,
std::shared_ptr<PCHContainerOperations> PCHs,
IntrusiveRefCntPtr<vfs::FileSystem> VFS,
DiagnosticConsumer &DiagsClient) {
assert(VFS && "VFS is null");
assert(!CI->getPreprocessorOpts().RetainRemappedFileBuffers &&
"Setting RetainRemappedFileBuffers to true will cause a memory leak "
"of ContentsBuffer");
// NOTE: we use Buffer.get() when adding remapped files, so we have to make
// sure it will be released if no error is emitted.
if (Preamble) {
Preamble->AddImplicitPreamble(*CI, Buffer.get());
} else {
CI->getPreprocessorOpts().addRemappedFile(
CI->getFrontendOpts().Inputs[0].getFile(), Buffer.get());
}
auto Clang = llvm::make_unique<CompilerInstance>(PCHs);
Clang->setInvocation(std::move(CI));
Clang->createDiagnostics(&DiagsClient, false);
if (auto VFSWithRemapping = createVFSFromCompilerInvocation(
Clang->getInvocation(), Clang->getDiagnostics(), VFS))
VFS = VFSWithRemapping;
Clang->setVirtualFileSystem(VFS);
Clang->setTarget(TargetInfo::CreateTargetInfo(
Clang->getDiagnostics(), Clang->getInvocation().TargetOpts));
if (!Clang->hasTarget())
return nullptr;
// RemappedFileBuffers will handle the lifetime of the Buffer pointer,
// release it.
Buffer.release();
return Clang;
}
template <class T> bool futureIsReady(std::shared_future<T> const &Future) {
return Future.wait_for(std::chrono::seconds(0)) == std::future_status::ready;
}
} // namespace
namespace {
CompletionItemKind getKind(CXCursorKind K) {
switch (K) {
case CXCursor_MacroInstantiation:
case CXCursor_MacroDefinition:
return CompletionItemKind::Text;
case CXCursor_CXXMethod:
return CompletionItemKind::Method;
case CXCursor_FunctionDecl:
case CXCursor_FunctionTemplate:
return CompletionItemKind::Function;
case CXCursor_Constructor:
case CXCursor_Destructor:
return CompletionItemKind::Constructor;
case CXCursor_FieldDecl:
return CompletionItemKind::Field;
case CXCursor_VarDecl:
case CXCursor_ParmDecl:
return CompletionItemKind::Variable;
case CXCursor_ClassDecl:
case CXCursor_StructDecl:
case CXCursor_UnionDecl:
case CXCursor_ClassTemplate:
case CXCursor_ClassTemplatePartialSpecialization:
return CompletionItemKind::Class;
case CXCursor_Namespace:
case CXCursor_NamespaceAlias:
case CXCursor_NamespaceRef:
return CompletionItemKind::Module;
case CXCursor_EnumConstantDecl:
return CompletionItemKind::Value;
case CXCursor_EnumDecl:
return CompletionItemKind::Enum;
case CXCursor_TypeAliasDecl:
case CXCursor_TypeAliasTemplateDecl:
case CXCursor_TypedefDecl:
case CXCursor_MemberRef:
case CXCursor_TypeRef:
return CompletionItemKind::Reference;
default:
return CompletionItemKind::Missing;
}
}
std::string escapeSnippet(const llvm::StringRef Text) {
std::string Result;
Result.reserve(Text.size()); // Assume '$', '}' and '\\' are rare.
for (const auto Character : Text) {
if (Character == '$' || Character == '}' || Character == '\\')
Result.push_back('\\');
Result.push_back(Character);
}
return Result;
}
std::string getDocumentation(const CodeCompletionString &CCS) {
// Things like __attribute__((nonnull(1,3))) and [[noreturn]]. Present this
// information in the documentation field.
std::string Result;
const unsigned AnnotationCount = CCS.getAnnotationCount();
if (AnnotationCount > 0) {
Result += "Annotation";
if (AnnotationCount == 1) {
Result += ": ";
} else /* AnnotationCount > 1 */ {
Result += "s: ";
}
for (unsigned I = 0; I < AnnotationCount; ++I) {
Result += CCS.getAnnotation(I);
Result.push_back(I == AnnotationCount - 1 ? '\n' : ' ');
}
}
// Add brief documentation (if there is any).
if (CCS.getBriefComment() != nullptr) {
if (!Result.empty()) {
// This means we previously added annotations. Add an extra newline
// character to make the annotations stand out.
Result.push_back('\n');
}
Result += CCS.getBriefComment();
}
return Result;
}
class CompletionItemsCollector : public CodeCompleteConsumer {
public:
CompletionItemsCollector(const CodeCompleteOptions &CodeCompleteOpts,
std::vector<CompletionItem> &Items)
: CodeCompleteConsumer(CodeCompleteOpts, /*OutputIsBinary=*/false),
Items(Items),
Allocator(std::make_shared<clang::GlobalCodeCompletionAllocator>()),
CCTUInfo(Allocator) {}
void ProcessCodeCompleteResults(Sema &S, CodeCompletionContext Context,
CodeCompletionResult *Results,
unsigned NumResults) override final {
Items.reserve(NumResults);
for (unsigned I = 0; I < NumResults; ++I) {
auto &Result = Results[I];
const auto *CCS = Result.CreateCodeCompletionString(
S, Context, *Allocator, CCTUInfo,
CodeCompleteOpts.IncludeBriefComments);
assert(CCS && "Expected the CodeCompletionString to be non-null");
Items.push_back(ProcessCodeCompleteResult(Result, *CCS));
}
}
GlobalCodeCompletionAllocator &getAllocator() override { return *Allocator; }
CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return CCTUInfo; }
private:
CompletionItem
ProcessCodeCompleteResult(const CodeCompletionResult &Result,
const CodeCompletionString &CCS) const {
// Adjust this to InsertTextFormat::Snippet iff we encounter a
// CK_Placeholder chunk in SnippetCompletionItemsCollector.
