blob: ae420b35347101eb2090a9c363c65aefb975a79d [file] [log] [blame]
/* tc-arm.c -- Assemble for the ARM
Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
2004, 2005
Free Software Foundation, Inc.
Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
Modified by David Taylor (dtaylor@armltd.co.uk)
Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
02110-1301, USA. */
#include <string.h>
#define NO_RELOC 0
#include "as.h"
#include "safe-ctype.h"
/* Need TARGET_CPU. */
#include "config.h"
#include "subsegs.h"
#include "obstack.h"
#include "symbols.h"
#include "listing.h"
#include "opcode/arm.h"
#ifdef OBJ_ELF
#include "elf/arm.h"
#include "dwarf2dbg.h"
#include "dw2gencfi.h"
#endif
/* XXX Set this to 1 after the next binutils release. */
#define WARN_DEPRECATED 0
#ifdef OBJ_ELF
/* Must be at least the size of the largest unwind opcode (currently two). */
#define ARM_OPCODE_CHUNK_SIZE 8
/* This structure holds the unwinding state. */
static struct
{
symbolS * proc_start;
symbolS * table_entry;
symbolS * personality_routine;
int personality_index;
/* The segment containing the function. */
segT saved_seg;
subsegT saved_subseg;
/* Opcodes generated from this function. */
unsigned char * opcodes;
int opcode_count;
int opcode_alloc;
/* The number of bytes pushed to the stack. */
offsetT frame_size;
/* We don't add stack adjustment opcodes immediately so that we can merge
multiple adjustments. We can also omit the final adjustment
when using a frame pointer. */
offsetT pending_offset;
/* These two fields are set by both unwind_movsp and unwind_setfp. They
hold the reg+offset to use when restoring sp from a frame pointer. */
offsetT fp_offset;
int fp_reg;
/* Nonzero if an unwind_setfp directive has been seen. */
unsigned fp_used:1;
/* Nonzero if the last opcode restores sp from fp_reg. */
unsigned sp_restored:1;
} unwind;
/* Bit N indicates that an R_ARM_NONE relocation has been output for
__aeabi_unwind_cpp_prN already if set. This enables dependencies to be
emitted only once per section, to save unnecessary bloat. */
static unsigned int marked_pr_dependency = 0;
#endif /* OBJ_ELF */
enum arm_float_abi
{
ARM_FLOAT_ABI_HARD,
ARM_FLOAT_ABI_SOFTFP,
ARM_FLOAT_ABI_SOFT
};
/* Types of processor to assemble for. */
#ifndef CPU_DEFAULT
#if defined __XSCALE__
#define CPU_DEFAULT ARM_ARCH_XSCALE
#else
#if defined __thumb__
#define CPU_DEFAULT ARM_ARCH_V5T
#endif
#endif
#endif
#ifndef FPU_DEFAULT
# ifdef TE_LINUX
# define FPU_DEFAULT FPU_ARCH_FPA
# elif defined (TE_NetBSD)
# ifdef OBJ_ELF
# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
# else
/* Legacy a.out format. */
# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
# endif
# elif defined (TE_VXWORKS)
# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
# else
/* For backwards compatibility, default to FPA. */
# define FPU_DEFAULT FPU_ARCH_FPA
# endif
#endif /* ifndef FPU_DEFAULT */
#define streq(a, b) (strcmp (a, b) == 0)
static arm_feature_set cpu_variant;
static arm_feature_set arm_arch_used;
static arm_feature_set thumb_arch_used;
/* Flags stored in private area of BFD structure. */
static int uses_apcs_26 = FALSE;
static int atpcs = FALSE;
static int support_interwork = FALSE;
static int uses_apcs_float = FALSE;
static int pic_code = FALSE;
/* Variables that we set while parsing command-line options. Once all
options have been read we re-process these values to set the real
assembly flags. */
static const arm_feature_set *legacy_cpu = NULL;
static const arm_feature_set *legacy_fpu = NULL;
static const arm_feature_set *mcpu_cpu_opt = NULL;
static const arm_feature_set *mcpu_fpu_opt = NULL;
static const arm_feature_set *march_cpu_opt = NULL;
static const arm_feature_set *march_fpu_opt = NULL;
static const arm_feature_set *mfpu_opt = NULL;
/* Constants for known architecture features. */
static const arm_feature_set fpu_default = FPU_DEFAULT;
static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
#ifdef CPU_DEFAULT
static const arm_feature_set cpu_default = CPU_DEFAULT;
#endif
static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
static const arm_feature_set arm_ext_v4t_5 =
ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
static const arm_feature_set arm_arch_any = ARM_ANY;
static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
static const arm_feature_set arm_cext_iwmmxt =
ARM_FEATURE (0, ARM_CEXT_IWMMXT);
static const arm_feature_set arm_cext_xscale =
ARM_FEATURE (0, ARM_CEXT_XSCALE);
static const arm_feature_set arm_cext_maverick =
ARM_FEATURE (0, ARM_CEXT_MAVERICK);
static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
static const arm_feature_set fpu_vfp_ext_v1xd =
ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
static int mfloat_abi_opt = -1;
/* Record user cpu selection for object attributes. */
static arm_feature_set selected_cpu = ARM_ARCH_NONE;
/* Must be long enough to hold any of the names in arm_cpus. */
static char selected_cpu_name[16];
#ifdef OBJ_ELF
# ifdef EABI_DEFAULT
static int meabi_flags = EABI_DEFAULT;
# else
static int meabi_flags = EF_ARM_EABI_UNKNOWN;
# endif
#endif
#ifdef OBJ_ELF
/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
symbolS * GOT_symbol;
#endif
/* 0: assemble for ARM,
1: assemble for Thumb,
2: assemble for Thumb even though target CPU does not support thumb
instructions. */
static int thumb_mode = 0;
/* If unified_syntax is true, we are processing the new unified
ARM/Thumb syntax. Important differences from the old ARM mode:
- Immediate operands do not require a # prefix.
- Conditional affixes always appear at the end of the
instruction. (For backward compatibility, those instructions
that formerly had them in the middle, continue to accept them
there.)
- The IT instruction may appear, and if it does is validated
against subsequent conditional affixes. It does not generate
machine code.
Important differences from the old Thumb mode:
- Immediate operands do not require a # prefix.
- Most of the V6T2 instructions are only available in unified mode.
- The .N and .W suffixes are recognized and honored (it is an error
if they cannot be honored).
- All instructions set the flags if and only if they have an 's' affix.
- Conditional affixes may be used. They are validated against
preceding IT instructions. Unlike ARM mode, you cannot use a
conditional affix except in the scope of an IT instruction. */
static bfd_boolean unified_syntax = FALSE;
struct arm_it
{
const char * error;
unsigned long instruction;
int size;
int size_req;
int cond;
/* Set to the opcode if the instruction needs relaxation.
Zero if the instruction is not relaxed. */
unsigned long relax;
struct
{
bfd_reloc_code_real_type type;
expressionS exp;
int pc_rel;
} reloc;
struct
{
unsigned reg;
signed int imm;
unsigned present : 1; /* Operand present. */
unsigned isreg : 1; /* Operand was a register. */
unsigned immisreg : 1; /* .imm field is a second register. */
unsigned hasreloc : 1; /* Operand has relocation suffix. */
unsigned writeback : 1; /* Operand has trailing ! */
unsigned preind : 1; /* Preindexed address. */
unsigned postind : 1; /* Postindexed address. */
unsigned negative : 1; /* Index register was negated. */
unsigned shifted : 1; /* Shift applied to operation. */
unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
} operands[6];
};
static struct arm_it inst;
#define NUM_FLOAT_VALS 8
const char * fp_const[] =
{
"0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
};
/* Number of littlenums required to hold an extended precision number. */
#define MAX_LITTLENUMS 6
LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
#define FAIL (-1)
#define SUCCESS (0)
#define SUFF_S 1
#define SUFF_D 2
#define SUFF_E 3
#define SUFF_P 4
#define CP_T_X 0x00008000
#define CP_T_Y 0x00400000
#define CONDS_BIT 0x00100000
#define LOAD_BIT 0x00100000
#define DOUBLE_LOAD_FLAG 0x00000001
struct asm_cond
{
const char * template;
unsigned long value;
};
#define COND_ALWAYS 0xE
struct asm_psr
{
const char *template;
unsigned long field;
};
struct asm_barrier_opt
{
const char *template;
unsigned long value;
};
/* The bit that distinguishes CPSR and SPSR. */
#define SPSR_BIT (1 << 22)
/* The individual PSR flag bits. */
#define PSR_c (1 << 16)
#define PSR_x (1 << 17)
#define PSR_s (1 << 18)
#define PSR_f (1 << 19)
struct reloc_entry
{
char *name;
bfd_reloc_code_real_type reloc;
};
enum vfp_sp_reg_pos
{
VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn
};
enum vfp_ldstm_type
{
VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
};
/* ARM register categories. This includes coprocessor numbers and various
architecture extensions' registers. */
enum arm_reg_type
{
REG_TYPE_RN,
REG_TYPE_CP,
REG_TYPE_CN,
REG_TYPE_FN,
REG_TYPE_VFS,
REG_TYPE_VFD,
REG_TYPE_VFC,
REG_TYPE_MVF,
REG_TYPE_MVD,
REG_TYPE_MVFX,
REG_TYPE_MVDX,
REG_TYPE_MVAX,
REG_TYPE_DSPSC,
REG_TYPE_MMXWR,
REG_TYPE_MMXWC,
REG_TYPE_MMXWCG,
REG_TYPE_XSCALE,
};
/* Structure for a hash table entry for a register. */
struct reg_entry
{
const char *name;
unsigned char number;
unsigned char type;
unsigned char builtin;
};
/* Diagnostics used when we don't get a register of the expected type. */
const char *const reg_expected_msgs[] =
{
N_("ARM register expected"),
N_("bad or missing co-processor number"),
N_("co-processor register expected"),
N_("FPA register expected"),
N_("VFP single precision register expected"),
N_("VFP double precision register expected"),
N_("VFP system register expected"),
N_("Maverick MVF register expected"),
N_("Maverick MVD register expected"),
N_("Maverick MVFX register expected"),
N_("Maverick MVDX register expected"),
N_("Maverick MVAX register expected"),
N_("Maverick DSPSC register expected"),
N_("iWMMXt data register expected"),
N_("iWMMXt control register expected"),
N_("iWMMXt scalar register expected"),
N_("XScale accumulator register expected"),
};
/* Some well known registers that we refer to directly elsewhere. */
#define REG_SP 13
#define REG_LR 14
#define REG_PC 15
/* ARM instructions take 4bytes in the object file, Thumb instructions
take 2: */
#define INSN_SIZE 4
struct asm_opcode
{
/* Basic string to match. */
const char *template;
/* Parameters to instruction. */
unsigned char operands[8];
/* Conditional tag - see opcode_lookup. */
unsigned int tag : 4;
/* Basic instruction code. */
unsigned int avalue : 28;
/* Thumb-format instruction code. */
unsigned int tvalue;
/* Which architecture variant provides this instruction. */
const arm_feature_set *avariant;
const arm_feature_set *tvariant;
/* Function to call to encode instruction in ARM format. */
void (* aencode) (void);
/* Function to call to encode instruction in Thumb format. */
void (* tencode) (void);
};
/* Defines for various bits that we will want to toggle. */
#define INST_IMMEDIATE 0x02000000
#define OFFSET_REG 0x02000000
#define HWOFFSET_IMM 0x00400000
#define SHIFT_BY_REG 0x00000010
#define PRE_INDEX 0x01000000
#define INDEX_UP 0x00800000
#define WRITE_BACK 0x00200000
#define LDM_TYPE_2_OR_3 0x00400000
#define LITERAL_MASK 0xf000f000
#define OPCODE_MASK 0xfe1fffff
#define V4_STR_BIT 0x00000020
#define DATA_OP_SHIFT 21
#define T2_OPCODE_MASK 0xfe1fffff
#define T2_DATA_OP_SHIFT 21
/* Codes to distinguish the arithmetic instructions. */
#define OPCODE_AND 0
#define OPCODE_EOR 1
#define OPCODE_SUB 2
#define OPCODE_RSB 3
#define OPCODE_ADD 4
#define OPCODE_ADC 5
#define OPCODE_SBC 6
#define OPCODE_RSC 7
#define OPCODE_TST 8
#define OPCODE_TEQ 9
#define OPCODE_CMP 10
#define OPCODE_CMN 11
#define OPCODE_ORR 12
#define OPCODE_MOV 13
#define OPCODE_BIC 14
#define OPCODE_MVN 15
#define T2_OPCODE_AND 0
#define T2_OPCODE_BIC 1
#define T2_OPCODE_ORR 2
#define T2_OPCODE_ORN 3
#define T2_OPCODE_EOR 4
#define T2_OPCODE_ADD 8
#define T2_OPCODE_ADC 10
#define T2_OPCODE_SBC 11
#define T2_OPCODE_SUB 13
#define T2_OPCODE_RSB 14
#define T_OPCODE_MUL 0x4340
#define T_OPCODE_TST 0x4200
#define T_OPCODE_CMN 0x42c0
#define T_OPCODE_NEG 0x4240
#define T_OPCODE_MVN 0x43c0
#define T_OPCODE_ADD_R3 0x1800
#define T_OPCODE_SUB_R3 0x1a00
#define T_OPCODE_ADD_HI 0x4400
#define T_OPCODE_ADD_ST 0xb000
#define T_OPCODE_SUB_ST 0xb080
#define T_OPCODE_ADD_SP 0xa800
#define T_OPCODE_ADD_PC 0xa000
#define T_OPCODE_ADD_I8 0x3000
#define T_OPCODE_SUB_I8 0x3800
#define T_OPCODE_ADD_I3 0x1c00
#define T_OPCODE_SUB_I3 0x1e00
#define T_OPCODE_ASR_R 0x4100
#define T_OPCODE_LSL_R 0x4080
#define T_OPCODE_LSR_R 0x40c0
#define T_OPCODE_ROR_R 0x41c0
#define T_OPCODE_ASR_I 0x1000
#define T_OPCODE_LSL_I 0x0000
#define T_OPCODE_LSR_I 0x0800
#define T_OPCODE_MOV_I8 0x2000
#define T_OPCODE_CMP_I8 0x2800
#define T_OPCODE_CMP_LR 0x4280
#define T_OPCODE_MOV_HR 0x4600
#define T_OPCODE_CMP_HR 0x4500
#define T_OPCODE_LDR_PC 0x4800
#define T_OPCODE_LDR_SP 0x9800
#define T_OPCODE_STR_SP 0x9000
#define T_OPCODE_LDR_IW 0x6800
#define T_OPCODE_STR_IW 0x6000
#define T_OPCODE_LDR_IH 0x8800
#define T_OPCODE_STR_IH 0x8000
#define T_OPCODE_LDR_IB 0x7800
#define T_OPCODE_STR_IB 0x7000
#define T_OPCODE_LDR_RW 0x5800
#define T_OPCODE_STR_RW 0x5000
#define T_OPCODE_LDR_RH 0x5a00
#define T_OPCODE_STR_RH 0x5200
#define T_OPCODE_LDR_RB 0x5c00
#define T_OPCODE_STR_RB 0x5400
#define T_OPCODE_PUSH 0xb400
#define T_OPCODE_POP 0xbc00
#define T_OPCODE_BRANCH 0xe000
#define THUMB_SIZE 2 /* Size of thumb instruction. */
#define THUMB_PP_PC_LR 0x0100
#define THUMB_LOAD_BIT 0x0800
#define THUMB2_LOAD_BIT 0x00100000
#define BAD_ARGS _("bad arguments to instruction")
#define BAD_PC _("r15 not allowed here")
#define BAD_COND _("instruction cannot be conditional")
#define BAD_OVERLAP _("registers may not be the same")
#define BAD_HIREG _("lo register required")
#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
#define BAD_BRANCH _("branch must be last instruction in IT block")
#define BAD_NOT_IT _("instruction not allowed in IT block")
static struct hash_control *arm_ops_hsh;
static struct hash_control *arm_cond_hsh;
static struct hash_control *arm_shift_hsh;
static struct hash_control *arm_psr_hsh;
static struct hash_control *arm_v7m_psr_hsh;
static struct hash_control *arm_reg_hsh;
static struct hash_control *arm_reloc_hsh;
static struct hash_control *arm_barrier_opt_hsh;
/* Stuff needed to resolve the label ambiguity
As:
...
