blob: b78bc5f5b83437dec236a0e6b80765792ca65874 [file] [log] [blame]
//===--- SymbolCollector.cpp -------------------------------------*- C++-*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "SymbolCollector.h"
#include "AST.h"
#include "CanonicalIncludes.h"
#include "CodeComplete.h"
#include "CodeCompletionStrings.h"
#include "Logger.h"
#include "SourceCode.h"
#include "URI.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Index/IndexSymbol.h"
#include "clang/Index/USRGeneration.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
using namespace llvm;
namespace clang {
namespace clangd {
namespace {
/// If \p ND is a template specialization, returns the described template.
/// Otherwise, returns \p ND.
const NamedDecl &getTemplateOrThis(const NamedDecl &ND) {
if (auto T = ND.getDescribedTemplate())
return *T;
return ND;
}
// Returns a URI of \p Path. Firstly, this makes the \p Path absolute using the
// current working directory of the given SourceManager if the Path is not an
// absolute path. If failed, this resolves relative paths against \p FallbackDir
// to get an absolute path. Then, this tries creating an URI for the absolute
// path with schemes specified in \p Opts. This returns an URI with the first
// working scheme, if there is any; otherwise, this returns None.
//
// The Path can be a path relative to the build directory, or retrieved from
// the SourceManager.
Optional<std::string> toURI(const SourceManager &SM, StringRef Path,
const SymbolCollector::Options &Opts) {
SmallString<128> AbsolutePath(Path);
if (std::error_code EC =
SM.getFileManager().getVirtualFileSystem()->makeAbsolute(
AbsolutePath))
log("Warning: could not make absolute file: {0}", EC.message());
if (sys::path::is_absolute(AbsolutePath)) {
// Handle the symbolic link path case where the current working directory
// (getCurrentWorkingDirectory) is a symlink./ We always want to the real
// file path (instead of the symlink path) for the C++ symbols.
//
// Consider the following example:
//
// src dir: /project/src/foo.h
// current working directory (symlink): /tmp/build -> /project/src/
//
// The file path of Symbol is "/project/src/foo.h" instead of
// "/tmp/build/foo.h"
if (const DirectoryEntry *Dir = SM.getFileManager().getDirectory(
sys::path::parent_path(AbsolutePath.str()))) {
StringRef DirName = SM.getFileManager().getCanonicalName(Dir);
SmallString<128> AbsoluteFilename;
sys::path::append(AbsoluteFilename, DirName,
sys::path::filename(AbsolutePath.str()));
AbsolutePath = AbsoluteFilename;
}
} else if (!Opts.FallbackDir.empty()) {
sys::fs::make_absolute(Opts.FallbackDir, AbsolutePath);
}
sys::path::remove_dots(AbsolutePath, /*remove_dot_dot=*/true);
return URI::create(AbsolutePath).toString();
}
// All proto generated headers should start with this line.
static const char *PROTO_HEADER_COMMENT =
"// Generated by the protocol buffer compiler. DO NOT EDIT!";
// Checks whether the decl is a private symbol in a header generated by
// protobuf compiler.
// To identify whether a proto header is actually generated by proto compiler,
// we check whether it starts with PROTO_HEADER_COMMENT.
// FIXME: make filtering extensible when there are more use cases for symbol
// filters.
bool isPrivateProtoDecl(const NamedDecl &ND) {
const auto &SM = ND.getASTContext().getSourceManager();
auto Loc = findNameLoc(&ND);
auto FileName = SM.getFilename(Loc);
if (!FileName.endswith(".proto.h") && !FileName.endswith(".pb.h"))
return false;
auto FID = SM.getFileID(Loc);
// Double check that this is an actual protobuf header.
if (!SM.getBufferData(FID).startswith(PROTO_HEADER_COMMENT))
return false;
// ND without identifier can be operators.
if (ND.getIdentifier() == nullptr)
return false;
auto Name = ND.getIdentifier()->getName();
if (!Name.contains('_'))
return false;
// Nested proto entities (e.g. Message::Nested) have top-level decls
// that shouldn't be used (Message_Nested). Ignore them completely.