CompletionItem Item;
Item.insertTextFormat = InsertTextFormat::PlainText;
Item.documentation = getDocumentation(CCS);
// Fill in the label, detail, insertText and filterText fields of the
// CompletionItem.
ProcessChunks(CCS, Item);
// Fill in the kind field of the CompletionItem.
Item.kind = getKind(Result.CursorKind);
FillSortText(CCS, Item);
return Item;
}
virtual void ProcessChunks(const CodeCompletionString &CCS,
CompletionItem &Item) const = 0;
static int GetSortPriority(const CodeCompletionString &CCS) {
int Score = CCS.getPriority();
// Fill in the sortText of the CompletionItem.
assert(Score <= 99999 && "Expecting code completion result "
"priority to have at most 5-digits");
const int Penalty = 100000;
switch (static_cast<CXAvailabilityKind>(CCS.getAvailability())) {
case CXAvailability_Available:
// No penalty.
break;
case CXAvailability_Deprecated:
Score += Penalty;
break;
case CXAvailability_NotAccessible:
Score += 2 * Penalty;
break;
case CXAvailability_NotAvailable:
Score += 3 * Penalty;
break;
}
return Score;
}
static void FillSortText(const CodeCompletionString &CCS,
CompletionItem &Item) {
int Priority = GetSortPriority(CCS);
// Fill in the sortText of the CompletionItem.
assert(Priority <= 999999 &&
"Expecting sort priority to have at most 6-digits");
llvm::raw_string_ostream(Item.sortText)
<< llvm::format("%06d%s", Priority, Item.filterText.c_str());
}
std::vector<CompletionItem> &Items;
std::shared_ptr<clang::GlobalCodeCompletionAllocator> Allocator;
CodeCompletionTUInfo CCTUInfo;
}; // CompletionItemsCollector
bool isInformativeQualifierChunk(CodeCompletionString::Chunk const &Chunk) {
return Chunk.Kind == CodeCompletionString::CK_Informative &&
StringRef(Chunk.Text).endswith("::");
}
class PlainTextCompletionItemsCollector final
: public CompletionItemsCollector {
public:
PlainTextCompletionItemsCollector(const CodeCompleteOptions &CodeCompleteOpts,
std::vector<CompletionItem> &Items)
: CompletionItemsCollector(CodeCompleteOpts, Items) {}
private:
void ProcessChunks(const CodeCompletionString &CCS,
CompletionItem &Item) const override {
for (const auto &Chunk : CCS) {
// Informative qualifier chunks only clutter completion results, skip
// them.
if (isInformativeQualifierChunk(Chunk))
continue;
switch (Chunk.Kind) {
case CodeCompletionString::CK_TypedText:
// There's always exactly one CK_TypedText chunk.
Item.insertText = Item.filterText = Chunk.Text;
Item.label += Chunk.Text;
break;
case CodeCompletionString::CK_ResultType:
assert(Item.detail.empty() && "Unexpected extraneous CK_ResultType");
Item.detail = Chunk.Text;
break;
case CodeCompletionString::CK_Optional:
break;
default:
Item.label += Chunk.Text;
break;
}
}
}
}; // PlainTextCompletionItemsCollector
class SnippetCompletionItemsCollector final : public CompletionItemsCollector {
public:
SnippetCompletionItemsCollector(const CodeCompleteOptions &CodeCompleteOpts,
std::vector<CompletionItem> &Items)
: CompletionItemsCollector(CodeCompleteOpts, Items) {}
private:
void ProcessChunks(const CodeCompletionString &CCS,
CompletionItem &Item) const override {
unsigned ArgCount = 0;
for (const auto &Chunk : CCS) {
// Informative qualifier chunks only clutter completion results, skip
// them.
if (isInformativeQualifierChunk(Chunk))
continue;
switch (Chunk.Kind) {
case CodeCompletionString::CK_TypedText:
// The piece of text that the user is expected to type to match
// the code-completion string, typically a keyword or the name of
// a declarator or macro.
Item.filterText = Chunk.Text;
// Note intentional fallthrough here.
case CodeCompletionString::CK_Text:
// A piece of text that should be placed in the buffer,
// e.g., parentheses or a comma in a function call.
Item.label += Chunk.Text;
Item.insertText += Chunk.Text;
break;
case CodeCompletionString::CK_Optional:
// A code completion string that is entirely optional.
// For example, an optional code completion string that
// describes the default arguments in a function call.
// FIXME: Maybe add an option to allow presenting the optional chunks?
break;
case CodeCompletionString::CK_Placeholder:
// A string that acts as a placeholder for, e.g., a function call
// argument.
++ArgCount;
Item.insertText += "${" + std::to_string(ArgCount) + ':' +
escapeSnippet(Chunk.Text) + '}';
Item.label += Chunk.Text;
Item.insertTextFormat = InsertTextFormat::Snippet;
break;
case CodeCompletionString::CK_Informative:
// A piece of text that describes something about the result
// but should not be inserted into the buffer.
// For example, the word "const" for a const method, or the name of
// the base class for methods that are part of the base class.
Item.label += Chunk.Text;
// Don't put the informative chunks in the insertText.
break;
case CodeCompletionString::CK_ResultType:
// A piece of text that describes the type of an entity or,
// for functions and methods, the return type.
assert(Item.detail.empty() && "Unexpected extraneous CK_ResultType");
Item.detail = Chunk.Text;
break;
case CodeCompletionString::CK_CurrentParameter:
// A piece of text that describes the parameter that corresponds to
// the code-completion location within a function call, message send,
// macro invocation, etc.