label: <insn>
may differ from:
...
label:
<insn>
*/
symbolS * last_label_seen;
static int label_is_thumb_function_name = FALSE;
/* Literal pool structure. Held on a per-section
and per-sub-section basis. */
#define MAX_LITERAL_POOL_SIZE 1024
typedef struct literal_pool
{
expressionS literals [MAX_LITERAL_POOL_SIZE];
unsigned int next_free_entry;
unsigned int id;
symbolS * symbol;
segT section;
subsegT sub_section;
struct literal_pool * next;
} literal_pool;
/* Pointer to a linked list of literal pools. */
literal_pool * list_of_pools = NULL;
/* State variables for IT block handling. */
static bfd_boolean current_it_mask = 0;
static int current_cc;
/* Pure syntax. */
/* This array holds the chars that always start a comment. If the
pre-processor is disabled, these aren't very useful. */
const char comment_chars[] = "@";
/* This array holds the chars that only start a comment at the beginning of
a line. If the line seems to have the form '# 123 filename'
.line and .file directives will appear in the pre-processed output. */
/* Note that input_file.c hand checks for '#' at the beginning of the
first line of the input file. This is because the compiler outputs
#NO_APP at the beginning of its output. */
/* Also note that comments like this one will always work. */
const char line_comment_chars[] = "#";
const char line_separator_chars[] = ";";
/* Chars that can be used to separate mant
from exp in floating point numbers. */
const char EXP_CHARS[] = "eE";
/* Chars that mean this number is a floating point constant. */
/* As in 0f12.456 */
/* or 0d1.2345e12 */
const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
/* Prefix characters that indicate the start of an immediate
value. */
#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
/* Separator character handling. */
#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
static inline int
skip_past_char (char ** str, char c)
{
if (**str == c)
{
(*str)++;
return SUCCESS;
}
else
return FAIL;
}
#define skip_past_comma(str) skip_past_char (str, ',')
/* Arithmetic expressions (possibly involving symbols). */
/* Return TRUE if anything in the expression is a bignum. */
static int
walk_no_bignums (symbolS * sp)
{
if (symbol_get_value_expression (sp)->X_op == O_big)
return 1;
if (symbol_get_value_expression (sp)->X_add_symbol)
{
return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
|| (symbol_get_value_expression (sp)->X_op_symbol
&& walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
}
return 0;
}
static int in_my_get_expression = 0;
/* Third argument to my_get_expression. */
#define GE_NO_PREFIX 0
#define GE_IMM_PREFIX 1
#define GE_OPT_PREFIX 2
static int
my_get_expression (expressionS * ep, char ** str, int prefix_mode)
{
char * save_in;
segT seg;
/* In unified syntax, all prefixes are optional. */
if (unified_syntax)
prefix_mode = GE_OPT_PREFIX;
switch (prefix_mode)
{
case GE_NO_PREFIX: break;
case GE_IMM_PREFIX:
if (!is_immediate_prefix (**str))
{
inst.error = _("immediate expression requires a # prefix");
return FAIL;
}
(*str)++;
break;
case GE_OPT_PREFIX:
if (is_immediate_prefix (**str))
(*str)++;
break;
default: abort ();
}
memset (ep, 0, sizeof (expressionS));
save_in = input_line_pointer;
input_line_pointer = *str;
in_my_get_expression = 1;
seg = expression (ep);
in_my_get_expression = 0;
if (ep->X_op == O_illegal)
{
/* We found a bad expression in md_operand(). */
*str = input_line_pointer;
input_line_pointer = save_in;
if (inst.error == NULL)
inst.error = _("bad expression");
return 1;
}
#ifdef OBJ_AOUT
if (seg != absolute_section
&& seg != text_section
&& seg != data_section
&& seg != bss_section
&& seg != undefined_section)
{
inst.error = _("bad segment");
*str = input_line_pointer;
input_line_pointer = save_in;
return 1;
}
#endif
/* Get rid of any bignums now, so that we don't generate an error for which
we can't establish a line number later on. Big numbers are never valid
in instructions, which is where this routine is always called. */
if (ep->X_op == O_big
|| (ep->X_add_symbol
&& (walk_no_bignums (ep->X_add_symbol)
|| (ep->X_op_symbol
&& walk_no_bignums (ep->X_op_symbol)))))
{
inst.error = _("invalid constant");
*str = input_line_pointer;
input_line_pointer = save_in;
return 1;
}
*str = input_line_pointer;
input_line_pointer = save_in;
return 0;
}
/* Turn a string in input_line_pointer into a floating point constant
of type TYPE, and store the appropriate bytes in *LITP. The number
of LITTLENUMS emitted is stored in *SIZEP. An error message is
returned, or NULL on OK.
Note that fp constants aren't represent in the normal way on the ARM.
In big endian mode, things are as expected. However, in little endian
mode fp constants are big-endian word-wise, and little-endian byte-wise
within the words. For example, (double) 1.1 in big endian mode is
the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
the byte sequence 99 99 f1 3f 9a 99 99 99.
??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
char *
md_atof (int type, char * litP, int * sizeP)
{
int prec;
LITTLENUM_TYPE words[MAX_LITTLENUMS];
char *t;
int i;
switch (type)
{
case 'f':
case 'F':
case 's':
case 'S':
prec = 2;
break;
case 'd':
case 'D':
case 'r':
case 'R':
prec = 4;
break;
case 'x':
case 'X':
prec = 6;
break;
case 'p':
case 'P':
prec = 6;
break;
default:
*sizeP = 0;
return _("bad call to MD_ATOF()");
}
t = atof_ieee (input_line_pointer, type, words);
if (t)
input_line_pointer = t;
*sizeP = prec * 2;
if (target_big_endian)
{
for (i = 0; i < prec; i++)
{
md_number_to_chars (litP, (valueT) words[i], 2);
litP += 2;
}
}
else
{
if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
for (i = prec - 1; i >= 0; i--)
{
md_number_to_chars (litP, (valueT) words[i], 2);
litP += 2;
}
else
/* For a 4 byte float the order of elements in `words' is 1 0.
For an 8 byte float the order is 1 0 3 2. */
for (i = 0; i < prec; i += 2)
{
md_number_to_chars (litP, (valueT) words[i + 1], 2);
md_number_to_chars (litP + 2, (valueT) words[i], 2);
litP += 4;
}
}
return 0;
}
/* We handle all bad expressions here, so that we can report the faulty
instruction in the error message. */
void
md_operand (expressionS * expr)
{
if (in_my_get_expression)
expr->X_op = O_illegal;
}
/* Immediate values. */
/* Generic immediate-value read function for use in directives.
Accepts anything that 'expression' can fold to a constant.
*val receives the number. */
#ifdef OBJ_ELF
static int
immediate_for_directive (int *val)
{
expressionS exp;
exp.X_op = O_illegal;
if (is_immediate_prefix (*input_line_pointer))
{
input_line_pointer++;
expression (&exp);
}
if (exp.X_op != O_constant)
{
as_bad (_("expected #constant"));
ignore_rest_of_line ();
return FAIL;
}
*val = exp.X_add_number;
return SUCCESS;
}
#endif
/* Register parsing. */
/* Generic register parser. CCP points to what should be the
beginning of a register name. If it is indeed a valid register
name, advance CCP over it and return the reg_entry structure;
otherwise return NULL. Does not issue diagnostics. */
static struct reg_entry *
arm_reg_parse_multi (char **ccp)
{
char *start = *ccp;
char *p;
struct reg_entry *reg;
#ifdef REGISTER_PREFIX
if (*start != REGISTER_PREFIX)
return NULL;
start++;
#endif
#ifdef OPTIONAL_REGISTER_PREFIX
if (*start == OPTIONAL_REGISTER_PREFIX)
start++;
#endif
p = start;
if (!ISALPHA (*p) || !is_name_beginner (*p))
return NULL;
do
p++;
while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
if (!reg)
return NULL;
*ccp = p;
return reg;
}
/* As above, but the register must be of type TYPE, and the return
value is the register number or FAIL. */
static int
arm_reg_parse (char **ccp, enum arm_reg_type type)
{
char *start = *ccp;
struct reg_entry *reg = arm_reg_parse_multi (ccp);
if (reg && reg->type == type)
return reg->number;
/* Alternative syntaxes are accepted for a few register classes. */
switch (type)
{
case REG_TYPE_MVF:
case REG_TYPE_MVD:
case REG_TYPE_MVFX:
case REG_TYPE_MVDX:
/* Generic coprocessor register names are allowed for these. */
if (reg && reg->type == REG_TYPE_CN)
return reg->number;
break;
case REG_TYPE_CP:
/* For backward compatibility, a bare number is valid here. */
{
unsigned long processor = strtoul (start, ccp, 10);
if (*ccp != start && processor <= 15)
return processor;
}
case REG_TYPE_MMXWC:
/* WC includes WCG. ??? I'm not sure this is true for all
instructions that take WC registers. */
if (reg && reg->type == REG_TYPE_MMXWCG)
return reg->number;
break;
default:
break;
}
*ccp = start;
return FAIL;
}
/* Parse an ARM register list. Returns the bitmask, or FAIL. */
static long
parse_reg_list (char ** strp)
{
char * str = * strp;
long range = 0;
int another_range;
/* We come back here if we get ranges concatenated by '+' or '|'. */
do
{
another_range = 0;
if (*str == '{')
{
int in_range = 0;
int cur_reg = -1;
str++;
do
{
int reg;
if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
{
inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
return FAIL;
}
if (in_range)
{
int i;
if (reg <= cur_reg)
{
inst.error = _("bad range in register list");
return FAIL;
}
for (i = cur_reg + 1; i < reg; i++)
{
if (range & (1 << i))
as_tsktsk
(_("Warning: duplicated register (r%d) in register list"),
i);
else
range |= 1 << i;
}
in_range = 0;
}
if (range & (1 << reg))
as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
reg);
else if (reg <= cur_reg)
as_tsktsk (_("Warning: register range not in ascending order"));
range |= 1 << reg;
cur_reg = reg;
}
while (skip_past_comma (&str) != FAIL
|| (in_range = 1, *str++ == '-'));
str--;
if (*str++ != '}')
{
inst.error = _("missing `}'");
return FAIL;
}
}
else
{
expressionS expr;
if (my_get_expression (&expr, &str, GE_NO_PREFIX))
return FAIL;
if (expr.X_op == O_constant)
{
if (expr.X_add_number
!= (expr.X_add_number & 0x0000ffff))
{
inst.error = _("invalid register mask");
return FAIL;
}
if ((range & expr.X_add_number) != 0)
{
int regno = range & expr.X_add_number;
regno &= -regno;
regno = (1 << regno) - 1;
as_tsktsk
(_("Warning: duplicated register (r%d) in register list"),
regno);
}
range |= expr.X_add_number;
}
else
{
if (inst.reloc.type != 0)
{
inst.error = _("expression too complex");
return FAIL;
}
memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
inst.reloc.type = BFD_RELOC_ARM_MULTI;
inst.reloc.pc_rel = 0;
}
}
if (*str == '|' || *str == '+')
{
str++;
another_range = 1;
}
}
while (another_range);
*strp = str;
return range;
}
/* Parse a VFP register list. If the string is invalid return FAIL.