// The nested entities are dangling type aliases, we may want to reconsider
// including them in the future.
// For enum constants, SOME_ENUM_CONSTANT is not private and should be
// indexed. Outer_INNER is private. This heuristic relies on naming style, it
// will include OUTER_INNER and exclude some_enum_constant.
// FIXME: the heuristic relies on naming style (i.e. no underscore in
// user-defined names) and can be improved.
return (ND.getKind() != Decl::EnumConstant) || any_of(Name, islower);
}
// We only collect #include paths for symbols that are suitable for global code
// completion, except for namespaces since #include path for a namespace is hard
// to define.
bool shouldCollectIncludePath(index::SymbolKind Kind) {
using SK = index::SymbolKind;
switch (Kind) {
case SK::Macro:
case SK::Enum:
case SK::Struct:
case SK::Class:
case SK::Union:
case SK::TypeAlias:
case SK::Using:
case SK::Function:
case SK::Variable:
case SK::EnumConstant:
return true;
default:
return false;
}
}
/// Gets a canonical include (URI of the header or <header> or "header") for
/// header of \p Loc.
/// Returns None if fails to get include header for \p Loc.
Optional<std::string> getIncludeHeader(StringRef QName, const SourceManager &SM,
SourceLocation Loc,
const SymbolCollector::Options &Opts) {
std::vector<std::string> Headers;
// Collect the #include stack.
while (true) {
if (!Loc.isValid())
break;
auto FilePath = SM.getFilename(Loc);
if (FilePath.empty())
break;
Headers.push_back(FilePath);
if (SM.isInMainFile(Loc))
break;
Loc = SM.getIncludeLoc(SM.getFileID(Loc));
}
if (Headers.empty())
return None;
StringRef Header = Headers[0];
if (Opts.Includes) {
Header = Opts.Includes->mapHeader(Headers, QName);
if (Header.startswith("<") || Header.startswith("\""))
return Header.str();
}
return toURI(SM, Header, Opts);
}
// Return the symbol range of the token at \p TokLoc.
std::pair<SymbolLocation::Position, SymbolLocation::Position>
getTokenRange(SourceLocation TokLoc, const SourceManager &SM,
const LangOptions &LangOpts) {
auto CreatePosition = [&SM](SourceLocation Loc) {
auto LSPLoc = sourceLocToPosition(SM, Loc);
SymbolLocation::Position Pos;
Pos.setLine(LSPLoc.line);
Pos.setColumn(LSPLoc.character);
return Pos;
};
auto TokenLength = clang::Lexer::MeasureTokenLength(TokLoc, SM, LangOpts);
return {CreatePosition(TokLoc),
CreatePosition(TokLoc.getLocWithOffset(TokenLength))};
}
bool shouldIndexFile(const SourceManager &SM, FileID FID,
const SymbolCollector::Options &Opts,
llvm::DenseMap<FileID, bool> *FilesToIndexCache) {
if (!Opts.FileFilter)
return true;
auto I = FilesToIndexCache->try_emplace(FID);
if (I.second)
I.first->second = Opts.FileFilter(SM, FID);
return I.first->second;
}
// Return the symbol location of the token at \p TokLoc.
Optional<SymbolLocation> getTokenLocation(SourceLocation TokLoc,
const SourceManager &SM,
const SymbolCollector::Options &Opts,
const clang::LangOptions &LangOpts,
std::string &FileURIStorage) {
auto U = toURI(SM, SM.getFilename(TokLoc), Opts);
if (!U)
return None;
FileURIStorage = std::move(*U);
SymbolLocation Result;
Result.FileURI = FileURIStorage.c_str();
auto Range = getTokenRange(TokLoc, SM, LangOpts);
Result.Start = Range.first;
Result.End = Range.second;
return std::move(Result);
}
// Checks whether \p ND is a definition of a TagDecl (class/struct/enum/union)
// in a header file, in which case clangd would prefer to use ND as a canonical
// declaration.