//
// This should never be present while collecting completion items,
// only while collecting overload candidates.
llvm_unreachable("Unexpected CK_CurrentParameter while collecting "
"CompletionItems");
break;
case CodeCompletionString::CK_LeftParen:
// A left parenthesis ('(').
case CodeCompletionString::CK_RightParen:
// A right parenthesis (')').
case CodeCompletionString::CK_LeftBracket:
// A left bracket ('[').
case CodeCompletionString::CK_RightBracket:
// A right bracket (']').
case CodeCompletionString::CK_LeftBrace:
// A left brace ('{').
case CodeCompletionString::CK_RightBrace:
// A right brace ('}').
case CodeCompletionString::CK_LeftAngle:
// A left angle bracket ('<').
case CodeCompletionString::CK_RightAngle:
// A right angle bracket ('>').
case CodeCompletionString::CK_Comma:
// A comma separator (',').
case CodeCompletionString::CK_Colon:
// A colon (':').
case CodeCompletionString::CK_SemiColon:
// A semicolon (';').
case CodeCompletionString::CK_Equal:
// An '=' sign.
case CodeCompletionString::CK_HorizontalSpace:
// Horizontal whitespace (' ').
Item.insertText += Chunk.Text;
Item.label += Chunk.Text;
break;
case CodeCompletionString::CK_VerticalSpace:
// Vertical whitespace ('\n' or '\r\n', depending on the
// platform).
Item.insertText += Chunk.Text;
// Don't even add a space to the label.
break;
}
}
}
}; // SnippetCompletionItemsCollector
class SignatureHelpCollector final : public CodeCompleteConsumer {
public:
SignatureHelpCollector(const CodeCompleteOptions &CodeCompleteOpts,
SignatureHelp &SigHelp)
: CodeCompleteConsumer(CodeCompleteOpts, /*OutputIsBinary=*/false),
SigHelp(SigHelp),
Allocator(std::make_shared<clang::GlobalCodeCompletionAllocator>()),
CCTUInfo(Allocator) {}
void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg,
OverloadCandidate *Candidates,
unsigned NumCandidates) override {
SigHelp.signatures.reserve(NumCandidates);
// FIXME(rwols): How can we determine the "active overload candidate"?
// Right now the overloaded candidates seem to be provided in a "best fit"
// order, so I'm not too worried about this.
SigHelp.activeSignature = 0;
assert(CurrentArg <= (unsigned)std::numeric_limits<int>::max() &&
"too many arguments");
SigHelp.activeParameter = static_cast<int>(CurrentArg);
for (unsigned I = 0; I < NumCandidates; ++I) {
const auto &Candidate = Candidates[I];
const auto *CCS = Candidate.CreateSignatureString(
CurrentArg, S, *Allocator, CCTUInfo, true);
assert(CCS && "Expected the CodeCompletionString to be non-null");
SigHelp.signatures.push_back(ProcessOverloadCandidate(Candidate, *CCS));
}
}
GlobalCodeCompletionAllocator &getAllocator() override { return *Allocator; }
CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return CCTUInfo; }
private:
SignatureInformation
ProcessOverloadCandidate(const OverloadCandidate &Candidate,
const CodeCompletionString &CCS) const {
SignatureInformation Result;
const char *ReturnType = nullptr;
Result.documentation = getDocumentation(CCS);
for (const auto &Chunk : CCS) {
switch (Chunk.Kind) {
case CodeCompletionString::CK_ResultType:
// A piece of text that describes the type of an entity or,
// for functions and methods, the return type.
assert(!ReturnType && "Unexpected CK_ResultType");
ReturnType = Chunk.Text;
break;
case CodeCompletionString::CK_Placeholder:
// A string that acts as a placeholder for, e.g., a function call
// argument.
// Intentional fallthrough here.
case CodeCompletionString::CK_CurrentParameter: {
// A piece of text that describes the parameter that corresponds to
// the code-completion location within a function call, message send,
// macro invocation, etc.
Result.label += Chunk.Text;
ParameterInformation Info;
Info.label = Chunk.Text;
Result.parameters.push_back(std::move(Info));
break;
}
case CodeCompletionString::CK_Optional: {
// The rest of the parameters are defaulted/optional.
assert(Chunk.Optional &&
"Expected the optional code completion string to be non-null.");
Result.label +=
getOptionalParameters(*Chunk.Optional, Result.parameters);
break;
}
case CodeCompletionString::CK_VerticalSpace:
break;
default:
Result.label += Chunk.Text;
break;
}
}
if (ReturnType) {
Result.label += " -> ";
Result.label += ReturnType;
}
return Result;
}
SignatureHelp &SigHelp;
std::shared_ptr<clang::GlobalCodeCompletionAllocator> Allocator;
CodeCompletionTUInfo CCTUInfo;
}; // SignatureHelpCollector
bool invokeCodeComplete(std::unique_ptr<CodeCompleteConsumer> Consumer,
const CodeCompleteOptions &Options, PathRef FileName,
const tooling::CompileCommand &Command,
PrecompiledPreamble const *Preamble, StringRef Contents,
Position Pos, IntrusiveRefCntPtr<vfs::FileSystem> VFS,
std::shared_ptr<PCHContainerOperations> PCHs,
clangd::Logger &Logger) {
std::vector<const char *> ArgStrs;
for (const auto &S : Command.CommandLine)
ArgStrs.push_back(S.c_str());
VFS->setCurrentWorkingDirectory(Command.Directory);
std::unique_ptr<CompilerInvocation> CI;
EmptyDiagsConsumer DummyDiagsConsumer;
{
IntrusiveRefCntPtr<DiagnosticsEngine> CommandLineDiagsEngine =
CompilerInstance::createDiagnostics(new DiagnosticOptions,
&DummyDiagsConsumer, false);
CI = createCompilerInvocation(ArgStrs, CommandLineDiagsEngine, VFS);
}
assert(CI && "Couldn't create CompilerInvocation");
std::unique_ptr<llvm::MemoryBuffer> ContentsBuffer =
llvm::MemoryBuffer::getMemBufferCopy(Contents, FileName);
// Attempt to reuse the PCH from precompiled preamble, if it was built.