Otherwise return the number of registers, and set PBASE to the first
register. Double precision registers are matched if DP is nonzero. */
static int
parse_vfp_reg_list (char **str, unsigned int *pbase, int dp)
{
int base_reg;
int new_base;
int regtype;
int max_regs;
int count = 0;
int warned = 0;
unsigned long mask = 0;
int i;
if (**str != '{')
return FAIL;
(*str)++;
if (dp)
{
regtype = REG_TYPE_VFD;
max_regs = 16;
}
else
{
regtype = REG_TYPE_VFS;
max_regs = 32;
}
base_reg = max_regs;
do
{
new_base = arm_reg_parse (str, regtype);
if (new_base == FAIL)
{
inst.error = gettext (reg_expected_msgs[regtype]);
return FAIL;
}
if (new_base < base_reg)
base_reg = new_base;
if (mask & (1 << new_base))
{
inst.error = _("invalid register list");
return FAIL;
}
if ((mask >> new_base) != 0 && ! warned)
{
as_tsktsk (_("register list not in ascending order"));
warned = 1;
}
mask |= 1 << new_base;
count++;
if (**str == '-') /* We have the start of a range expression */
{
int high_range;
(*str)++;
if ((high_range = arm_reg_parse (str, regtype)) == FAIL)
{
inst.error = gettext (reg_expected_msgs[regtype]);
return FAIL;
}
if (high_range <= new_base)
{
inst.error = _("register range not in ascending order");
return FAIL;
}
for (new_base++; new_base <= high_range; new_base++)
{
if (mask & (1 << new_base))
{
inst.error = _("invalid register list");
return FAIL;
}
mask |= 1 << new_base;
count++;
}
}
}
while (skip_past_comma (str) != FAIL);
(*str)++;
/* Sanity check -- should have raised a parse error above. */
if (count == 0 || count > max_regs)
abort ();
*pbase = base_reg;
/* Final test -- the registers must be consecutive. */
mask >>= base_reg;
for (i = 0; i < count; i++)
{
if ((mask & (1u << i)) == 0)
{
inst.error = _("non-contiguous register range");
return FAIL;
}
}
return count;
}
/* Parse an explicit relocation suffix on an expression. This is
either nothing, or a word in parentheses. Note that if !OBJ_ELF,
arm_reloc_hsh contains no entries, so this function can only
succeed if there is no () after the word. Returns -1 on error,
BFD_RELOC_UNUSED if there wasn't any suffix. */
static int
parse_reloc (char **str)
{
struct reloc_entry *r;
char *p, *q;
if (**str != '(')
return BFD_RELOC_UNUSED;
p = *str + 1;
q = p;
while (*q && *q != ')' && *q != ',')
q++;
if (*q != ')')
return -1;
if ((r = hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
return -1;
*str = q + 1;
return r->reloc;
}
/* Directives: register aliases. */
static void
insert_reg_alias (char *str, int number, int type)
{
struct reg_entry *new;
const char *name;
if ((new = hash_find (arm_reg_hsh, str)) != 0)
{
if (new->builtin)
as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
/* Only warn about a redefinition if it's not defined as the
same register. */
else if (new->number != number || new->type != type)
as_warn (_("ignoring redefinition of register alias '%s'"), str);
return;
}
name = xstrdup (str);
new = xmalloc (sizeof (struct reg_entry));
new->name = name;
new->number = number;
new->type = type;
new->builtin = FALSE;
if (hash_insert (arm_reg_hsh, name, (PTR) new))
abort ();
}
/* Look for the .req directive. This is of the form:
new_register_name .req existing_register_name
If we find one, or if it looks sufficiently like one that we want to
handle any error here, return non-zero. Otherwise return zero. */
static int
create_register_alias (char * newname, char *p)
{
struct reg_entry *old;
char *oldname, *nbuf;
size_t nlen;
/* The input scrubber ensures that whitespace after the mnemonic is
collapsed to single spaces. */
oldname = p;
if (strncmp (oldname, " .req ", 6) != 0)
return 0;
oldname += 6;
if (*oldname == '\0')
return 0;
old = hash_find (arm_reg_hsh, oldname);
if (!old)
{
as_warn (_("unknown register '%s' -- .req ignored"), oldname);
return 1;
}
/* If TC_CASE_SENSITIVE is defined, then newname already points to
the desired alias name, and p points to its end. If not, then
the desired alias name is in the global original_case_string. */
#ifdef TC_CASE_SENSITIVE
nlen = p - newname;
#else
newname = original_case_string;
nlen = strlen (newname);
#endif
nbuf = alloca (nlen + 1);
memcpy (nbuf, newname, nlen);
nbuf[nlen] = '\0';
/* Create aliases under the new name as stated; an all-lowercase
version of the new name; and an all-uppercase version of the new
name. */
insert_reg_alias (nbuf, old->number, old->type);
for (p = nbuf; *p; p++)
*p = TOUPPER (*p);
if (strncmp (nbuf, newname, nlen))
insert_reg_alias (nbuf, old->number, old->type);
for (p = nbuf; *p; p++)
*p = TOLOWER (*p);
if (strncmp (nbuf, newname, nlen))
insert_reg_alias (nbuf, old->number, old->type);
return 1;
}
/* Should never be called, as .req goes between the alias and the
register name, not at the beginning of the line. */
static void
s_req (int a ATTRIBUTE_UNUSED)
{
as_bad (_("invalid syntax for .req directive"));
}
/* The .unreq directive deletes an alias which was previously defined
by .req. For example:
my_alias .req r11
.unreq my_alias */
static void
s_unreq (int a ATTRIBUTE_UNUSED)
{
char * name;
char saved_char;
name = input_line_pointer;
while (*input_line_pointer != 0
&& *input_line_pointer != ' '
&& *input_line_pointer != '\n')
++input_line_pointer;
saved_char = *input_line_pointer;
*input_line_pointer = 0;
if (!*name)
as_bad (_("invalid syntax for .unreq directive"));
else
{
struct reg_entry *reg = hash_find (arm_reg_hsh, name);
if (!reg)
as_bad (_("unknown register alias '%s'"), name);
else if (reg->builtin)
as_warn (_("ignoring attempt to undefine built-in register '%s'"),
name);
else
{
hash_delete (arm_reg_hsh, name);
free ((char *) reg->name);
free (reg);
}
}
*input_line_pointer = saved_char;
demand_empty_rest_of_line ();
}
/* Directives: Instruction set selection. */
#ifdef OBJ_ELF
/* This code is to handle mapping symbols as defined in the ARM ELF spec.
(See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
static enum mstate mapstate = MAP_UNDEFINED;
static void
mapping_state (enum mstate state)
{
symbolS * symbolP;
const char * symname;
int type;
if (mapstate == state)
/* The mapping symbol has already been emitted.
There is nothing else to do. */
return;
mapstate = state;
switch (state)
{
case MAP_DATA:
symname = "$d";
type = BSF_NO_FLAGS;
break;
case MAP_ARM:
symname = "$a";
type = BSF_NO_FLAGS;
break;
case MAP_THUMB:
symname = "$t";
type = BSF_NO_FLAGS;
break;
case MAP_UNDEFINED:
return;
default:
abort ();
}
seg_info (now_seg)->tc_segment_info_data.mapstate = state;
symbolP = symbol_new (symname, now_seg, (valueT) frag_now_fix (), frag_now);
symbol_table_insert (symbolP);
symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
switch (state)
{
case MAP_ARM:
THUMB_SET_FUNC (symbolP, 0);
ARM_SET_THUMB (symbolP, 0);
ARM_SET_INTERWORK (symbolP, support_interwork);
break;
case MAP_THUMB:
THUMB_SET_FUNC (symbolP, 1);
ARM_SET_THUMB (symbolP, 1);
ARM_SET_INTERWORK (symbolP, support_interwork);
break;
case MAP_DATA:
default:
return;
}
}
#else
#define mapping_state(x) /* nothing */
#endif
/* Find the real, Thumb encoded start of a Thumb function. */
static symbolS *
find_real_start (symbolS * symbolP)
{
char * real_start;
const char * name = S_GET_NAME (symbolP);
symbolS * new_target;
/* This definition must agree with the one in gcc/config/arm/thumb.c. */
#define STUB_NAME ".real_start_of"
if (name == NULL)
abort ();
/* The compiler may generate BL instructions to local labels because
it needs to perform a branch to a far away location. These labels
do not have a corresponding ".real_start_of" label. We check
both for S_IS_LOCAL and for a leading dot, to give a way to bypass
the ".real_start_of" convention for nonlocal branches. */
if (S_IS_LOCAL (symbolP) || name[0] == '.')
return symbolP;
real_start = ACONCAT ((STUB_NAME, name, NULL));
new_target = symbol_find (real_start);
if (new_target == NULL)
{
as_warn ("Failed to find real start of function: %s\n", name);
new_target = symbolP;
}
return new_target;
}
static void
opcode_select (int width)
{
switch (width)
{
case 16:
if (! thumb_mode)
{
if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
as_bad (_("selected processor does not support THUMB opcodes"));
thumb_mode = 1;
/* No need to force the alignment, since we will have been
coming from ARM mode, which is word-aligned. */
record_alignment (now_seg, 1);
}
mapping_state (MAP_THUMB);
break;
case 32:
if (thumb_mode)
{
if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
as_bad (_("selected processor does not support ARM opcodes"));
thumb_mode = 0;
if (!need_pass_2)
frag_align (2, 0, 0);
record_alignment (now_seg, 1);
}
mapping_state (MAP_ARM);
break;
default:
as_bad (_("invalid instruction size selected (%d)"), width);
}
}
static void
s_arm (int ignore ATTRIBUTE_UNUSED)
{
opcode_select (32);
demand_empty_rest_of_line ();
}
static void
s_thumb (int ignore ATTRIBUTE_UNUSED)
{
opcode_select (16);
demand_empty_rest_of_line ();
}
static void
s_code (int unused ATTRIBUTE_UNUSED)
{
int temp;
temp = get_absolute_expression ();
switch (temp)
{
case 16:
case 32:
opcode_select (temp);
break;
default:
as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
}
}
static void
s_force_thumb (int ignore ATTRIBUTE_UNUSED)
{
/* If we are not already in thumb mode go into it, EVEN if
the target processor does not support thumb instructions.
This is used by gcc/config/arm/lib1funcs.asm for example
to compile interworking support functions even if the
target processor should not support interworking. */
if (! thumb_mode)
{
thumb_mode = 2;
record_alignment (now_seg, 1);
}
demand_empty_rest_of_line ();
}
static void
s_thumb_func (int ignore ATTRIBUTE_UNUSED)
{
s_thumb (0);
/* The following label is the name/address of the start of a Thumb function.
We need to know this for the interworking support. */
label_is_thumb_function_name = TRUE;
}
/* Perform a .set directive, but also mark the alias as
being a thumb function. */
static void
s_thumb_set (int equiv)
{
/* XXX the following is a duplicate of the code for s_set() in read.c
We cannot just call that code as we need to get at the symbol that
is created. */
char * name;
char delim;
char * end_name;
symbolS * symbolP;
/* Especial apologies for the random logic:
This just grew, and could be parsed much more simply!
Dean - in haste. */
name = input_line_pointer;
delim = get_symbol_end ();
end_name = input_line_pointer;
*end_name = delim;
if (*input_line_pointer != ',')
{
*end_name = 0;
as_bad (_("expected comma after name \"%s\""), name);
*end_name = delim;
ignore_rest_of_line ();
return;
}
input_line_pointer++;
*end_name = 0;
if (name[0] == '.' && name[1] == '\0')
{
/* XXX - this should not happen to .thumb_set. */
abort ();
}
if ((symbolP = symbol_find (name)) == NULL
&& (symbolP = md_undefined_symbol (name)) == NULL)
{
#ifndef NO_LISTING
/* When doing symbol listings, play games with dummy fragments living
outside the normal fragment chain to record the file and line info
for this symbol. */
if (listing & LISTING_SYMBOLS)
{
extern struct list_info_struct * listing_tail;
fragS * dummy_frag = xmalloc (sizeof (fragS));
memset (dummy_frag, 0, sizeof (fragS));
dummy_frag->fr_type = rs_fill;
dummy_frag->line = listing_tail;
symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
dummy_frag->fr_symbol = symbolP;
}
else
#endif
symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
#ifdef OBJ_COFF
/* "set" symbols are local unless otherwise specified. */
SF_SET_LOCAL (symbolP);
#endif /* OBJ_COFF */
} /* Make a new symbol. */
symbol_table_insert (symbolP);
* end_name = delim;
if (equiv
&& S_IS_DEFINED (symbolP)
&& S_GET_SEGMENT (symbolP) != reg_section)
as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
pseudo_set (symbolP);
demand_empty_rest_of_line ();
/* XXX Now we come to the Thumb specific bit of code. */
THUMB_SET_FUNC (symbolP, 1);
ARM_SET_THUMB (symbolP, 1);
#if defined OBJ_ELF || defined OBJ_COFF
ARM_SET_INTERWORK (symbolP, support_interwork);
#endif
}
/* Directives: Mode selection. */
/* .syntax [unified|divided] - choose the new unified syntax
(same for Arm and Thumb encoding, modulo slight differences in what
can be represented) or the old divergent syntax for each mode. */
static void
s_syntax (int unused ATTRIBUTE_UNUSED)
{
char *name, delim;
name = input_line_pointer;
delim = get_symbol_end ();
if (!strcasecmp (name, "unified"))
unified_syntax = TRUE;
else if (!strcasecmp (name, "divided"))
unified_syntax = FALSE;
else
{
as_bad (_("unrecognized syntax mode \"%s\""), name);
return;
}
*input_line_pointer = delim;
demand_empty_rest_of_line ();
}
/* Directives: sectioning and alignment. */
/* Same as s_align_ptwo but align 0 => align 2. */
static void
s_align (int unused ATTRIBUTE_UNUSED)
{
int temp;
long temp_fill;
long max_alignment = 15;
temp = get_absolute_expression ();
if (temp > max_alignment)
as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
else if (temp < 0)
{
as_bad (_("alignment negative. 0 assumed."));
temp = 0;
}
if (*input_line_pointer == ',')
{
input_line_pointer++;
temp_fill = get_absolute_expression ();
}
else
temp_fill = 0;
if (!temp)
temp = 2;
/* Only make a frag if we HAVE to. */
if (temp && !need_pass_2)
frag_align (temp, (int) temp_fill, 0);
demand_empty_rest_of_line ();
record_alignment (now_seg, temp);
}
static void
s_bss (int ignore ATTRIBUTE_UNUSED)
{
/* We don't support putting frags in the BSS segment, we fake it by
marking in_bss, then looking at s_skip for clues. */
subseg_set (bss_section, 0);
demand_empty_rest_of_line ();
mapping_state (MAP_DATA);
}
static void
s_even (int ignore ATTRIBUTE_UNUSED)
{
/* Never make frag if expect extra pass. */
if (!need_pass_2)
frag_align (1, 0, 0);
record_alignment (now_seg, 1);
demand_empty_rest_of_line ();
}
/* Directives: Literal pools. */
static literal_pool *
find_literal_pool (void)
{
literal_pool * pool;
for (pool = list_of_pools; pool != NULL; pool = pool->next)
{
if (pool->section == now_seg
&& pool->sub_section == now_subseg)
break;
}
return pool;
}
static literal_pool *
find_or_make_literal_pool (void)
{
/* Next literal pool ID number. */
static unsigned int latest_pool_num = 1;
literal_pool * pool;
pool = find_literal_pool ();
if (pool == NULL)
{
/* Create a new pool. */
pool = xmalloc (sizeof (* pool));
if (! pool)
return NULL;
pool->next_free_entry = 0;
pool->section = now_seg;
pool->sub_section = now_subseg;
pool->next = list_of_pools;
pool->symbol = NULL;
/* Add it to the list. */
list_of_pools = pool;
}
/* New pools, and emptied pools, will have a NULL symbol. */
if (pool->symbol == NULL)
{
pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
(valueT) 0, &zero_address_frag);
pool->id = latest_pool_num ++;
}
/* Done. */
return pool;
}
/* Add the literal in the global 'inst'
structure to the relevent literal pool. */
static int
add_to_lit_pool (void)
{
literal_pool * pool;
unsigned int entry;
pool = find_or_make_literal_pool ();
/* Check if this literal value is already in the pool. */
for (entry = 0; entry < pool->next_free_entry; entry ++)
{
if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
&& (inst.reloc.exp.X_op == O_constant)
&& (pool->literals[entry].X_add_number
== inst.reloc.exp.X_add_number)
&& (pool->literals[entry].X_unsigned
== inst.reloc.exp.X_unsigned))
break;
if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
&& (inst.reloc.exp.X_op == O_symbol)
&& (pool->literals[entry].X_add_number
== inst.reloc.exp.X_add_number)
&& (pool->literals[entry].X_add_symbol
== inst.reloc.exp.X_add_symbol)
&& (pool->literals[entry].X_op_symbol
== inst.reloc.exp.X_op_symbol))
break;
}
/* Do we need to create a new entry? */
if (entry == pool->next_free_entry)
{
if (entry >= MAX_LITERAL_POOL_SIZE)
{
inst.error = _("literal pool overflow");
return FAIL;
}
pool->literals[entry] = inst.reloc.exp;
pool->next_free_entry += 1;
}
inst.reloc.exp.X_op = O_symbol;
inst.reloc.exp.X_add_number = ((int) entry) * 4;
inst.reloc.exp.X_add_symbol = pool->symbol;
return SUCCESS;
}
/* Can't use symbol_new here, so have to create a symbol and then at
a later date assign it a value. Thats what these functions do. */
static void
symbol_locate (symbolS * symbolP,
const char * name, /* It is copied, the caller can modify. */
segT segment, /* Segment identifier (SEG_<something>). */
valueT valu, /* Symbol value. */
fragS * frag) /* Associated fragment. */
{
unsigned int name_length;
char * preserved_copy_of_name;
name_length = strlen (name) + 1; /* +1 for \0. */
obstack_grow (&notes, name, name_length);
preserved_copy_of_name = obstack_finish (&notes);
#ifdef tc_canonicalize_symbol_name
preserved_copy_of_name =
tc_canonicalize_symbol_name (preserved_copy_of_name);
#endif
S_SET_NAME (symbolP, preserved_copy_of_name);
S_SET_SEGMENT (symbolP, segment);
S_SET_VALUE (symbolP, valu);
symbol_clear_list_pointers (symbolP);
symbol_set_frag (symbolP, frag);
/* Link to end of symbol chain. */
{
extern int symbol_table_frozen;
if (symbol_table_frozen)
abort ();
}
symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
obj_symbol_new_hook (symbolP);
#ifdef tc_symbol_new_hook
tc_symbol_new_hook (symbolP);
#endif
#ifdef DEBUG_SYMS
verify_symbol_chain (symbol_rootP, symbol_lastP);
#endif /* DEBUG_SYMS */
}
static void
s_ltorg (int ignored ATTRIBUTE_UNUSED)
{
unsigned int entry;
literal_pool * pool;
char sym_name[20];
pool = find_literal_pool ();
if (pool == NULL
|| pool->symbol == NULL
|| pool->next_free_entry == 0)
return;
mapping_state (MAP_DATA);
/* Align pool as you have word accesses.