// FIXME: handle symbol types that are not TagDecl (e.g. functions), if using
// the first seen declaration as canonical declaration is not a good enough
// heuristic.
bool isPreferredDeclaration(const NamedDecl &ND, index::SymbolRoleSet Roles) {
const auto& SM = ND.getASTContext().getSourceManager();
return (Roles & static_cast<unsigned>(index::SymbolRole::Definition)) &&
isa<TagDecl>(&ND) &&
!SM.isWrittenInMainFile(SM.getExpansionLoc(ND.getLocation()));
}
RefKind toRefKind(index::SymbolRoleSet Roles) {
return static_cast<RefKind>(static_cast<unsigned>(RefKind::All) & Roles);
}
template <class T> bool explicitTemplateSpecialization(const NamedDecl &ND) {
if (const auto *TD = dyn_cast<T>(&ND))
if (TD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
return true;
return false;
}
} // namespace
SymbolCollector::SymbolCollector(Options Opts) : Opts(std::move(Opts)) {}
void SymbolCollector::initialize(ASTContext &Ctx) {
ASTCtx = &Ctx;
CompletionAllocator = std::make_shared<GlobalCodeCompletionAllocator>();
CompletionTUInfo =
llvm::make_unique<CodeCompletionTUInfo>(CompletionAllocator);
}
bool SymbolCollector::shouldCollectSymbol(const NamedDecl &ND,
const ASTContext &ASTCtx,
const Options &Opts) {
if (ND.isImplicit())
return false;
// Skip anonymous declarations, e.g (anonymous enum/class/struct).
if (ND.getDeclName().isEmpty())
return false;
// FIXME: figure out a way to handle internal linkage symbols (e.g. static
// variables, function) defined in the .cc files. Also we skip the symbols
// in anonymous namespace as the qualifier names of these symbols are like
// `foo::<anonymous>::bar`, which need a special handling.
// In real world projects, we have a relatively large set of header files
// that define static variables (like "static const int A = 1;"), we still
// want to collect these symbols, although they cause potential ODR
// violations.
if (ND.isInAnonymousNamespace())
return false;
// We want most things but not "local" symbols such as symbols inside
// FunctionDecl, BlockDecl, ObjCMethodDecl and OMPDeclareReductionDecl.
// FIXME: Need a matcher for ExportDecl in order to include symbols declared
// within an export.
const auto *DeclCtx = ND.getDeclContext();
switch (DeclCtx->getDeclKind()) {
case Decl::TranslationUnit:
case Decl::Namespace:
case Decl::LinkageSpec:
case Decl::Enum:
case Decl::ObjCProtocol:
case Decl::ObjCInterface:
case Decl::ObjCCategory:
case Decl::ObjCCategoryImpl:
case Decl::ObjCImplementation:
break;
default:
// Record has a few derivations (e.g. CXXRecord, Class specialization), it's
// easier to cast.
if (!isa<RecordDecl>(DeclCtx))
return false;
}
if (explicitTemplateSpecialization<FunctionDecl>(ND) ||
explicitTemplateSpecialization<CXXRecordDecl>(ND) ||
explicitTemplateSpecialization<VarDecl>(ND))
return false;
const auto &SM = ASTCtx.getSourceManager();
// Skip decls in the main file.
if (SM.isInMainFile(SM.getExpansionLoc(ND.getBeginLoc())))
return false;
// Avoid indexing internal symbols in protobuf generated headers.
if (isPrivateProtoDecl(ND))
return false;
return true;
}
// Always return true to continue indexing.
bool SymbolCollector::handleDeclOccurence(
const Decl *D, index::SymbolRoleSet Roles,
ArrayRef<index::SymbolRelation> Relations, SourceLocation Loc,
index::IndexDataConsumer::ASTNodeInfo ASTNode) {
assert(ASTCtx && PP.get() && "ASTContext and Preprocessor must be set.");
assert(CompletionAllocator && CompletionTUInfo);
assert(ASTNode.OrigD);
// If OrigD is an declaration associated with a friend declaration and it's
// not a definition, skip it. Note that OrigD is the occurrence that the
// collector is currently visiting.