if (Preamble) {
auto Bounds =
ComputePreambleBounds(*CI->getLangOpts(), ContentsBuffer.get(), 0);
if (!Preamble->CanReuse(*CI, ContentsBuffer.get(), Bounds, VFS.get()))
Preamble = nullptr;
}
auto Clang = prepareCompilerInstance(std::move(CI), Preamble,
std::move(ContentsBuffer), PCHs, VFS,
DummyDiagsConsumer);
auto &DiagOpts = Clang->getDiagnosticOpts();
DiagOpts.IgnoreWarnings = true;
auto &FrontendOpts = Clang->getFrontendOpts();
FrontendOpts.SkipFunctionBodies = true;
FrontendOpts.CodeCompleteOpts = Options;
FrontendOpts.CodeCompletionAt.FileName = FileName;
FrontendOpts.CodeCompletionAt.Line = Pos.line + 1;
FrontendOpts.CodeCompletionAt.Column = Pos.character + 1;
Clang->setCodeCompletionConsumer(Consumer.release());
SyntaxOnlyAction Action;
if (!Action.BeginSourceFile(*Clang, Clang->getFrontendOpts().Inputs[0])) {
Logger.log("BeginSourceFile() failed when running codeComplete for " +
FileName);
return false;
}
if (!Action.Execute()) {
Logger.log("Execute() failed when running codeComplete for " + FileName);
return false;
}
Action.EndSourceFile();
return true;
}
} // namespace
std::vector<CompletionItem>
clangd::codeComplete(PathRef FileName, tooling::CompileCommand Command,
PrecompiledPreamble const *Preamble, StringRef Contents,
Position Pos, IntrusiveRefCntPtr<vfs::FileSystem> VFS,
std::shared_ptr<PCHContainerOperations> PCHs,
bool SnippetCompletions, clangd::Logger &Logger) {
std::vector<CompletionItem> Results;
CodeCompleteOptions Options;
std::unique_ptr<CodeCompleteConsumer> Consumer;
Options.IncludeGlobals = true;
Options.IncludeMacros = true;
Options.IncludeBriefComments = true;
if (SnippetCompletions) {
Options.IncludeCodePatterns = true;
Consumer =
llvm::make_unique<SnippetCompletionItemsCollector>(Options, Results);
} else {
Options.IncludeCodePatterns = false;
Consumer =
llvm::make_unique<PlainTextCompletionItemsCollector>(Options, Results);
}
invokeCodeComplete(std::move(Consumer), Options, FileName, Command, Preamble,
Contents, Pos, std::move(VFS), std::move(PCHs), Logger);
return Results;
}
SignatureHelp
clangd::signatureHelp(PathRef FileName, tooling::CompileCommand Command,
PrecompiledPreamble const *Preamble, StringRef Contents,
Position Pos, IntrusiveRefCntPtr<vfs::FileSystem> VFS,
std::shared_ptr<PCHContainerOperations> PCHs,
clangd::Logger &Logger) {
SignatureHelp Result;
CodeCompleteOptions Options;
Options.IncludeGlobals = false;
Options.IncludeMacros = false;
Options.IncludeCodePatterns = false;
Options.IncludeBriefComments = true;
invokeCodeComplete(llvm::make_unique<SignatureHelpCollector>(Options, Result),
Options, FileName, Command, Preamble, Contents, Pos,
std::move(VFS), std::move(PCHs), Logger);
return Result;
}
void clangd::dumpAST(ParsedAST &AST, llvm::raw_ostream &OS) {
AST.getASTContext().getTranslationUnitDecl()->dump(OS, true);
}
llvm::Optional<ParsedAST>
ParsedAST::Build(std::unique_ptr<clang::CompilerInvocation> CI,
const PrecompiledPreamble *Preamble,
ArrayRef<serialization::DeclID> PreambleDeclIDs,
std::unique_ptr<llvm::MemoryBuffer> Buffer,
std::shared_ptr<PCHContainerOperations> PCHs,
IntrusiveRefCntPtr<vfs::FileSystem> VFS,
clangd::Logger &Logger) {
std::vector<DiagWithFixIts> ASTDiags;
StoreDiagsConsumer UnitDiagsConsumer(/*ref*/ ASTDiags);
auto Clang =
prepareCompilerInstance(std::move(CI), Preamble, std::move(Buffer), PCHs,
VFS, /*ref*/ UnitDiagsConsumer);
// Recover resources if we crash before exiting this method.
llvm::CrashRecoveryContextCleanupRegistrar<CompilerInstance> CICleanup(
Clang.get());
auto Action = llvm::make_unique<ClangdFrontendAction>();
const FrontendInputFile &MainInput = Clang->getFrontendOpts().Inputs[0];
if (!Action->BeginSourceFile(*Clang, MainInput)) {
Logger.log("BeginSourceFile() failed when building AST for " +
MainInput.getFile());
return llvm::None;
}
if (!Action->Execute())
Logger.log("Execute() failed when building AST for " + MainInput.getFile());
// UnitDiagsConsumer is local, we can not store it in CompilerInstance that
// has a longer lifetime.