Only make a frag if we have to. */
if (!need_pass_2)
frag_align (2, 0, 0);
record_alignment (now_seg, 2);
sprintf (sym_name, "$$lit_\002%x", pool->id);
symbol_locate (pool->symbol, sym_name, now_seg,
(valueT) frag_now_fix (), frag_now);
symbol_table_insert (pool->symbol);
ARM_SET_THUMB (pool->symbol, thumb_mode);
#if defined OBJ_COFF || defined OBJ_ELF
ARM_SET_INTERWORK (pool->symbol, support_interwork);
#endif
for (entry = 0; entry < pool->next_free_entry; entry ++)
/* First output the expression in the instruction to the pool. */
emit_expr (&(pool->literals[entry]), 4); /* .word */
/* Mark the pool as empty. */
pool->next_free_entry = 0;
pool->symbol = NULL;
}
#ifdef OBJ_ELF
/* Forward declarations for functions below, in the MD interface
section. */
static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
static valueT create_unwind_entry (int);
static void start_unwind_section (const segT, int);
static void add_unwind_opcode (valueT, int);
static void flush_pending_unwind (void);
/* Directives: Data. */
static void
s_arm_elf_cons (int nbytes)
{
expressionS exp;
#ifdef md_flush_pending_output
md_flush_pending_output ();
#endif
if (is_it_end_of_statement ())
{
demand_empty_rest_of_line ();
return;
}
#ifdef md_cons_align
md_cons_align (nbytes);
#endif
mapping_state (MAP_DATA);
do
{
int reloc;
char *base = input_line_pointer;
expression (& exp);
if (exp.X_op != O_symbol)
emit_expr (&exp, (unsigned int) nbytes);
else
{
char *before_reloc = input_line_pointer;
reloc = parse_reloc (&input_line_pointer);
if (reloc == -1)
{
as_bad (_("unrecognized relocation suffix"));
ignore_rest_of_line ();
return;
}
else if (reloc == BFD_RELOC_UNUSED)
emit_expr (&exp, (unsigned int) nbytes);
else
{
reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc);
int size = bfd_get_reloc_size (howto);
if (reloc == BFD_RELOC_ARM_PLT32)
{
as_bad (_("(plt) is only valid on branch targets"));
reloc = BFD_RELOC_UNUSED;
size = 0;
}
if (size > nbytes)
as_bad (_("%s relocations do not fit in %d bytes"),
howto->name, nbytes);
else
{
/* We've parsed an expression stopping at O_symbol.
But there may be more expression left now that we
have parsed the relocation marker. Parse it again.
XXX Surely there is a cleaner way to do this. */
char *p = input_line_pointer;
int offset;
char *save_buf = alloca (input_line_pointer - base);
memcpy (save_buf, base, input_line_pointer - base);
memmove (base + (input_line_pointer - before_reloc),
base, before_reloc - base);
input_line_pointer = base + (input_line_pointer-before_reloc);
expression (&exp);
memcpy (base, save_buf, p - base);
offset = nbytes - size;
p = frag_more ((int) nbytes);
fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
size, &exp, 0, reloc);
}
}
}
}
while (*input_line_pointer++ == ',');
/* Put terminator back into stream. */
input_line_pointer --;
demand_empty_rest_of_line ();
}
/* Parse a .rel31 directive. */
static void
s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
{
expressionS exp;
char *p;
valueT highbit;
highbit = 0;
if (*input_line_pointer == '1')
highbit = 0x80000000;
else if (*input_line_pointer != '0')
as_bad (_("expected 0 or 1"));
input_line_pointer++;
if (*input_line_pointer != ',')
as_bad (_("missing comma"));
input_line_pointer++;
#ifdef md_flush_pending_output
md_flush_pending_output ();
#endif
#ifdef md_cons_align
md_cons_align (4);
#endif
mapping_state (MAP_DATA);
expression (&exp);
p = frag_more (4);
md_number_to_chars (p, highbit, 4);
fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
BFD_RELOC_ARM_PREL31);
demand_empty_rest_of_line ();
}
/* Directives: AEABI stack-unwind tables. */
/* Parse an unwind_fnstart directive. Simply records the current location. */
static void
s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
{
demand_empty_rest_of_line ();
/* Mark the start of the function. */
unwind.proc_start = expr_build_dot ();
/* Reset the rest of the unwind info. */
unwind.opcode_count = 0;
unwind.table_entry = NULL;
unwind.personality_routine = NULL;
unwind.personality_index = -1;
unwind.frame_size = 0;
unwind.fp_offset = 0;
unwind.fp_reg = 13;
unwind.fp_used = 0;
unwind.sp_restored = 0;
}
/* Parse a handlerdata directive. Creates the exception handling table entry
for the function. */
static void
s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
{
demand_empty_rest_of_line ();
if (unwind.table_entry)
as_bad (_("dupicate .handlerdata directive"));
create_unwind_entry (1);
}
/* Parse an unwind_fnend directive. Generates the index table entry. */
static void
s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
{
long where;
char *ptr;
valueT val;
demand_empty_rest_of_line ();
/* Add eh table entry. */
if (unwind.table_entry == NULL)
val = create_unwind_entry (0);
else
val = 0;
/* Add index table entry. This is two words. */
start_unwind_section (unwind.saved_seg, 1);
frag_align (2, 0, 0);
record_alignment (now_seg, 2);
ptr = frag_more (8);
where = frag_now_fix () - 8;
/* Self relative offset of the function start. */
fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
BFD_RELOC_ARM_PREL31);
/* Indicate dependency on EHABI-defined personality routines to the
linker, if it hasn't been done already. */
if (unwind.personality_index >= 0 && unwind.personality_index < 3
&& !(marked_pr_dependency & (1 << unwind.personality_index)))
{
static const char *const name[] = {
"__aeabi_unwind_cpp_pr0",
"__aeabi_unwind_cpp_pr1",
"__aeabi_unwind_cpp_pr2"
};
symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
marked_pr_dependency |= 1 << unwind.personality_index;
seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
= marked_pr_dependency;
}
if (val)
/* Inline exception table entry. */
md_number_to_chars (ptr + 4, val, 4);
else
/* Self relative offset of the table entry. */
fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
BFD_RELOC_ARM_PREL31);
/* Restore the original section. */
subseg_set (unwind.saved_seg, unwind.saved_subseg);
}
/* Parse an unwind_cantunwind directive. */
static void
s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
{
demand_empty_rest_of_line ();
if (unwind.personality_routine || unwind.personality_index != -1)
as_bad (_("personality routine specified for cantunwind frame"));
unwind.personality_index = -2;
}
/* Parse a personalityindex directive. */
static void
s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
{
expressionS exp;
if (unwind.personality_routine || unwind.personality_index != -1)
as_bad (_("duplicate .personalityindex directive"));
expression (&exp);
if (exp.X_op != O_constant
|| exp.X_add_number < 0 || exp.X_add_number > 15)
{
as_bad (_("bad personality routine number"));
ignore_rest_of_line ();
return;
}
unwind.personality_index = exp.X_add_number;
demand_empty_rest_of_line ();
}
/* Parse a personality directive. */
static void
s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
{
char *name, *p, c;
if (unwind.personality_routine || unwind.personality_index != -1)
as_bad (_("duplicate .personality directive"));
name = input_line_pointer;
c = get_symbol_end ();
p = input_line_pointer;
unwind.personality_routine = symbol_find_or_make (name);
*p = c;
demand_empty_rest_of_line ();
}
/* Parse a directive saving core registers. */
static void
s_arm_unwind_save_core (void)
{
valueT op;
long range;
int n;
range = parse_reg_list (&input_line_pointer);
if (range == FAIL)
{
as_bad (_("expected register list"));
ignore_rest_of_line ();
return;
}
demand_empty_rest_of_line ();
/* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
into .unwind_save {..., sp...}. We aren't bothered about the value of
ip because it is clobbered by calls. */
if (unwind.sp_restored && unwind.fp_reg == 12
&& (range & 0x3000) == 0x1000)
{
unwind.opcode_count--;
unwind.sp_restored = 0;
range = (range | 0x2000) & ~0x1000;
unwind.pending_offset = 0;
}
/* Pop r4-r15. */
if (range & 0xfff0)
{
/* See if we can use the short opcodes. These pop a block of up to 8
registers starting with r4, plus maybe r14. */
for (n = 0; n < 8; n++)
{
/* Break at the first non-saved register. */
if ((range & (1 << (n + 4))) == 0)
break;
}
/* See if there are any other bits set. */
if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
{
/* Use the long form. */
op = 0x8000 | ((range >> 4) & 0xfff);
add_unwind_opcode (op, 2);
}
else
{
/* Use the short form. */
if (range & 0x4000)
op = 0xa8; /* Pop r14. */
else
op = 0xa0; /* Do not pop r14. */
op |= (n - 1);
add_unwind_opcode (op, 1);
}
}
/* Pop r0-r3. */
if (range & 0xf)
{
op = 0xb100 | (range & 0xf);
add_unwind_opcode (op, 2);
}
/* Record the number of bytes pushed. */
for (n = 0; n < 16; n++)
{
if (range & (1 << n))
unwind.frame_size += 4;
}
}
/* Parse a directive saving FPA registers. */
static void
s_arm_unwind_save_fpa (int reg)
{
expressionS exp;
int num_regs;
valueT op;
/* Get Number of registers to transfer. */
if (skip_past_comma (&input_line_pointer) != FAIL)
expression (&exp);
else
exp.X_op = O_illegal;
if (exp.X_op != O_constant)
{
as_bad (_("expected , <constant>"));
ignore_rest_of_line ();
return;
}
num_regs = exp.X_add_number;
if (num_regs < 1 || num_regs > 4)
{
as_bad (_("number of registers must be in the range [1:4]"));
ignore_rest_of_line ();
return;
}
demand_empty_rest_of_line ();
if (reg == 4)
{
/* Short form. */
op = 0xb4 | (num_regs - 1);
add_unwind_opcode (op, 1);
}
else
{
/* Long form. */
op = 0xc800 | (reg << 4) | (num_regs - 1);
add_unwind_opcode (op, 2);
}
unwind.frame_size += num_regs * 12;
}
/* Parse a directive saving VFP registers. */
static void
s_arm_unwind_save_vfp (void)
{
int count;
unsigned int reg;
valueT op;
count = parse_vfp_reg_list (&input_line_pointer, &reg, 1);
if (count == FAIL)
{
as_bad (_("expected register list"));
ignore_rest_of_line ();
return;
}
demand_empty_rest_of_line ();
if (reg == 8)
{
/* Short form. */
op = 0xb8 | (count - 1);
add_unwind_opcode (op, 1);
}
else
{
/* Long form. */
op = 0xb300 | (reg << 4) | (count - 1);
add_unwind_opcode (op, 2);
}
unwind.frame_size += count * 8 + 4;
}
/* Parse a directive saving iWMMXt data registers. */
static void
s_arm_unwind_save_mmxwr (void)
{
int reg;
int hi_reg;
int i;
unsigned mask = 0;
valueT op;
if (*input_line_pointer == '{')
input_line_pointer++;
do
{
reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
if (reg == FAIL)
{
as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
goto error;
}
if (mask >> reg)
as_tsktsk (_("register list not in ascending order"));
mask |= 1 << reg;
if (*input_line_pointer == '-')
{
input_line_pointer++;
hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
if (hi_reg == FAIL)
{
as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
goto error;
}
else if (reg >= hi_reg)
{
as_bad (_("bad register range"));
goto error;
}
for (; reg < hi_reg; reg++)
mask |= 1 << reg;
}
}
while (skip_past_comma (&input_line_pointer) != FAIL);
if (*input_line_pointer == '}')
input_line_pointer++;
demand_empty_rest_of_line ();
/* Generate any deferred opcodes becuuse we're going to be looking at
the list. */
flush_pending_unwind ();
for (i = 0; i < 16; i++)
{
if (mask & (1 << i))
unwind.frame_size += 8;
}
/* Attempt to combine with a previous opcode. We do this because gcc
likes to output separate unwind directives for a single block of
registers. */
if (unwind.opcode_count > 0)
{
i = unwind.opcodes[unwind.opcode_count - 1];
if ((i & 0xf8) == 0xc0)
{
i &= 7;
/* Only merge if the blocks are contiguous. */
if (i < 6)
{
if ((mask & 0xfe00) == (1 << 9))
{
mask |= ((1 << (i + 11)) - 1) & 0xfc00;
unwind.opcode_count--;
}
}
else if (i == 6 && unwind.opcode_count >= 2)
{
i = unwind.opcodes[unwind.opcode_count - 2];
reg = i >> 4;
i &= 0xf;
op = 0xffff << (reg - 1);
if (reg > 0
|| ((mask & op) == (1u << (reg - 1))))
{
op = (1 << (reg + i + 1)) - 1;
op &= ~((1 << reg) - 1);
mask |= op;
unwind.opcode_count -= 2;
}
}
}
}
hi_reg = 15;
/* We want to generate opcodes in the order the registers have been
saved, ie. descending order. */