if ((ASTNode.OrigD->getFriendObjectKind() !=
Decl::FriendObjectKind::FOK_None) &&
!(Roles & static_cast<unsigned>(index::SymbolRole::Definition)))
return true;
// A declaration created for a friend declaration should not be used as the
// canonical declaration in the index. Use OrigD instead, unless we've already
// picked a replacement for D
if (D->getFriendObjectKind() != Decl::FriendObjectKind::FOK_None)
D = CanonicalDecls.try_emplace(D, ASTNode.OrigD).first->second;
const NamedDecl *ND = dyn_cast<NamedDecl>(D);
if (!ND)
return true;
// Mark D as referenced if this is a reference coming from the main file.
// D may not be an interesting symbol, but it's cheaper to check at the end.
auto &SM = ASTCtx->getSourceManager();
auto SpellingLoc = SM.getSpellingLoc(Loc);
if (Opts.CountReferences &&
(Roles & static_cast<unsigned>(index::SymbolRole::Reference)) &&
SM.getFileID(SpellingLoc) == SM.getMainFileID())
ReferencedDecls.insert(ND);
bool CollectRef = static_cast<unsigned>(Opts.RefFilter) & Roles;
bool IsOnlyRef =
!(Roles & (static_cast<unsigned>(index::SymbolRole::Declaration) |
static_cast<unsigned>(index::SymbolRole::Definition)));
if (IsOnlyRef && !CollectRef)
return true;
if (!shouldCollectSymbol(*ND, *ASTCtx, Opts))
return true;
if (CollectRef && !isa<NamespaceDecl>(ND) &&
(Opts.RefsInHeaders || SM.getFileID(SpellingLoc) == SM.getMainFileID()))
DeclRefs[ND].emplace_back(SpellingLoc, Roles);
// Don't continue indexing if this is a mere reference.
if (IsOnlyRef)
return true;
auto ID = getSymbolID(ND);
if (!ID)
return true;
const NamedDecl &OriginalDecl = *cast<NamedDecl>(ASTNode.OrigD);
const Symbol *BasicSymbol = Symbols.find(*ID);
if (!BasicSymbol) // Regardless of role, ND is the canonical declaration.
BasicSymbol = addDeclaration(*ND, std::move(*ID));
else if (isPreferredDeclaration(OriginalDecl, Roles))
// If OriginalDecl is preferred, replace the existing canonical
// declaration (e.g. a class forward declaration). There should be at most
// one duplicate as we expect to see only one preferred declaration per
// TU, because in practice they are definitions.
BasicSymbol = addDeclaration(OriginalDecl, std::move(*ID));
if (Roles & static_cast<unsigned>(index::SymbolRole::Definition))
addDefinition(OriginalDecl, *BasicSymbol);
return true;
}
bool SymbolCollector::handleMacroOccurence(const IdentifierInfo *Name,
const MacroInfo *MI,
index::SymbolRoleSet Roles,
SourceLocation Loc) {
if (!Opts.CollectMacro)
return true;
assert(PP.get());
const auto &SM = PP->getSourceManager();
auto DefLoc = MI->getDefinitionLoc();
if (SM.isInMainFile(SM.getExpansionLoc(DefLoc)))
return true;
// Header guards are not interesting in index. Builtin macros don't have
// useful locations and are not needed for code completions.
if (MI->isUsedForHeaderGuard() || MI->isBuiltinMacro())
return true;
// Mark the macro as referenced if this is a reference coming from the main
// file. The macro may not be an interesting symbol, but it's cheaper to check
// at the end.
if (Opts.CountReferences &&
(Roles & static_cast<unsigned>(index::SymbolRole::Reference)) &&
SM.getFileID(SM.getSpellingLoc(Loc)) == SM.getMainFileID())
ReferencedMacros.insert(Name);
// Don't continue indexing if this is a mere reference.