Clang->getDiagnostics().setClient(new EmptyDiagsConsumer);
std::vector<const Decl *> ParsedDecls = Action->takeTopLevelDecls();
std::vector<serialization::DeclID> PendingDecls;
if (Preamble) {
PendingDecls.reserve(PreambleDeclIDs.size());
PendingDecls.insert(PendingDecls.begin(), PreambleDeclIDs.begin(),
PreambleDeclIDs.end());
}
return ParsedAST(std::move(Clang), std::move(Action), std::move(ParsedDecls),
std::move(PendingDecls), std::move(ASTDiags));
}
namespace {
SourceLocation getMacroArgExpandedLocation(const SourceManager &Mgr,
const FileEntry *FE,
unsigned Offset) {
SourceLocation FileLoc = Mgr.translateFileLineCol(FE, 1, 1);
return Mgr.getMacroArgExpandedLocation(FileLoc.getLocWithOffset(Offset));
}
SourceLocation getMacroArgExpandedLocation(const SourceManager &Mgr,
const FileEntry *FE, Position Pos) {
SourceLocation InputLoc =
Mgr.translateFileLineCol(FE, Pos.line + 1, Pos.character + 1);
return Mgr.getMacroArgExpandedLocation(InputLoc);
}
/// Finds declarations locations that a given source location refers to.
class DeclarationLocationsFinder : public index::IndexDataConsumer {
std::vector<Location> DeclarationLocations;
const SourceLocation &SearchedLocation;
const ASTContext &AST;
Preprocessor &PP;
public:
DeclarationLocationsFinder(raw_ostream &OS,
const SourceLocation &SearchedLocation,
ASTContext &AST, Preprocessor &PP)
: SearchedLocation(SearchedLocation), AST(AST), PP(PP) {}
std::vector<Location> takeLocations() {
// Don't keep the same location multiple times.
// This can happen when nodes in the AST are visited twice.
std::sort(DeclarationLocations.begin(), DeclarationLocations.end());
auto last =
std::unique(DeclarationLocations.begin(), DeclarationLocations.end());
DeclarationLocations.erase(last, DeclarationLocations.end());
return std::move(DeclarationLocations);
}
bool
handleDeclOccurence(const Decl *D, index::SymbolRoleSet Roles,
ArrayRef<index::SymbolRelation> Relations, FileID FID,
unsigned Offset,
index::IndexDataConsumer::ASTNodeInfo ASTNode) override {
if (isSearchedLocation(FID, Offset)) {
addDeclarationLocation(D->getSourceRange());
}
return true;
}
private:
bool isSearchedLocation(FileID FID, unsigned Offset) const {
const SourceManager &SourceMgr = AST.getSourceManager();
return SourceMgr.getFileOffset(SearchedLocation) == Offset &&
SourceMgr.getFileID(SearchedLocation) == FID;
}
void addDeclarationLocation(const SourceRange &ValSourceRange) {
const SourceManager &SourceMgr = AST.getSourceManager();
const LangOptions &LangOpts = AST.getLangOpts();
SourceLocation LocStart = ValSourceRange.getBegin();
SourceLocation LocEnd = Lexer::getLocForEndOfToken(ValSourceRange.getEnd(),
0, SourceMgr, LangOpts);
Position Begin;
Begin.line = SourceMgr.getSpellingLineNumber(LocStart) - 1;
Begin.character = SourceMgr.getSpellingColumnNumber(LocStart) - 1;
Position End;
End.line = SourceMgr.getSpellingLineNumber(LocEnd) - 1;
End.character = SourceMgr.getSpellingColumnNumber(LocEnd) - 1;
Range R = {Begin, End};
Location L;
L.uri = URI::fromFile(
SourceMgr.getFilename(SourceMgr.getSpellingLoc(LocStart)));
L.range = R;
DeclarationLocations.push_back(L);
}
void finish() override {
// Also handle possible macro at the searched location.
Token Result;
if (!Lexer::getRawToken(SearchedLocation, Result, AST.getSourceManager(),
AST.getLangOpts(), false)) {
if (Result.is(tok::raw_identifier)) {
PP.LookUpIdentifierInfo(Result);
}
IdentifierInfo *IdentifierInfo = Result.getIdentifierInfo();
if (IdentifierInfo && IdentifierInfo->hadMacroDefinition()) {
std::pair<FileID, unsigned int> DecLoc =
AST.getSourceManager().getDecomposedExpansionLoc(SearchedLocation);
// Get the definition just before the searched location so that a macro
// referenced in a '#undef MACRO' can still be found.
SourceLocation BeforeSearchedLocation = getMacroArgExpandedLocation(
AST.getSourceManager(),
AST.getSourceManager().getFileEntryForID(DecLoc.first),
DecLoc.second - 1);
MacroDefinition MacroDef =
PP.getMacroDefinitionAtLoc(IdentifierInfo, BeforeSearchedLocation);
MacroInfo *MacroInf = MacroDef.getMacroInfo();
if (MacroInf) {
addDeclarationLocation(SourceRange(MacroInf->getDefinitionLoc(),
MacroInf->getDefinitionEndLoc()));
}
}
}
}
};
SourceLocation getBeginningOfIdentifier(ParsedAST &Unit, const Position &Pos,
const FileEntry *FE) {
// The language server protocol uses zero-based line and column numbers.