for (reg = 15; reg >= -1; reg--)
{
/* Save registers in blocks. */
if (reg < 0
|| !(mask & (1 << reg)))
{
/* We found an unsaved reg. Generate opcodes to save the
preceeding block. */
if (reg != hi_reg)
{
if (reg == 9)
{
/* Short form. */
op = 0xc0 | (hi_reg - 10);
add_unwind_opcode (op, 1);
}
else
{
/* Long form. */
op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
add_unwind_opcode (op, 2);
}
}
hi_reg = reg - 1;
}
}
return;
error:
ignore_rest_of_line ();
}
static void
s_arm_unwind_save_mmxwcg (void)
{
int reg;
int hi_reg;
unsigned mask = 0;
valueT op;
if (*input_line_pointer == '{')
input_line_pointer++;
do
{
reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
if (reg == FAIL)
{
as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
goto error;
}
reg -= 8;
if (mask >> reg)
as_tsktsk (_("register list not in ascending order"));
mask |= 1 << reg;
if (*input_line_pointer == '-')
{
input_line_pointer++;
hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
if (hi_reg == FAIL)
{
as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
goto error;
}
else if (reg >= hi_reg)
{
as_bad (_("bad register range"));
goto error;
}
for (; reg < hi_reg; reg++)
mask |= 1 << reg;
}
}
while (skip_past_comma (&input_line_pointer) != FAIL);
if (*input_line_pointer == '}')
input_line_pointer++;
demand_empty_rest_of_line ();
/* Generate any deferred opcodes becuuse we're going to be looking at
the list. */
flush_pending_unwind ();
for (reg = 0; reg < 16; reg++)
{
if (mask & (1 << reg))
unwind.frame_size += 4;
}
op = 0xc700 | mask;
add_unwind_opcode (op, 2);
return;
error:
ignore_rest_of_line ();
}
/* Parse an unwind_save directive. */
static void
s_arm_unwind_save (int ignored ATTRIBUTE_UNUSED)
{
char *peek;
struct reg_entry *reg;
bfd_boolean had_brace = FALSE;
/* Figure out what sort of save we have. */
peek = input_line_pointer;
if (*peek == '{')
{
had_brace = TRUE;
peek++;
}
reg = arm_reg_parse_multi (&peek);
if (!reg)
{
as_bad (_("register expected"));
ignore_rest_of_line ();
return;
}
switch (reg->type)
{
case REG_TYPE_FN:
if (had_brace)
{
as_bad (_("FPA .unwind_save does not take a register list"));
ignore_rest_of_line ();
return;
}
s_arm_unwind_save_fpa (reg->number);
return;
case REG_TYPE_RN: s_arm_unwind_save_core (); return;
case REG_TYPE_VFD: s_arm_unwind_save_vfp (); return;
case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
default:
as_bad (_(".unwind_save does not support this kind of register"));
ignore_rest_of_line ();
}
}
/* Parse an unwind_movsp directive. */
static void
s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
{
int reg;
valueT op;
reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
if (reg == FAIL)
{
as_bad (_(reg_expected_msgs[REG_TYPE_RN]));
ignore_rest_of_line ();
return;
}
demand_empty_rest_of_line ();
if (reg == REG_SP || reg == REG_PC)
{
as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
return;
}
if (unwind.fp_reg != REG_SP)
as_bad (_("unexpected .unwind_movsp directive"));
/* Generate opcode to restore the value. */
op = 0x90 | reg;
add_unwind_opcode (op, 1);
/* Record the information for later. */
unwind.fp_reg = reg;
unwind.fp_offset = unwind.frame_size;
unwind.sp_restored = 1;
}
/* Parse an unwind_pad directive. */
static void
s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
{
int offset;
if (immediate_for_directive (&offset) == FAIL)
return;
if (offset & 3)
{
as_bad (_("stack increment must be multiple of 4"));
ignore_rest_of_line ();
return;
}
/* Don't generate any opcodes, just record the details for later. */
unwind.frame_size += offset;
unwind.pending_offset += offset;
demand_empty_rest_of_line ();
}
/* Parse an unwind_setfp directive. */
static void
s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
{
int sp_reg;
int fp_reg;
int offset;
fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
if (skip_past_comma (&input_line_pointer) == FAIL)
sp_reg = FAIL;
else
sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
if (fp_reg == FAIL || sp_reg == FAIL)
{
as_bad (_("expected <reg>, <reg>"));
ignore_rest_of_line ();
return;
}
/* Optional constant. */
if (skip_past_comma (&input_line_pointer) != FAIL)
{
if (immediate_for_directive (&offset) == FAIL)
return;
}
else
offset = 0;
demand_empty_rest_of_line ();
if (sp_reg != 13 && sp_reg != unwind.fp_reg)
{
as_bad (_("register must be either sp or set by a previous"
"unwind_movsp directive"));
return;
}
/* Don't generate any opcodes, just record the information for later. */
unwind.fp_reg = fp_reg;
unwind.fp_used = 1;
if (sp_reg == 13)
unwind.fp_offset = unwind.frame_size - offset;
else
unwind.fp_offset -= offset;
}
/* Parse an unwind_raw directive. */
static void
s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
{
expressionS exp;
/* This is an arbitary limit. */
unsigned char op[16];
int count;
expression (&exp);
if (exp.X_op == O_constant
&& skip_past_comma (&input_line_pointer) != FAIL)
{
unwind.frame_size += exp.X_add_number;
expression (&exp);
}
else
exp.X_op = O_illegal;
if (exp.X_op != O_constant)
{
as_bad (_("expected <offset>, <opcode>"));
ignore_rest_of_line ();
return;
}
count = 0;
/* Parse the opcode. */
for (;;)
{
if (count >= 16)
{
as_bad (_("unwind opcode too long"));
ignore_rest_of_line ();
}
if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
{
as_bad (_("invalid unwind opcode"));
ignore_rest_of_line ();
return;
}
op[count++] = exp.X_add_number;
/* Parse the next byte. */
if (skip_past_comma (&input_line_pointer) == FAIL)
break;
expression (&exp);
}
/* Add the opcode bytes in reverse order. */
while (count--)
add_unwind_opcode (op[count], 1);
demand_empty_rest_of_line ();
}
/* Parse a .eabi_attribute directive. */
static void
s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
{
expressionS exp;
bfd_boolean is_string;
int tag;
unsigned int i = 0;
char *s = NULL;
char saved_char;
expression (& exp);
if (exp.X_op != O_constant)
goto bad;
tag = exp.X_add_number;
if (tag == 4 || tag == 5 || tag == 32 || (tag > 32 && (tag & 1) != 0))
is_string = 1;
else
is_string = 0;
if (skip_past_comma (&input_line_pointer) == FAIL)
goto bad;
if (tag == 32 || !is_string)
{
expression (& exp);
if (exp.X_op != O_constant)
{
as_bad (_("expected numeric constant"));
ignore_rest_of_line ();
return;
}
i = exp.X_add_number;
}
if (tag == Tag_compatibility
&& skip_past_comma (&input_line_pointer) == FAIL)
{
as_bad (_("expected comma"));
ignore_rest_of_line ();
return;
}
if (is_string)
{
skip_whitespace(input_line_pointer);
if (*input_line_pointer != '"')
goto bad_string;
input_line_pointer++;
s = input_line_pointer;
while (*input_line_pointer && *input_line_pointer != '"')
input_line_pointer++;
if (*input_line_pointer != '"')
goto bad_string;
saved_char = *input_line_pointer;
*input_line_pointer = 0;
}
else
{
s = NULL;
saved_char = 0;
}
if (tag == Tag_compatibility)
elf32_arm_add_eabi_attr_compat (stdoutput, i, s);
else if (is_string)
elf32_arm_add_eabi_attr_string (stdoutput, tag, s);
else
elf32_arm_add_eabi_attr_int (stdoutput, tag, i);
if (s)
{
*input_line_pointer = saved_char;
input_line_pointer++;
}
demand_empty_rest_of_line ();
return;
bad_string:
as_bad (_("bad string constant"));
ignore_rest_of_line ();
return;
bad:
as_bad (_("expected <tag> , <value>"));
ignore_rest_of_line ();
}
static void s_arm_arch (int);
static void s_arm_cpu (int);
static void s_arm_fpu (int);
#endif /* OBJ_ELF */
/* This table describes all the machine specific pseudo-ops the assembler
has to support. The fields are:
pseudo-op name without dot
function to call to execute this pseudo-op
Integer arg to pass to the function. */
const pseudo_typeS md_pseudo_table[] =
{
/* Never called because '.req' does not start a line. */
{ "req", s_req, 0 },
{ "unreq", s_unreq, 0 },
{ "bss", s_bss, 0 },
{ "align", s_align, 0 },
{ "arm", s_arm, 0 },
{ "thumb", s_thumb, 0 },
{ "code", s_code, 0 },
{ "force_thumb", s_force_thumb, 0 },
{ "thumb_func", s_thumb_func, 0 },
{ "thumb_set", s_thumb_set, 0 },
{ "even", s_even, 0 },
{ "ltorg", s_ltorg, 0 },
{ "pool", s_ltorg, 0 },
{ "syntax", s_syntax, 0 },
#ifdef OBJ_ELF
{ "word", s_arm_elf_cons, 4 },
{ "long", s_arm_elf_cons, 4 },
{ "rel31", s_arm_rel31, 0 },
{ "fnstart", s_arm_unwind_fnstart, 0 },
{ "fnend", s_arm_unwind_fnend, 0 },
{ "cantunwind", s_arm_unwind_cantunwind, 0 },
{ "personality", s_arm_unwind_personality, 0 },
{ "personalityindex", s_arm_unwind_personalityindex, 0 },
{ "handlerdata", s_arm_unwind_handlerdata, 0 },
{ "save", s_arm_unwind_save, 0 },
{ "movsp", s_arm_unwind_movsp, 0 },
{ "pad", s_arm_unwind_pad, 0 },
{ "setfp", s_arm_unwind_setfp, 0 },
{ "unwind_raw", s_arm_unwind_raw, 0 },
{ "cpu", s_arm_cpu, 0 },
{ "arch", s_arm_arch, 0 },
{ "fpu", s_arm_fpu, 0 },
{ "eabi_attribute", s_arm_eabi_attribute, 0 },
#else
{ "word", cons, 4},
#endif
{ "extend", float_cons, 'x' },
{ "ldouble", float_cons, 'x' },
{ "packed", float_cons, 'p' },
{ 0, 0, 0 }
};
/* Parser functions used exclusively in instruction operands. */
/* Generic immediate-value read function for use in insn parsing.
STR points to the beginning of the immediate (the leading #);
VAL receives the value; if the value is outside [MIN, MAX]
issue an error. PREFIX_OPT is true if the immediate prefix is
optional. */
static int
parse_immediate (char **str, int *val, int min, int max,
bfd_boolean prefix_opt)
{
expressionS exp;
my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
if (exp.X_op != O_constant)
{
inst.error = _("constant expression required");
return FAIL;
}
if (exp.X_add_number < min || exp.X_add_number > max)
{
inst.error = _("immediate value out of range");
return FAIL;
}
*val = exp.X_add_number;
return SUCCESS;
}
/* Returns the pseudo-register number of an FPA immediate constant,
or FAIL if there isn't a valid constant here. */
static int
parse_fpa_immediate (char ** str)
{
LITTLENUM_TYPE words[MAX_LITTLENUMS];
char * save_in;
expressionS exp;
int i;
int j;
/* First try and match exact strings, this is to guarantee
that some formats will work even for cross assembly. */
for (i = 0; fp_const[i]; i++)
{
if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
{
char *start = *str;
*str += strlen (fp_const[i]);
if (is_end_of_line[(unsigned char) **str])
return i + 8;
*str = start;
}
}
/* Just because we didn't get a match doesn't mean that the constant
isn't valid, just that it is in a format that we don't
automatically recognize. Try parsing it with the standard
expression routines. */
memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
/* Look for a raw floating point number. */
if ((save_in = atof_ieee (*str, 'x', words)) != NULL
&& is_end_of_line[(unsigned char) *save_in])
{
for (i = 0; i < NUM_FLOAT_VALS; i++)
{
for (j = 0; j < MAX_LITTLENUMS; j++)
{
if (words[j] != fp_values[i][j])
break;
}
if (j == MAX_LITTLENUMS)
{
*str = save_in;
return i + 8;
}
}
}
/* Try and parse a more complex expression, this will probably fail
unless the code uses a floating point prefix (eg "0f"). */
save_in = input_line_pointer;
input_line_pointer = *str;
if (expression (&exp) == absolute_section
&& exp.X_op == O_big
&& exp.X_add_number < 0)
{
/* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
Ditto for 15. */
if (gen_to_words (words, 5, (long) 15) == 0)
{
for (i = 0; i < NUM_FLOAT_VALS; i++)
{
for (j = 0; j < MAX_LITTLENUMS; j++)
{
if (words[j] != fp_values[i][j])
break;
}
if (j == MAX_LITTLENUMS)
{
*str = input_line_pointer;
input_line_pointer = save_in;
return i + 8;
}
}
}
}
*str = input_line_pointer;
input_line_pointer = save_in;
inst.error = _("invalid FPA immediate expression");
return FAIL;
}
/* Shift operands. */
enum shift_kind
{
SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
};
struct asm_shift_name
{
const char *name;
enum shift_kind kind;
};
/* Third argument to parse_shift. */
enum parse_shift_mode
{
NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
};
/* Parse a <shift> specifier on an ARM data processing instruction.