// FIXME: remove macro with ID if it is undefined.
if (!(Roles & static_cast<unsigned>(index::SymbolRole::Declaration) ||
Roles & static_cast<unsigned>(index::SymbolRole::Definition)))
return true;
auto ID = getSymbolID(*Name, MI, SM);
if (!ID)
return true;
// Only collect one instance in case there are multiple.
if (Symbols.find(*ID) != nullptr)
return true;
Symbol S;
S.ID = std::move(*ID);
S.Name = Name->getName();
S.Flags |= Symbol::IndexedForCodeCompletion;
S.SymInfo = index::getSymbolInfoForMacro(*MI);
std::string FileURI;
// FIXME: use the result to filter out symbols.
shouldIndexFile(SM, SM.getFileID(Loc), Opts, &FilesToIndexCache);
if (auto DeclLoc =
getTokenLocation(DefLoc, SM, Opts, PP->getLangOpts(), FileURI))
S.CanonicalDeclaration = *DeclLoc;
CodeCompletionResult SymbolCompletion(Name);
const auto *CCS = SymbolCompletion.CreateCodeCompletionStringForMacro(
*PP, *CompletionAllocator, *CompletionTUInfo);
std::string Signature;
std::string SnippetSuffix;
getSignature(*CCS, &Signature, &SnippetSuffix);
std::string Include;
if (Opts.CollectIncludePath && shouldCollectIncludePath(S.SymInfo.Kind)) {
if (auto Header = getIncludeHeader(Name->getName(), SM,
SM.getExpansionLoc(DefLoc), Opts))
Include = std::move(*Header);
}
S.Signature = Signature;
S.CompletionSnippetSuffix = SnippetSuffix;
if (!Include.empty())
S.IncludeHeaders.emplace_back(Include, 1);
Symbols.insert(S);
return true;
}
void SymbolCollector::finish() {
// At the end of the TU, add 1 to the refcount of all referenced symbols.
auto IncRef = [this](const SymbolID &ID) {
if (const auto *S = Symbols.find(ID)) {
Symbol Inc = *S;
++Inc.References;
Symbols.insert(Inc);
}
};
for (const NamedDecl *ND : ReferencedDecls) {
if (auto ID = getSymbolID(ND)) {
IncRef(*ID);
}
}
if (Opts.CollectMacro) {
assert(PP);
for (const IdentifierInfo *II : ReferencedMacros) {
if (const auto *MI = PP->getMacroDefinition(II).getMacroInfo())
if (auto ID = getSymbolID(*II, MI, PP->getSourceManager()))
IncRef(*ID);
}
}
const auto &SM = ASTCtx->getSourceManager();
DenseMap<FileID, std::string> URICache;
auto GetURI = [&](FileID FID) -> Optional<std::string> {
auto Found = URICache.find(FID);
if (Found == URICache.end()) {
if (auto *FileEntry = SM.getFileEntryForID(FID)) {
auto FileURI = toURI(SM, FileEntry->getName(), Opts);
if (!FileURI) {
log("Failed to create URI for file: {0}\n", FileEntry);
FileURI = ""; // reset to empty as we also want to cache this case.
}
Found = URICache.insert({FID, *FileURI}).first;
} else {
// Ignore cases where we can not find a corresponding file entry
// for the loc, thoses are not interesting, e.g. symbols formed
// via macro concatenation.
return None;
}
}
return Found->second;
};
if (auto MainFileURI = GetURI(SM.getMainFileID())) {
for (const auto &It : DeclRefs) {
if (auto ID = getSymbolID(It.first)) {
for (const auto &LocAndRole : It.second) {
auto FileID = SM.getFileID(LocAndRole.first);
// FIXME: use the result to filter out references.
shouldIndexFile(SM, FileID, Opts, &FilesToIndexCache);
if (auto FileURI = GetURI(FileID)) {
auto Range =
getTokenRange(LocAndRole.first, SM, ASTCtx->getLangOpts());
Ref R;
R.Location.Start = Range.first;
R.Location.End = Range.second;
R.Location.FileURI = FileURI->c_str();
R.Kind = toRefKind(LocAndRole.second);
Refs.insert(*ID, R);
}
}
}
}
}
ReferencedDecls.clear();
ReferencedMacros.clear();
DeclRefs.clear();
FilesToIndexCache.clear();
}
const Symbol *SymbolCollector::addDeclaration(const NamedDecl &ND,
SymbolID ID) {
auto &Ctx = ND.getASTContext();
auto &SM = Ctx.getSourceManager();
Symbol S;
S.ID = std::move(ID);
std::string QName = printQualifiedName(ND);
std::tie(S.Scope, S.Name) = splitQualifiedName(QName);
// FIXME: this returns foo:bar: for objective-C methods, we prefer only foo:
// for consistency with CodeCompletionString and a clean name/signature split.