// Clang uses one-based numbers.
const ASTContext &AST = Unit.getASTContext();
const SourceManager &SourceMgr = AST.getSourceManager();
SourceLocation InputLocation =
getMacroArgExpandedLocation(SourceMgr, FE, Pos);
if (Pos.character == 0) {
return InputLocation;
}
// This handle cases where the position is in the middle of a token or right
// after the end of a token. In theory we could just use GetBeginningOfToken
// to find the start of the token at the input position, but this doesn't
// work when right after the end, i.e. foo|.
// So try to go back by one and see if we're still inside the an identifier
// token. If so, Take the beginning of this token.
// (It should be the same identifier because you can't have two adjacent
// identifiers without another token in between.)
SourceLocation PeekBeforeLocation = getMacroArgExpandedLocation(
SourceMgr, FE, Position{Pos.line, Pos.character - 1});
Token Result;
if (Lexer::getRawToken(PeekBeforeLocation, Result, SourceMgr,
AST.getLangOpts(), false)) {
// getRawToken failed, just use InputLocation.
return InputLocation;
}
if (Result.is(tok::raw_identifier)) {
return Lexer::GetBeginningOfToken(PeekBeforeLocation, SourceMgr,
AST.getLangOpts());
}
return InputLocation;
}
} // namespace
std::vector<Location> clangd::findDefinitions(ParsedAST &AST, Position Pos,
clangd::Logger &Logger) {
const SourceManager &SourceMgr = AST.getASTContext().getSourceManager();
const FileEntry *FE = SourceMgr.getFileEntryForID(SourceMgr.getMainFileID());
if (!FE)
return {};
SourceLocation SourceLocationBeg = getBeginningOfIdentifier(AST, Pos, FE);
auto DeclLocationsFinder = std::make_shared<DeclarationLocationsFinder>(
llvm::errs(), SourceLocationBeg, AST.getASTContext(),
AST.getPreprocessor());
index::IndexingOptions IndexOpts;
IndexOpts.SystemSymbolFilter =
index::IndexingOptions::SystemSymbolFilterKind::All;
IndexOpts.IndexFunctionLocals = true;
indexTopLevelDecls(AST.getASTContext(), AST.getTopLevelDecls(),
DeclLocationsFinder, IndexOpts);
return DeclLocationsFinder->takeLocations();
}
void ParsedAST::ensurePreambleDeclsDeserialized() {
if (PendingTopLevelDecls.empty())
return;
std::vector<const Decl *> Resolved;
Resolved.reserve(PendingTopLevelDecls.size());
ExternalASTSource &Source = *getASTContext().getExternalSource();
for (serialization::DeclID TopLevelDecl : PendingTopLevelDecls) {
// Resolve the declaration ID to an actual declaration, possibly
// deserializing the declaration in the process.
if (Decl *D = Source.GetExternalDecl(TopLevelDecl))
Resolved.push_back(D);
}
TopLevelDecls.reserve(TopLevelDecls.size() + PendingTopLevelDecls.size());
TopLevelDecls.insert(TopLevelDecls.begin(), Resolved.begin(), Resolved.end());
PendingTopLevelDecls.clear();
}
ParsedAST::ParsedAST(ParsedAST &&Other) = default;
ParsedAST &ParsedAST::operator=(ParsedAST &&Other) = default;
ParsedAST::~ParsedAST() {
if (Action) {
Action->EndSourceFile();
}
}
ASTContext &ParsedAST::getASTContext() { return Clang->getASTContext(); }
const ASTContext &ParsedAST::getASTContext() const {
return Clang->getASTContext();
}
Preprocessor &ParsedAST::getPreprocessor() { return Clang->getPreprocessor(); }
const Preprocessor &ParsedAST::getPreprocessor() const {
return Clang->getPreprocessor();
}
ArrayRef<const Decl *> ParsedAST::getTopLevelDecls() {
ensurePreambleDeclsDeserialized();
return TopLevelDecls;
}
const std::vector<DiagWithFixIts> &ParsedAST::getDiagnostics() const {
return Diags;
}
ParsedAST::ParsedAST(std::unique_ptr<CompilerInstance> Clang,
std::unique_ptr<FrontendAction> Action,
std::vector<const Decl *> TopLevelDecls,
std::vector<serialization::DeclID> PendingTopLevelDecls,
std::vector<DiagWithFixIts> Diags)
: Clang(std::move(Clang)), Action(std::move(Action)),
Diags(std::move(Diags)), TopLevelDecls(std::move(TopLevelDecls)),
PendingTopLevelDecls(std::move(PendingTopLevelDecls)) {
assert(this->Clang);
assert(this->Action);
}
ParsedASTWrapper::ParsedASTWrapper(ParsedASTWrapper &&Wrapper)
: AST(std::move(Wrapper.AST)) {}
ParsedASTWrapper::ParsedASTWrapper(llvm::Optional<ParsedAST> AST)
: AST(std::move(AST)) {}
PreambleData::PreambleData(PrecompiledPreamble Preamble,
std::vector<serialization::DeclID> TopLevelDeclIDs,
std::vector<DiagWithFixIts> Diags)
: Preamble(std::move(Preamble)),
TopLevelDeclIDs(std::move(TopLevelDeclIDs)), Diags(std::move(Diags)) {}
std::shared_ptr<CppFile>
CppFile::Create(PathRef FileName, tooling::CompileCommand Command,
std::shared_ptr<PCHContainerOperations> PCHs,
clangd::Logger &Logger) {
return std::shared_ptr<CppFile>(
new CppFile(FileName, std::move(Command), std::move(PCHs), Logger));
}
CppFile::CppFile(PathRef FileName, tooling::CompileCommand Command,
std::shared_ptr<PCHContainerOperations> PCHs,
clangd::Logger &Logger)
: FileName(FileName), Command(std::move(Command)), RebuildCounter(0),
RebuildInProgress(false), PCHs(std::move(PCHs)), Logger(Logger) {
std::lock_guard<std::mutex> Lock(Mutex);
LatestAvailablePreamble = nullptr;
PreamblePromise.set_value(nullptr);
PreambleFuture = PreamblePromise.get_future();
ASTPromise.set_value(std::make_shared<ParsedASTWrapper>(llvm::None));
ASTFuture = ASTPromise.get_future();
}
void CppFile::cancelRebuild() { deferCancelRebuild()(); }
UniqueFunction<void()> CppFile::deferCancelRebuild() {
std::unique_lock<std::mutex> Lock(Mutex);
// Cancel an ongoing rebuild, if any, and wait for it to finish.