This has three forms:
(LSL|LSR|ASL|ASR|ROR) Rs
(LSL|LSR|ASL|ASR|ROR) #imm
RRX
Note that ASL is assimilated to LSL in the instruction encoding, and
RRX to ROR #0 (which cannot be written as such). */
static int
parse_shift (char **str, int i, enum parse_shift_mode mode)
{
const struct asm_shift_name *shift_name;
enum shift_kind shift;
char *s = *str;
char *p = s;
int reg;
for (p = *str; ISALPHA (*p); p++)
;
if (p == *str)
{
inst.error = _("shift expression expected");
return FAIL;
}
shift_name = hash_find_n (arm_shift_hsh, *str, p - *str);
if (shift_name == NULL)
{
inst.error = _("shift expression expected");
return FAIL;
}
shift = shift_name->kind;
switch (mode)
{
case NO_SHIFT_RESTRICT:
case SHIFT_IMMEDIATE: break;
case SHIFT_LSL_OR_ASR_IMMEDIATE:
if (shift != SHIFT_LSL && shift != SHIFT_ASR)
{
inst.error = _("'LSL' or 'ASR' required");
return FAIL;
}
break;
case SHIFT_LSL_IMMEDIATE:
if (shift != SHIFT_LSL)
{
inst.error = _("'LSL' required");
return FAIL;
}
break;
case SHIFT_ASR_IMMEDIATE:
if (shift != SHIFT_ASR)
{
inst.error = _("'ASR' required");
return FAIL;
}
break;
default: abort ();
}
if (shift != SHIFT_RRX)
{
/* Whitespace can appear here if the next thing is a bare digit. */
skip_whitespace (p);
if (mode == NO_SHIFT_RESTRICT
&& (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
{
inst.operands[i].imm = reg;
inst.operands[i].immisreg = 1;
}
else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
return FAIL;
}
inst.operands[i].shift_kind = shift;
inst.operands[i].shifted = 1;
*str = p;
return SUCCESS;
}
/* Parse a <shifter_operand> for an ARM data processing instruction:
#<immediate>
#<immediate>, <rotate>
<Rm>
<Rm>, <shift>
where <shift> is defined by parse_shift above, and <rotate> is a
multiple of 2 between 0 and 30. Validation of immediate operands
is deferred to md_apply_fix. */
static int
parse_shifter_operand (char **str, int i)
{
int value;
expressionS expr;
if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
{
inst.operands[i].reg = value;
inst.operands[i].isreg = 1;
/* parse_shift will override this if appropriate */
inst.reloc.exp.X_op = O_constant;
inst.reloc.exp.X_add_number = 0;
if (skip_past_comma (str) == FAIL)
return SUCCESS;
/* Shift operation on register. */
return parse_shift (str, i, NO_SHIFT_RESTRICT);
}
if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
return FAIL;
if (skip_past_comma (str) == SUCCESS)
{
/* #x, y -- ie explicit rotation by Y. */
if (my_get_expression (&expr, str, GE_NO_PREFIX))
return FAIL;
if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
{
inst.error = _("constant expression expected");
return FAIL;
}
value = expr.X_add_number;
if (value < 0 || value > 30 || value % 2 != 0)
{
inst.error = _("invalid rotation");
return FAIL;
}
if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
{
inst.error = _("invalid constant");
return FAIL;
}
/* Convert to decoded value. md_apply_fix will put it back. */
inst.reloc.exp.X_add_number
= (((inst.reloc.exp.X_add_number << (32 - value))
| (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
}
inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
inst.reloc.pc_rel = 0;
return SUCCESS;
}
/* Parse all forms of an ARM address expression. Information is written
to inst.operands[i] and/or inst.reloc.
Preindexed addressing (.preind=1):
[Rn, #offset] .reg=Rn .reloc.exp=offset
[Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
[Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
.shift_kind=shift .reloc.exp=shift_imm
These three may have a trailing ! which causes .writeback to be set also.
Postindexed addressing (.postind=1, .writeback=1):
[Rn], #offset .reg=Rn .reloc.exp=offset
[Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
[Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
.shift_kind=shift .reloc.exp=shift_imm
Unindexed addressing (.preind=0, .postind=0):
[Rn], {option} .reg=Rn .imm=option .immisreg=0
Other:
[Rn]{!} shorthand for [Rn,#0]{!}
=immediate .isreg=0 .reloc.exp=immediate
label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
It is the caller's responsibility to check for addressing modes not
supported by the instruction, and to set inst.reloc.type. */
static int
parse_address (char **str, int i)
{
char *p = *str;
int reg;
if (skip_past_char (&p, '[') == FAIL)
{
if (skip_past_char (&p, '=') == FAIL)
{
/* bare address - translate to PC-relative offset */
inst.reloc.pc_rel = 1;
inst.operands[i].reg = REG_PC;
inst.operands[i].isreg = 1;
inst.operands[i].preind = 1;
}
/* else a load-constant pseudo op, no special treatment needed here */
if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
return FAIL;
*str = p;
return SUCCESS;
}
if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
{
inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
return FAIL;
}
inst.operands[i].reg = reg;
inst.operands[i].isreg = 1;
if (skip_past_comma (&p) == SUCCESS)
{
inst.operands[i].preind = 1;
if (*p == '+') p++;
else if (*p == '-') p++, inst.operands[i].negative = 1;
if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
{
inst.operands[i].imm = reg;
inst.operands[i].immisreg = 1;
if (skip_past_comma (&p) == SUCCESS)
if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
return FAIL;
}
else
{
if (inst.operands[i].negative)
{
inst.operands[i].negative = 0;
p--;
}
if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
return FAIL;
}
}
if (skip_past_char (&p, ']') == FAIL)
{
inst.error = _("']' expected");
return FAIL;
}
if (skip_past_char (&p, '!') == SUCCESS)
inst.operands[i].writeback = 1;
else if (skip_past_comma (&p) == SUCCESS)
{
if (skip_past_char (&p, '{') == SUCCESS)
{
/* [Rn], {expr} - unindexed, with option */
if (parse_immediate (&p, &inst.operands[i].imm,
0, 255, TRUE) == FAIL)
return FAIL;
if (skip_past_char (&p, '}') == FAIL)
{
inst.error = _("'}' expected at end of 'option' field");
return FAIL;
}
if (inst.operands[i].preind)
{
inst.error = _("cannot combine index with option");
return FAIL;
}
*str = p;
return SUCCESS;
}
else
{
inst.operands[i].postind = 1;
inst.operands[i].writeback = 1;
if (inst.operands[i].preind)
{
inst.error = _("cannot combine pre- and post-indexing");
return FAIL;
}
if (*p == '+') p++;
else if (*p == '-') p++, inst.operands[i].negative = 1;
if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
{
inst.operands[i].imm = reg;
inst.operands[i].immisreg = 1;
if (skip_past_comma (&p) == SUCCESS)
if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
return FAIL;
}
else
{
if (inst.operands[i].negative)
{
inst.operands[i].negative = 0;
p--;
}
if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
return FAIL;
}
}
}
/* If at this point neither .preind nor .postind is set, we have a
bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
{
inst.operands[i].preind = 1;
inst.reloc.exp.X_op = O_constant;
inst.reloc.exp.X_add_number = 0;
}
*str = p;
return SUCCESS;
}
/* Miscellaneous. */
/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
or a bitmask suitable to be or-ed into the ARM msr instruction. */
static int
parse_psr (char **str)
{
char *p;
unsigned long psr_field;
const struct asm_psr *psr;
char *start;
/* CPSR's and SPSR's can now be lowercase. This is just a convenience
feature for ease of use and backwards compatibility. */
p = *str;
if (strncasecmp (p, "SPSR", 4) == 0)
psr_field = SPSR_BIT;
else if (strncasecmp (p, "CPSR", 4) == 0)
psr_field = 0;
else
{
start = p;
do
p++;
while (ISALNUM (*p) || *p == '_');
psr = hash_find_n (arm_v7m_psr_hsh, start, p - start);
if (!psr)
return FAIL;
*str = p;
return psr->field;
}
p += 4;
if (*p == '_')
{
/* A suffix follows. */
p++;
start = p;
do
p++;
while (ISALNUM (*p) || *p == '_');
psr = hash_find_n (arm_psr_hsh, start, p - start);
if (!psr)
goto error;
psr_field |= psr->field;
}
else
{
if (ISALNUM (*p))
goto error; /* Garbage after "[CS]PSR". */
psr_field |= (PSR_c | PSR_f);
}
*str = p;
return psr_field;
error:
inst.error = _("flag for {c}psr instruction expected");
return FAIL;
}
/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
value suitable for splatting into the AIF field of the instruction. */
static int
parse_cps_flags (char **str)
{
int val = 0;
int saw_a_flag = 0;
char *s = *str;
for (;;)
switch (*s++)
{
case '\0': case ',':
goto done;
case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
default:
inst.error = _("unrecognized CPS flag");
return FAIL;
}
done:
if (saw_a_flag == 0)
{
inst.error = _("missing CPS flags");
return FAIL;
}
*str = s - 1;
return val;
}
/* Parse an endian specifier ("BE" or "LE", case insensitive);
returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
static int
parse_endian_specifier (char **str)
{
int little_endian;
char *s = *str;
if (strncasecmp (s, "BE", 2))
little_endian = 0;
else if (strncasecmp (s, "LE", 2))
little_endian = 1;
else
{
inst.error = _("valid endian specifiers are be or le");
return FAIL;
}
if (ISALNUM (s[2]) || s[2] == '_')
{
inst.error = _("valid endian specifiers are be or le");
return FAIL;
}
*str = s + 2;
return little_endian;
}
/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
value suitable for poking into the rotate field of an sxt or sxta
instruction, or FAIL on error. */
static int
parse_ror (char **str)
{
int rot;
char *s = *str;
if (strncasecmp (s, "ROR", 3) == 0)
s += 3;
else
{
inst.error = _("missing rotation field after comma");
return FAIL;
}
if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
return FAIL;
switch (rot)
{
case 0: *str = s; return 0x0;
case 8: *str = s; return 0x1;
case 16: *str = s; return 0x2;
case 24: *str = s; return 0x3;
default:
inst.error = _("rotation can only be 0, 8, 16, or 24");
return FAIL;
}
}
/* Parse a conditional code (from conds[] below). The value returned is in the
range 0 .. 14, or FAIL. */
static int
parse_cond (char **str)
{
char *p, *q;
const struct asm_cond *c;
p = q = *str;
while (ISALPHA (*q))
q++;
c = hash_find_n (arm_cond_hsh, p, q - p);
if (!c)
{
inst.error = _("condition required");
return FAIL;
}
*str = q;
return c->value;
}
/* Parse an option for a barrier instruction. Returns the encoding for the
option, or FAIL. */
static int
parse_barrier (char **str)
{
char *p, *q;
const struct asm_barrier_opt *o;
p = q = *str;
while (ISALPHA (*q))
q++;
o = hash_find_n (arm_barrier_opt_hsh, p, q - p);
if (!o)
return FAIL;
*str = q;
return o->value;
}
/* Parse the operands of a table branch instruction. Similar to a memory
operand. */
static int
parse_tb (char **str)
{
char * p = *str;
int reg;
if (skip_past_char (&p, '[') == FAIL)
{
inst.error = _("'[' expected");
return FAIL;
}
if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
{
inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
return FAIL;
}
inst.operands[0].reg = reg;
if (skip_past_comma (&p) == FAIL)
{
inst.error = _("',' expected");
return FAIL;
}
if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
{
inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
return FAIL;
}
inst.operands[0].imm = reg;
if (skip_past_comma (&p) == SUCCESS)
{
if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
return FAIL;
if (inst.reloc.exp.X_add_number != 1)
{
inst.error = _("invalid shift");
return FAIL;
}
inst.operands[0].shifted = 1;
}
if (skip_past_char (&p, ']') == FAIL)
{
inst.error = _("']' expected");
return FAIL;
}
*str = p;
return SUCCESS;
}
/* Matcher codes for parse_operands. */
enum operand_parse_code
{
OP_stop, /* end of line */
OP_RR, /* ARM register */
OP_RRnpc, /* ARM register, not r15 */
OP_RRnpcb, /* ARM register, not r15, in square brackets */
OP_RRw, /* ARM register, not r15, optional trailing ! */
OP_RCP, /* Coprocessor number */
OP_RCN, /* Coprocessor register */
OP_RF, /* FPA register */
OP_RVS, /* VFP single precision register */
OP_RVD, /* VFP double precision register */
OP_RVC, /* VFP control register */
OP_RMF, /* Maverick F register */
OP_RMD, /* Maverick D register */
OP_RMFX, /* Maverick FX register */
OP_RMDX, /* Maverick DX register */
OP_RMAX, /* Maverick AX register */
OP_RMDS, /* Maverick DSPSC register */
OP_RIWR, /* iWMMXt wR register */
OP_RIWC, /* iWMMXt wC register */
OP_RIWG, /* iWMMXt wCG register */
OP_RXA, /* XScale accumulator register */
OP_REGLST, /* ARM register list */
OP_VRSLST, /* VFP single-precision register list */
OP_VRDLST, /* VFP double-precision register list */
OP_I7, /* immediate value 0 .. 7 */
OP_I15, /* 0 .. 15 */
OP_I16, /* 1 .. 16 */
OP_I31, /* 0 .. 31 */
OP_I31w, /* 0 .. 31, optional trailing ! */
OP_I32, /* 1 .. 32 */
OP_I63s, /* -64 .. 63 */
OP_I255, /* 0 .. 255 */
OP_Iffff, /* 0 .. 65535 */
OP_I4b, /* immediate, prefix optional, 1 .. 4 */
OP_I7b, /* 0 .. 7 */
OP_I15b, /* 0 .. 15 */
OP_I31b, /* 0 .. 31 */
OP_SH, /* shifter operand */
OP_ADDR, /* Memory address expression (any mode) */
OP_EXP, /* arbitrary expression */
OP_EXPi, /* same, with optional immediate prefix */
OP_EXPr, /* same, with optional relocation suffix */
OP_CPSF, /* CPS flags */
OP_ENDI, /* Endianness specifier */
OP_PSR, /* CPSR/SPSR mask for msr */
OP_COND, /* conditional code */
OP_TB, /* Table branch. */
OP_RRnpc_I0, /* ARM register or literal 0 */
OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
OP_RR_EXi, /* ARM register or expression with imm prefix */
OP_RF_IF, /* FPA register or immediate */
OP_RIWR_RIWC, /* iWMMXt R or C reg */
/* Optional operands. */
OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
OP_oI31b, /* 0 .. 31 */
OP_oIffffb, /* 0 .. 65535 */
OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
OP_oRR, /* ARM register */
OP_oRRnpc, /* ARM register, not the PC */
OP_oSHll, /* LSL immediate */
OP_oSHar, /* ASR immediate */
OP_oSHllar, /* LSL or ASR immediate */
OP_oROR, /* ROR 0/8/16/24 */
OP_oBARRIER, /* Option argument for a barrier instruction. */
OP_FIRST_OPTIONAL = OP_oI7b
};
/* Generic instruction operand parser. This does no encoding and no
semantic validation; it merely squirrels values away in the inst
structure. Returns SUCCESS or FAIL depending on whether the
specified grammar matched. */
static int
parse_operands (char *str, const unsigned char *pattern)
{
unsigned const char *upat = pattern;
char *backtrack_pos = 0;
const char *backtrack_error = 0;
int i, val, backtrack_index = 0;
#define po_char_or_fail(chr) do { \
if (skip_past_char (&str, chr) == FAIL) \
goto bad_args; \
} while (0)
#define po_reg_or_fail(regtype) do { \
val = arm_reg_parse (&str, regtype); \
if (val == FAIL) \
{ \
inst.error = _(reg_expected_msgs[regtype]); \
goto failure; \
} \
inst.operands[i].reg = val; \
inst.operands[i].isreg = 1; \
} while (0)
#define po_reg_or_goto(regtype, label) do { \
val = arm_reg_parse (&str, regtype); \
if (val == FAIL) \
goto label; \
\
inst.operands[i].reg = val; \
inst.operands[i].isreg = 1; \
} while (0)
#define po_imm_or_fail(min, max, popt) do { \
if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
goto failure; \
inst.operands[i].imm = val; \
} while (0)
#define po_misc_or_fail(expr) do { \
if (expr) \
goto failure; \
} while (0)
skip_whitespace (str);
for (i = 0; upat[i] != OP_stop; i++)
{
if (upat[i] >= OP_FIRST_OPTIONAL)
{
/* Remember where we are in case we need to backtrack. */
assert (!backtrack_pos);
backtrack_pos = str;
backtrack_error = inst.error;
backtrack_index = i;
}
if (i > 0)
po_char_or_fail (',');
switch (upat[i])
{
/* Registers */
case OP_oRRnpc:
case OP_RRnpc:
case OP_oRR:
case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
case OP_RVC: po_reg_or_fail (REG_TYPE_VFC); break;
case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
case OP_RRnpcb:
po_char_or_fail ('[');
po_reg_or_fail (REG_TYPE_RN);
po_char_or_fail (']');
break;
case OP_RRw:
po_reg_or_fail (REG_TYPE_RN);
if (skip_past_char (&str, '!') == SUCCESS)
inst.operands[i].writeback = 1;
break;
/* Immediates */
case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
case OP_Iffff: po_imm_or_fail ( 0, 0xffff, FALSE); break;
case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
case OP_oI7b:
case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
case OP_oI31b:
case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
/* Immediate variants */
case OP_oI255c:
po_char_or_fail ('{');
po_imm_or_fail (0, 255, TRUE);
po_char_or_fail ('}');
break;
case OP_I31w:
/* The expression parser chokes on a trailing !, so we have
to find it first and zap it. */
{
char *s = str;
while (*s && *s != ',')
s++;
if (s[-1] == '!')