if (isIndexedForCodeCompletion(ND, Ctx))
S.Flags |= Symbol::IndexedForCodeCompletion;
if (isImplementationDetail(&ND))
S.Flags |= Symbol::ImplementationDetail;
S.SymInfo = index::getSymbolInfo(&ND);
std::string FileURI;
auto Loc = findNameLoc(&ND);
// FIXME: use the result to filter out symbols.
shouldIndexFile(SM, SM.getFileID(Loc), Opts, &FilesToIndexCache);
if (auto DeclLoc =
getTokenLocation(Loc, SM, Opts, ASTCtx->getLangOpts(), FileURI))
S.CanonicalDeclaration = *DeclLoc;
// Add completion info.
// FIXME: we may want to choose a different redecl, or combine from several.
assert(ASTCtx && PP.get() && "ASTContext and Preprocessor must be set.");
// We use the primary template, as clang does during code completion.
CodeCompletionResult SymbolCompletion(&getTemplateOrThis(ND), 0);
const auto *CCS = SymbolCompletion.CreateCodeCompletionString(
*ASTCtx, *PP, CodeCompletionContext::CCC_Symbol, *CompletionAllocator,
*CompletionTUInfo,
/*IncludeBriefComments*/ false);
std::string Signature;
std::string SnippetSuffix;
getSignature(*CCS, &Signature, &SnippetSuffix);
std::string Documentation =
formatDocumentation(*CCS, getDocComment(Ctx, SymbolCompletion,
/*CommentsFromHeaders=*/true));
std::string ReturnType = getReturnType(*CCS);
std::string Include;
if (Opts.CollectIncludePath && shouldCollectIncludePath(S.SymInfo.Kind)) {
// Use the expansion location to get the #include header since this is
// where the symbol is exposed.
if (auto Header = getIncludeHeader(
QName, SM, SM.getExpansionLoc(ND.getLocation()), Opts))
Include = std::move(*Header);
}
S.Signature = Signature;
S.CompletionSnippetSuffix = SnippetSuffix;
S.Documentation = Documentation;
S.ReturnType = ReturnType;
if (!Include.empty())
S.IncludeHeaders.emplace_back(Include, 1);
llvm::Optional<OpaqueType> TypeStorage;
if (S.Flags & Symbol::IndexedForCodeCompletion) {
TypeStorage = OpaqueType::fromCompletionResult(*ASTCtx, SymbolCompletion);
if (TypeStorage)
S.Type = TypeStorage->raw();
}
S.Origin = Opts.Origin;
if (ND.getAvailability() == AR_Deprecated)
S.Flags |= Symbol::Deprecated;
Symbols.insert(S);
return Symbols.find(S.ID);
}
void SymbolCollector::addDefinition(const NamedDecl &ND,
const Symbol &DeclSym) {
if (DeclSym.Definition)
return;
// If we saw some forward declaration, we end up copying the symbol.
// This is not ideal, but avoids duplicating the "is this a definition" check
// in clang::index. We should only see one definition.
Symbol S = DeclSym;
std::string FileURI;
auto Loc = findNameLoc(&ND);
const auto &SM = ND.getASTContext().getSourceManager();
// FIXME: use the result to filter out symbols.
shouldIndexFile(SM, SM.getFileID(Loc), Opts, &FilesToIndexCache);
if (auto DefLoc =
getTokenLocation(Loc, SM, Opts, ASTCtx->getLangOpts(), FileURI))
S.Definition = *DefLoc;
Symbols.insert(S);
}
} // namespace clangd
} // namespace clang