unsigned RequestRebuildCounter = ++this->RebuildCounter;
// Rebuild asserts that futures aren't ready if rebuild is cancelled.
// We want to keep this invariant.
if (futureIsReady(PreambleFuture)) {
PreamblePromise = std::promise<std::shared_ptr<const PreambleData>>();
PreambleFuture = PreamblePromise.get_future();
}
if (futureIsReady(ASTFuture)) {
ASTPromise = std::promise<std::shared_ptr<ParsedASTWrapper>>();
ASTFuture = ASTPromise.get_future();
}
Lock.unlock();
// Notify about changes to RebuildCounter.
RebuildCond.notify_all();
std::shared_ptr<CppFile> That = shared_from_this();
return [That, RequestRebuildCounter]() {
std::unique_lock<std::mutex> Lock(That->Mutex);
CppFile *This = &*That;
This->RebuildCond.wait(Lock, [This, RequestRebuildCounter]() {
return !This->RebuildInProgress ||
This->RebuildCounter != RequestRebuildCounter;
});
// This computation got cancelled itself, do nothing.
if (This->RebuildCounter != RequestRebuildCounter)
return;
// Set empty results for Promises.
That->PreamblePromise.set_value(nullptr);
That->ASTPromise.set_value(std::make_shared<ParsedASTWrapper>(llvm::None));
};
}
llvm::Optional<std::vector<DiagWithFixIts>>
CppFile::rebuild(StringRef NewContents,
IntrusiveRefCntPtr<vfs::FileSystem> VFS) {
return deferRebuild(NewContents, std::move(VFS))();
}
UniqueFunction<llvm::Optional<std::vector<DiagWithFixIts>>()>
CppFile::deferRebuild(StringRef NewContents,
IntrusiveRefCntPtr<vfs::FileSystem> VFS) {
std::shared_ptr<const PreambleData> OldPreamble;
std::shared_ptr<PCHContainerOperations> PCHs;
unsigned RequestRebuildCounter;
{
std::unique_lock<std::mutex> Lock(Mutex);
// Increase RebuildCounter to cancel all ongoing FinishRebuild operations.
// They will try to exit as early as possible and won't call set_value on
// our promises.
RequestRebuildCounter = ++this->RebuildCounter;
PCHs = this->PCHs;
// Remember the preamble to be used during rebuild.
OldPreamble = this->LatestAvailablePreamble;
// Setup std::promises and std::futures for Preamble and AST. Corresponding
// futures will wait until the rebuild process is finished.
if (futureIsReady(this->PreambleFuture)) {
this->PreamblePromise =
std::promise<std::shared_ptr<const PreambleData>>();
this->PreambleFuture = this->PreamblePromise.get_future();
}
if (futureIsReady(this->ASTFuture)) {
this->ASTPromise = std::promise<std::shared_ptr<ParsedASTWrapper>>();
this->ASTFuture = this->ASTPromise.get_future();
}
} // unlock Mutex.
// Notify about changes to RebuildCounter.
RebuildCond.notify_all();
// A helper to function to finish the rebuild. May be run on a different
// thread.
// Don't let this CppFile die before rebuild is finished.
std::shared_ptr<CppFile> That = shared_from_this();
auto FinishRebuild = [OldPreamble, VFS, RequestRebuildCounter, PCHs,
That](std::string NewContents)
-> llvm::Optional<std::vector<DiagWithFixIts>> {
// Only one execution of this method is possible at a time.
// RebuildGuard will wait for any ongoing rebuilds to finish and will put us
// into a state for doing a rebuild.
RebuildGuard Rebuild(*That, RequestRebuildCounter);
if (Rebuild.wasCancelledBeforeConstruction())
return llvm::None;
std::vector<const char *> ArgStrs;
for (const auto &S : That->Command.CommandLine)
ArgStrs.push_back(S.c_str());
VFS->setCurrentWorkingDirectory(That->Command.Directory);
std::unique_ptr<CompilerInvocation> CI;
{
// FIXME(ibiryukov): store diagnostics from CommandLine when we start
// reporting them.