{
s[-1] = '\0';
inst.operands[i].writeback = 1;
}
po_imm_or_fail (0, 31, TRUE);
if (str == s - 1)
str = s;
}
break;
/* Expressions */
case OP_EXPi: EXPi:
po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
GE_OPT_PREFIX));
break;
case OP_EXP:
po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
GE_NO_PREFIX));
break;
case OP_EXPr: EXPr:
po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
GE_NO_PREFIX));
if (inst.reloc.exp.X_op == O_symbol)
{
val = parse_reloc (&str);
if (val == -1)
{
inst.error = _("unrecognized relocation suffix");
goto failure;
}
else if (val != BFD_RELOC_UNUSED)
{
inst.operands[i].imm = val;
inst.operands[i].hasreloc = 1;
}
}
break;
/* Register or expression */
case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
/* Register or immediate */
case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
I0: po_imm_or_fail (0, 0, FALSE); break;
case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
IF:
if (!is_immediate_prefix (*str))
goto bad_args;
str++;
val = parse_fpa_immediate (&str);
if (val == FAIL)
goto failure;
/* FPA immediates are encoded as registers 8-15.
parse_fpa_immediate has already applied the offset. */
inst.operands[i].reg = val;
inst.operands[i].isreg = 1;
break;
/* Two kinds of register */
case OP_RIWR_RIWC:
{
struct reg_entry *rege = arm_reg_parse_multi (&str);
if (rege->type != REG_TYPE_MMXWR
&& rege->type != REG_TYPE_MMXWC
&& rege->type != REG_TYPE_MMXWCG)
{
inst.error = _("iWMMXt data or control register expected");
goto failure;
}
inst.operands[i].reg = rege->number;
inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
}
break;
/* Misc */
case OP_CPSF: val = parse_cps_flags (&str); break;
case OP_ENDI: val = parse_endian_specifier (&str); break;
case OP_oROR: val = parse_ror (&str); break;
case OP_PSR: val = parse_psr (&str); break;
case OP_COND: val = parse_cond (&str); break;
case OP_oBARRIER:val = parse_barrier (&str); break;
case OP_TB:
po_misc_or_fail (parse_tb (&str));
break;
/* Register lists */
case OP_REGLST:
val = parse_reg_list (&str);
if (*str == '^')
{
inst.operands[1].writeback = 1;
str++;
}
break;
case OP_VRSLST:
val = parse_vfp_reg_list (&str, &inst.operands[i].reg, 0);
break;
case OP_VRDLST:
val = parse_vfp_reg_list (&str, &inst.operands[i].reg, 1);
break;
/* Addressing modes */
case OP_ADDR:
po_misc_or_fail (parse_address (&str, i));
break;
case OP_SH:
po_misc_or_fail (parse_shifter_operand (&str, i));
break;
case OP_oSHll:
po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
break;
case OP_oSHar:
po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
break;
case OP_oSHllar:
po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
break;
default:
as_fatal ("unhandled operand code %d", upat[i]);
}
/* Various value-based sanity checks and shared operations. We
do not signal immediate failures for the register constraints;
this allows a syntax error to take precedence. */
switch (upat[i])
{
case OP_oRRnpc:
case OP_RRnpc:
case OP_RRnpcb:
case OP_RRw:
case OP_RRnpc_I0:
if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
inst.error = BAD_PC;
break;
case OP_CPSF:
case OP_ENDI:
case OP_oROR:
case OP_PSR:
case OP_COND:
case OP_oBARRIER:
case OP_REGLST:
case OP_VRSLST:
case OP_VRDLST:
if (val == FAIL)
goto failure;
inst.operands[i].imm = val;
break;
default:
break;
}
/* If we get here, this operand was successfully parsed. */
inst.operands[i].present = 1;
continue;
bad_args:
inst.error = BAD_ARGS;
failure:
if (!backtrack_pos)
{
/* The parse routine should already have set inst.error, but set a
defaut here just in case. */
if (!inst.error)
inst.error = _("syntax error");
return FAIL;
}
/* Do not backtrack over a trailing optional argument that
absorbed some text. We will only fail again, with the
'garbage following instruction' error message, which is
probably less helpful than the current one. */
if (backtrack_index == i && backtrack_pos != str
&& upat[i+1] == OP_stop)
{
if (!inst.error)
inst.error = _("syntax error");
return FAIL;
}
/* Try again, skipping the optional argument at backtrack_pos. */
str = backtrack_pos;
inst.error = backtrack_error;
inst.operands[backtrack_index].present = 0;
i = backtrack_index;
backtrack_pos = 0;
}
/* Check that we have parsed all the arguments. */
if (*str != '\0' && !inst.error)
inst.error = _("garbage following instruction");
return inst.error ? FAIL : SUCCESS;
}
#undef po_char_or_fail
#undef po_reg_or_fail
#undef po_reg_or_goto
#undef po_imm_or_fail
/* Shorthand macro for instruction encoding functions issuing errors. */
#define constraint(expr, err) do { \
if (expr) \
{ \
inst.error = err; \
return; \
} \
} while (0)
/* Functions for operand encoding. ARM, then Thumb. */
#define rotate_left(v, n) (v << n | v >> (32 - n))
/* If VAL can be encoded in the immediate field of an ARM instruction,
return the encoded form. Otherwise, return FAIL. */
static unsigned int
encode_arm_immediate (unsigned int val)
{
unsigned int a, i;
for (i = 0; i < 32; i += 2)
if ((a = rotate_left (val, i)) <= 0xff)
return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
return FAIL;
}
/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
return the encoded form. Otherwise, return FAIL. */
static unsigned int
encode_thumb32_immediate (unsigned int val)
{
unsigned int a, i;
if (val <= 0xff)
return val;
for (i = 1; i <= 24; i++)
{
a = val >> i;
if ((val & ~(0xff << i)) == 0)
return ((val >> i) & 0x7f) | ((32 - i) << 7);
}
a = val & 0xff;
if (val == ((a << 16) | a))
return 0x100 | a;
if (val == ((a << 24) | (a << 16) | (a << 8) | a))
return 0x300 | a;
a = val & 0xff00;
if (val == ((a << 16) | a))
return 0x200 | (a >> 8);
return FAIL;
}
/* Encode a VFP SP register number into inst.instruction. */
static void
encode_arm_vfp_sp_reg (int reg, enum vfp_sp_reg_pos pos)
{
switch (pos)
{
case VFP_REG_Sd:
inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
break;
case VFP_REG_Sn:
inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
break;
case VFP_REG_Sm:
inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
break;
default:
abort ();
}
}
/* Encode a <shift> in an ARM-format instruction. The immediate,
if any, is handled by md_apply_fix. */
static void
encode_arm_shift (int i)
{
if (inst.operands[i].shift_kind == SHIFT_RRX)
inst.instruction |= SHIFT_ROR << 5;
else
{
inst.instruction |= inst.operands[i].shift_kind << 5;
if (inst.operands[i].immisreg)
{
inst.instruction |= SHIFT_BY_REG;
inst.instruction |= inst.operands[i].imm << 8;
}
else
inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
}
}
static void
encode_arm_shifter_operand (int i)
{
if (inst.operands[i].isreg)
{
inst.instruction |= inst.operands[i].reg;
encode_arm_shift (i);
}
else
inst.instruction |= INST_IMMEDIATE;
}
/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
static void
encode_arm_addr_mode_common (int i, bfd_boolean is_t)
{
assert (inst.operands[i].isreg);
inst.instruction |= inst.operands[i].reg << 16;
if (inst.operands[i].preind)
{
if (is_t)
{
inst.error = _("instruction does not accept preindexed addressing");
return;
}
inst.instruction |= PRE_INDEX;
if (inst.operands[i].writeback)
inst.instruction |= WRITE_BACK;
}
else if (inst.operands[i].postind)
{
assert (inst.operands[i].writeback);
if (is_t)
inst.instruction |= WRITE_BACK;
}
else /* unindexed - only for coprocessor */
{
inst.error = _("instruction does not accept unindexed addressing");
return;
}
if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
&& (((inst.instruction & 0x000f0000) >> 16)
== ((inst.instruction & 0x0000f000) >> 12)))
as_warn ((inst.instruction & LOAD_BIT)
? _("destination register same as write-back base")
: _("source register same as write-back base"));
}
/* inst.operands[i] was set up by parse_address. Encode it into an
ARM-format mode 2 load or store instruction. If is_t is true,
reject forms that cannot be used with a T instruction (i.e. not
post-indexed). */
static void
encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
{
encode_arm_addr_mode_common (i, is_t);
if (inst.operands[i].immisreg)
{
inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
inst.instruction |= inst.operands[i].imm;
if (!inst.operands[i].negative)
inst.instruction |= INDEX_UP;
if (inst.operands[i].shifted)
{
if (inst.operands[i].shift_kind == SHIFT_RRX)
inst.instruction |= SHIFT_ROR << 5;
else
{
inst.instruction |= inst.operands[i].shift_kind << 5;
inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
}
}
}
else /* immediate offset in inst.reloc */
{
if (inst.reloc.type == BFD_RELOC_UNUSED)
inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
}
}
/* inst.operands[i] was set up by parse_address. Encode it into an
ARM-format mode 3 load or store instruction. Reject forms that
cannot be used with such instructions. If is_t is true, reject
forms that cannot be used with a T instruction (i.e. not
post-indexed). */
static void
encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
{
if (inst.operands[i].immisreg && inst.operands[i].shifted)
{
inst.error = _("instruction does not accept scaled register index");
return;
}
encode_arm_addr_mode_common (i, is_t);
if (inst.operands[i].immisreg)
{
inst.instruction |= inst.operands[i].imm;
if (!inst.operands[i].negative)
inst.instruction |= INDEX_UP;
}
else /* immediate offset in inst.reloc */
{
inst.instruction |= HWOFFSET_IMM;
if (inst.reloc.type == BFD_RELOC_UNUSED)
inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
}
}
/* inst.operands[i] was set up by parse_address. Encode it into an
ARM-format instruction. Reject all forms which cannot be encoded
into a coprocessor load/store instruction. If wb_ok is false,
reject use of writeback; if unind_ok is false, reject use of
unindexed addressing. If reloc_override is not 0, use it instead
of BFD_ARM_CP_OFF_IMM. */
static int
encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
{
inst.instruction |= inst.operands[i].reg << 16;
assert (!(inst.operands[i].preind && inst.operands[i].postind));
if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
{
assert (!inst.operands[i].writeback);
if (!unind_ok)
{
inst.error = _("instruction does not support unindexed addressing");
return FAIL;
}
inst.instruction |= inst.operands[i].imm;
inst.instruction |= INDEX_UP;
return SUCCESS;
}
if (inst.operands[i].preind)
inst.instruction |= PRE_INDEX;
if (inst.operands[i].writeback)
{
if (inst.operands[i].reg == REG_PC)
{
inst.error = _("pc may not be used with write-back");
return FAIL;
}
if (!wb_ok)
{
inst.error = _("instruction does not support writeback");
return FAIL;
}
inst.instruction |= WRITE_BACK;
}
if (reloc_override)
inst.reloc.type = reloc_override;
else if (thumb_mode)
inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
else
inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
return SUCCESS;
}
/* inst.reloc.exp describes an "=expr" load pseudo-operation.
Determine whether it can be performed with a move instruction; if
it can, convert inst.instruction to that move instruction and
return 1; if it can't, convert inst.instruction to a literal-pool
load and return 0. If this is not a valid thing to do in the
current context, set inst.error and return 1.
inst.operands[i] describes the destination register. */
static int
move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
{
unsigned long tbit;
if (thumb_p)
tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
else
tbit = LOAD_BIT;
if ((inst.instruction & tbit) == 0)
{
inst.error = _("invalid pseudo operation");
return 1;
}
if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
{
inst.error = _("constant expression expected");
return 1;
}
if (inst.reloc.exp.X_op == O_constant)
{
if (thumb_p)
{
if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
{
/* This can be done with a mov(1) instruction. */
inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
inst.instruction |= inst.reloc.exp.X_add_number;
return 1;
}
}
else
{
int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
if (value != FAIL)
{
/* This can be done with a mov instruction. */
inst.instruction &= LITERAL_MASK;
inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
inst.instruction |= value & 0xfff;
return 1;
}
value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
if (value != FAIL)
{
/* This can be done with a mvn instruction. */
inst.instruction &= LITERAL_MASK;
inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
inst.instruction |= value & 0xfff;
return 1;
}
}
}
if (add_to_lit_pool () == FAIL)
{
inst.error = _("literal pool insertion failed");
return 1;
}
inst.operands[1].reg = REG_PC;
inst.operands[1].isreg = 1;
inst.operands[1].preind = 1;
inst.reloc.pc_rel = 1;
inst.reloc.type = (thumb_p
? BFD_RELOC_ARM_THUMB_OFFSET
: (mode_3
? BFD_RELOC_ARM_HWLITERAL
: BFD_RELOC_ARM_LITERAL));
return 0;
}
/* Functions for instruction encoding, sorted by subarchitecture.