EmptyDiagsConsumer CommandLineDiagsConsumer;
IntrusiveRefCntPtr<DiagnosticsEngine> CommandLineDiagsEngine =
CompilerInstance::createDiagnostics(new DiagnosticOptions,
&CommandLineDiagsConsumer, false);
CI = createCompilerInvocation(ArgStrs, CommandLineDiagsEngine, VFS);
}
assert(CI && "Couldn't create CompilerInvocation");
std::unique_ptr<llvm::MemoryBuffer> ContentsBuffer =
llvm::MemoryBuffer::getMemBufferCopy(NewContents, That->FileName);
// A helper function to rebuild the preamble or reuse the existing one. Does
// not mutate any fields, only does the actual computation.
auto DoRebuildPreamble = [&]() -> std::shared_ptr<const PreambleData> {
auto Bounds =
ComputePreambleBounds(*CI->getLangOpts(), ContentsBuffer.get(), 0);
if (OldPreamble && OldPreamble->Preamble.CanReuse(
*CI, ContentsBuffer.get(), Bounds, VFS.get())) {
return OldPreamble;
}
std::vector<DiagWithFixIts> PreambleDiags;
StoreDiagsConsumer PreambleDiagnosticsConsumer(/*ref*/ PreambleDiags);
IntrusiveRefCntPtr<DiagnosticsEngine> PreambleDiagsEngine =
CompilerInstance::createDiagnostics(
&CI->getDiagnosticOpts(), &PreambleDiagnosticsConsumer, false);
CppFilePreambleCallbacks SerializedDeclsCollector;
auto BuiltPreamble = PrecompiledPreamble::Build(
*CI, ContentsBuffer.get(), Bounds, *PreambleDiagsEngine, VFS, PCHs,
SerializedDeclsCollector);
if (BuiltPreamble) {
return std::make_shared<PreambleData>(
std::move(*BuiltPreamble),
SerializedDeclsCollector.takeTopLevelDeclIDs(),
std::move(PreambleDiags));
} else {
return nullptr;
}
};
// Compute updated Preamble.
std::shared_ptr<const PreambleData> NewPreamble = DoRebuildPreamble();
// Publish the new Preamble.
{
std::lock_guard<std::mutex> Lock(That->Mutex);
// We always set LatestAvailablePreamble to the new value, hoping that it
// will still be usable in the further requests.
That->LatestAvailablePreamble = NewPreamble;
if (RequestRebuildCounter != That->RebuildCounter)
return llvm::None; // Our rebuild request was cancelled, do nothing.
That->PreamblePromise.set_value(NewPreamble);
} // unlock Mutex
// Prepare the Preamble and supplementary data for rebuilding AST.
const PrecompiledPreamble *PreambleForAST = nullptr;
ArrayRef<serialization::DeclID> SerializedPreambleDecls = llvm::None;
std::vector<DiagWithFixIts> Diagnostics;
if (NewPreamble) {
PreambleForAST = &NewPreamble->Preamble;
SerializedPreambleDecls = NewPreamble->TopLevelDeclIDs;
Diagnostics.insert(Diagnostics.begin(), NewPreamble->Diags.begin(),
NewPreamble->Diags.end());
}
// Compute updated AST.
llvm::Optional<ParsedAST> NewAST =
ParsedAST::Build(std::move(CI), PreambleForAST, SerializedPreambleDecls,
std::move(ContentsBuffer), PCHs, VFS, That->Logger);
if (NewAST) {
Diagnostics.insert(Diagnostics.end(), NewAST->getDiagnostics().begin(),
NewAST->getDiagnostics().end());
} else {
// Don't report even Preamble diagnostics if we coulnd't build AST.
Diagnostics.clear();
}
// Publish the new AST.
{
std::lock_guard<std::mutex> Lock(That->Mutex);
if (RequestRebuildCounter != That->RebuildCounter)
return Diagnostics; // Our rebuild request was cancelled, don't set
// ASTPromise.
That->ASTPromise.set_value(
std::make_shared<ParsedASTWrapper>(std::move(NewAST)));
} // unlock Mutex
return Diagnostics;
};
return BindWithForward(FinishRebuild, NewContents.str());
}
std::shared_future<std::shared_ptr<const PreambleData>>
CppFile::getPreamble() const {
std::lock_guard<std::mutex> Lock(Mutex);
return PreambleFuture;
}
std::shared_ptr<const PreambleData> CppFile::getPossiblyStalePreamble() const {
std::lock_guard<std::mutex> Lock(Mutex);
return LatestAvailablePreamble;
}
std::shared_future<std::shared_ptr<ParsedASTWrapper>> CppFile::getAST() const {
std::lock_guard<std::mutex> Lock(Mutex);
return ASTFuture;
}
tooling::CompileCommand const &CppFile::getCompileCommand() const {
return Command;
}
CppFile::RebuildGuard::RebuildGuard(CppFile &File,
unsigned RequestRebuildCounter)
: File(File), RequestRebuildCounter(RequestRebuildCounter) {
std::unique_lock<std::mutex> Lock(File.Mutex);
WasCancelledBeforeConstruction = File.RebuildCounter != RequestRebuildCounter;
if (WasCancelledBeforeConstruction)
return;
File.RebuildCond.wait(Lock, [&File, RequestRebuildCounter]() {
return !File.RebuildInProgress ||
File.RebuildCounter != RequestRebuildCounter;
});
WasCancelledBeforeConstruction = File.RebuildCounter != RequestRebuildCounter;
if (WasCancelledBeforeConstruction)
return;
File.RebuildInProgress = true;
}
bool CppFile::RebuildGuard::wasCancelledBeforeConstruction() const {
return WasCancelledBeforeConstruction;
}
CppFile::RebuildGuard::~RebuildGuard() {
if (WasCancelledBeforeConstruction)
return;
std::unique_lock<std::mutex> Lock(File.Mutex);
assert(File.RebuildInProgress);
File.RebuildInProgress = false;
if (File.RebuildCounter == RequestRebuildCounter) {
// Our rebuild request was successful.
assert(futureIsReady(File.ASTFuture));
assert(futureIsReady(File.PreambleFuture));
} else {
// Our rebuild request was cancelled, because further reparse was requested.
assert(!futureIsReady(File.ASTFuture));
assert(!futureIsReady(File.PreambleFuture));
}
Lock.unlock();
File.RebuildCond.notify_all();
}