First some generics; their names are taken from the conventional
bit positions for register arguments in ARM format instructions. */
static void
do_noargs (void)
{
}
static void
do_rd (void)
{
inst.instruction |= inst.operands[0].reg << 12;
}
static void
do_rd_rm (void)
{
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].reg;
}
static void
do_rd_rn (void)
{
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].reg << 16;
}
static void
do_rn_rd (void)
{
inst.instruction |= inst.operands[0].reg << 16;
inst.instruction |= inst.operands[1].reg << 12;
}
static void
do_rd_rm_rn (void)
{
unsigned Rn = inst.operands[2].reg;
/* Enforce resutrictions on SWP instruction. */
if ((inst.instruction & 0x0fbfffff) == 0x01000090)
constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
_("Rn must not overlap other operands"));
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].reg;
inst.instruction |= Rn << 16;
}
static void
do_rd_rn_rm (void)
{
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].reg << 16;
inst.instruction |= inst.operands[2].reg;
}
static void
do_rm_rd_rn (void)
{
inst.instruction |= inst.operands[0].reg;
inst.instruction |= inst.operands[1].reg << 12;
inst.instruction |= inst.operands[2].reg << 16;
}
static void
do_imm0 (void)
{
inst.instruction |= inst.operands[0].imm;
}
static void
do_rd_cpaddr (void)
{
inst.instruction |= inst.operands[0].reg << 12;
encode_arm_cp_address (1, TRUE, TRUE, 0);
}
/* ARM instructions, in alphabetical order by function name (except
that wrapper functions appear immediately after the function they
wrap). */
/* This is a pseudo-op of the form "adr rd, label" to be converted
into a relative address of the form "add rd, pc, #label-.-8". */
static void
do_adr (void)
{
inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
/* Frag hacking will turn this into a sub instruction if the offset turns
out to be negative. */
inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
inst.reloc.pc_rel = 1;
inst.reloc.exp.X_add_number -= 8;
}
/* This is a pseudo-op of the form "adrl rd, label" to be converted
into a relative address of the form:
add rd, pc, #low(label-.-8)"
add rd, rd, #high(label-.-8)" */
static void
do_adrl (void)
{
inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
/* Frag hacking will turn this into a sub instruction if the offset turns
out to be negative. */
inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
inst.reloc.pc_rel = 1;
inst.size = INSN_SIZE * 2;
inst.reloc.exp.X_add_number -= 8;
}
static void
do_arit (void)
{
if (!inst.operands[1].present)
inst.operands[1].reg = inst.operands[0].reg;
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].reg << 16;
encode_arm_shifter_operand (2);
}
static void
do_barrier (void)
{
if (inst.operands[0].present)
{
constraint ((inst.instruction & 0xf0) != 0x40
&& inst.operands[0].imm != 0xf,
"bad barrier type");
inst.instruction |= inst.operands[0].imm;
}
else
inst.instruction |= 0xf;
}
static void
do_bfc (void)
{
unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
constraint (msb > 32, _("bit-field extends past end of register"));
/* The instruction encoding stores the LSB and MSB,
not the LSB and width. */
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].imm << 7;
inst.instruction |= (msb - 1) << 16;
}
static void
do_bfi (void)
{
unsigned int msb;
/* #0 in second position is alternative syntax for bfc, which is
the same instruction but with REG_PC in the Rm field. */
if (!inst.operands[1].isreg)
inst.operands[1].reg = REG_PC;
msb = inst.operands[2].imm + inst.operands[3].imm;
constraint (msb > 32, _("bit-field extends past end of register"));
/* The instruction encoding stores the LSB and MSB,
not the LSB and width. */
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].reg;
inst.instruction |= inst.operands[2].imm << 7;
inst.instruction |= (msb - 1) << 16;
}
static void
do_bfx (void)
{
constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
_("bit-field extends past end of register"));
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].reg;
inst.instruction |= inst.operands[2].imm << 7;
inst.instruction |= (inst.operands[3].imm - 1) << 16;
}
/* ARM V5 breakpoint instruction (argument parse)
BKPT <16 bit unsigned immediate>
Instruction is not conditional.
The bit pattern given in insns[] has the COND_ALWAYS condition,
and it is an error if the caller tried to override that. */
static void
do_bkpt (void)
{
/* Top 12 of 16 bits to bits 19:8. */
inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
/* Bottom 4 of 16 bits to bits 3:0. */
inst.instruction |= inst.operands[0].imm & 0xf;
}
static void
encode_branch (int default_reloc)
{
if (inst.operands[0].hasreloc)
{
constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
_("the only suffix valid here is '(plt)'"));
inst.reloc.type = BFD_RELOC_ARM_PLT32;
}
else
{
inst.reloc.type = default_reloc;
}
inst.reloc.pc_rel = 1;
}
static void
do_branch (void)
{
#ifdef OBJ_ELF
if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
else
#endif
encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
}
static void
do_bl (void)
{
#ifdef OBJ_ELF
if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
{
if (inst.cond == COND_ALWAYS)
encode_branch (BFD_RELOC_ARM_PCREL_CALL);
else
encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
}
else
#endif
encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
}
/* ARM V5 branch-link-exchange instruction (argument parse)
BLX <target_addr> ie BLX(1)
BLX{<condition>} <Rm> ie BLX(2)
Unfortunately, there are two different opcodes for this mnemonic.
So, the insns[].value is not used, and the code here zaps values
into inst.instruction.
Also, the <target_addr> can be 25 bits, hence has its own reloc. */
static void
do_blx (void)
{
if (inst.operands[0].isreg)
{
/* Arg is a register; the opcode provided by insns[] is correct.
It is not illegal to do "blx pc", just useless. */
if (inst.operands[0].reg == REG_PC)
as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
inst.instruction |= inst.operands[0].reg;
}
else
{
/* Arg is an address; this instruction cannot be executed
conditionally, and the opcode must be adjusted. */
constraint (inst.cond != COND_ALWAYS, BAD_COND);
inst.instruction = 0xfa000000;
#ifdef OBJ_ELF
if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
encode_branch (BFD_RELOC_ARM_PCREL_CALL);
else
#endif
encode_branch (BFD_RELOC_ARM_PCREL_BLX);
}
}
static void
do_bx (void)
{
if (inst.operands[0].reg == REG_PC)
as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
inst.instruction |= inst.operands[0].reg;
}
/* ARM v5TEJ. Jump to Jazelle code. */
static void
do_bxj (void)
{
if (inst.operands[0].reg == REG_PC)
as_tsktsk (_("use of r15 in bxj is not really useful"));
inst.instruction |= inst.operands[0].reg;
}
/* Co-processor data operation:
CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
static void
do_cdp (void)
{
inst.instruction |= inst.operands[0].reg << 8;
inst.instruction |= inst.operands[1].imm << 20;
inst.instruction |= inst.operands[2].reg << 12;
inst.instruction |= inst.operands[3].reg << 16;
inst.instruction |= inst.operands[4].reg;
inst.instruction |= inst.operands[5].imm << 5;
}
static void
do_cmp (void)
{
inst.instruction |= inst.operands[0].reg << 16;
encode_arm_shifter_operand (1);
}
/* Transfer between coprocessor and ARM registers.
MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
MRC2
MCR{cond}
MCR2
No special properties. */
static void
do_co_reg (void)
{
inst.instruction |= inst.operands[0].reg << 8;
inst.instruction |= inst.operands[1].imm << 21;
inst.instruction |= inst.operands[2].reg << 12;
inst.instruction |= inst.operands[3].reg << 16;
inst.instruction |= inst.operands[4].reg;
inst.instruction |= inst.operands[5].imm << 5;
}
/* Transfer between coprocessor register and pair of ARM registers.
MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
MCRR2
MRRC{cond}
MRRC2
Two XScale instructions are special cases of these:
MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
Result unpredicatable if Rd or Rn is R15. */
static void
do_co_reg2c (void)
{
inst.instruction |= inst.operands[0].reg << 8;
inst.instruction |= inst.operands[1].imm << 4;
inst.instruction |= inst.operands[2].reg << 12;
inst.instruction |= inst.operands[3].reg << 16;
inst.instruction |= inst.operands[4].reg;
}
static void
do_cpsi (void)
{
inst.instruction |= inst.operands[0].imm << 6;
inst.instruction |= inst.operands[1].imm;
}
static void
do_dbg (void)
{
inst.instruction |= inst.operands[0].imm;
}
static void
do_it (void)
{
/* There is no IT instruction in ARM mode. We
process it but do not generate code for it. */
inst.size = 0;
}
static void
do_ldmstm (void)
{
int base_reg = inst.operands[0].reg;
int range = inst.operands[1].imm;
inst.instruction |= base_reg << 16;
inst.instruction |= range;
if (inst.operands[1].writeback)
inst.instruction |= LDM_TYPE_2_OR_3;
if (inst.operands[0].writeback)
{
inst.instruction |= WRITE_BACK;
/* Check for unpredictable uses of writeback. */
if (inst.instruction & LOAD_BIT)
{
/* Not allowed in LDM type 2. */
if ((inst.instruction & LDM_TYPE_2_OR_3)
&& ((range & (1 << REG_PC)) == 0))
as_warn (_("writeback of base register is UNPREDICTABLE"));
/* Only allowed if base reg not in list for other types. */
else if (range & (1 << base_reg))
as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
}
else /* STM. */
{
/* Not allowed for type 2. */
if (inst.instruction & LDM_TYPE_2_OR_3)
as_warn (_("writeback of base register is UNPREDICTABLE"));
/* Only allowed if base reg not in list, or first in list. */
else if ((range & (1 << base_reg))
&& (range & ((1 << base_reg) - 1)))
as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
}
}
}
/* ARMv5TE load-consecutive (argument parse)
Mode is like LDRH.
LDRccD R, mode
STRccD R, mode. */
static void
do_ldrd (void)
{
constraint (inst.operands[0].reg % 2 != 0,
_("first destination register must be even"));
constraint (inst.operands[1].present
&& inst.operands[1].reg != inst.operands[0].reg + 1,
_("can only load two consecutive registers"));
constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
constraint (!inst.operands[2].isreg, _("'[' expected"));
if (!inst.operands[1].present)
inst.operands[1].reg = inst.operands[0].reg + 1;
if (inst.instruction & LOAD_BIT)
{
/* encode_arm_addr_mode_3 will diagnose overlap between the base
register and the first register written; we have to diagnose
overlap between the base and the second register written here. */
if (inst.operands[2].reg == inst.operands[1].reg
&& (inst.operands[2].writeback || inst.operands[2].postind))
as_warn (_("base register written back, and overlaps "
"second destination register"));
/* For an index-register load, the index register must not overlap the
destination (even if not write-back). */
else if (inst.operands[2].immisreg
&& ((unsigned) inst.operands[2].imm == inst.operands[0].reg
|| (unsigned) inst.operands[2].imm == inst.operands[1].reg))
as_warn (_("index register overlaps destination register"));
}
inst.instruction |= inst.operands[0].reg << 12;
encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
}
static void
do_ldrex (void)
{
constraint (!inst.operands[1].isreg || !inst.operands[1].preind
|| inst.operands[1].postind || inst.operands[1].writeback
|| inst.operands[1].immisreg || inst.operands[1].shifted
|| inst.operands[1].negative
/* This can arise if the programmer has written
strex rN, rM, foo
or if they have mistakenly used a register name as the last
operand, eg:
strex rN, rM, rX
It is very difficult to distinguish between these two cases
because "rX" might actually be a label. ie the register
name has been occluded by a symbol of the same name. So we
just generate a general 'bad addressing mode' type error
message and leave it up to the programmer to discover the
true cause and fix their mistake. */
|| (inst.operands[1].reg == REG_PC),
BAD_ADDR_MODE);
constraint (inst.reloc.exp.X_op != O_constant
|| inst.reloc.exp.X_add_number != 0,
_("offset must be zero in ARM encoding"));
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].reg << 16;
inst.reloc.type = BFD_RELOC_UNUSED;
}
static void
do_ldrexd (void)
{
constraint (inst.operands[0].reg % 2 != 0,
_("even register required"));
constraint (inst.operands[1].present
&& inst.operands[1].reg != inst.operands[0].reg + 1,
_("can only load two consecutive registers"));
/* If op 1 were present and equal to PC, this function wouldn't
have been called in the first place. */
constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[2].reg << 16;
}
static void
do_ldst (void)
{
inst.instruction |= inst.operands[0].reg << 12;
if (!inst.operands[1].isreg)
if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
return;
encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
}
static void
do_ldstt (void)
{
/* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
reject [Rn,...]. */
if (inst.operands[1].preind)
{
constraint (inst.reloc.exp.X_op != O_constant ||
inst.reloc.exp.X_add_number != 0,
_("this instruction requires a post-indexed address"));
inst.operands[1].preind = 0;
inst.operands[1].postind = 1;
inst.operands[1].writeback = 1;
}
inst.instruction |= inst.operands[0].reg << 12;
encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
}
/* Halfword and signed-byte load/store operations. */
static void
do_ldstv4 (void)
{
inst.instruction |= inst.operands[0].reg << 12;
if (!inst.operands[1].isreg)
if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
return;
encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
}
static void
do_ldsttv4 (void)
{
/* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
reject [Rn,...]. */
if (inst.operands[1].preind)
{
constraint (inst.reloc.exp.X_op != O_constant ||
inst.reloc.exp.X_add_number != 0,
_("this instruction requires a post-indexed address"));
inst.operands[1].preind = 0;
inst.operands[1].postind = 1;
inst.operands[1].writeback = 1;
}
inst.instruction |= inst.operands[0].reg << 12;
encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
}
/* Co-processor register load/store.
Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
static void
do_lstc (void)
{
inst.instruction |= inst.operands[0].reg << 8;
inst.instruction |= inst.operands[1].reg << 12;
encode_arm_cp_address (2, TRUE, TRUE, 0);
}
static void
do_mlas (void)
{
/* This restriction does not apply to mls (nor to mla in v6, but
that's hard to detect at present). */
if (inst.operands[0].reg == inst.operands[1].reg
&& !(inst.instruction & 0x00400000))
as_tsktsk (_("rd and rm should be different in mla"));
inst.instruction |= inst.operands[0].reg << 16;
inst.instruction |= inst.operands[1].reg;
inst.instruction |= inst.operands[2].reg << 8;
inst.instruction |= inst.operands[3].reg << 12;
}
static void
do_mov (void)
{
inst.instruction |= inst.operands[0].reg << 12;
encode_arm_shifter_operand (1);
}
/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
static void
do_mov16 (void)
{
inst.instruction |= inst.operands[0].reg << 12;
/* The value is in two pieces: 0:11, 16:19. */
inst.instruction |= (inst.operands[1].imm & 0x00000fff);
inst.instruction |= (inst.operands[1].imm & 0x0000f000) << 4;
}
static void
do_mrs (void)
{
/* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
!= (PSR_c|PSR_f),
_("'CPSR' or 'SPSR' expected"));
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
}
/* Two possible forms:
"{C|S}PSR_<field>, Rm",
"{C|S}PSR_f, #expression". */
static void
do_msr (void)
{
inst.instruction |= inst.operands[0].imm;
if (inst.operands[1].isreg)
inst.instruction |= inst.operands[1].reg;
else
{
inst.instruction |= INST_IMMEDIATE;
inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
inst.reloc.pc_rel = 0;
}
}
static void
do_mul (void)
{
if (!inst.operands[2].present)
inst.operands[2].reg = inst.operands[0].reg;
inst.instruction |= inst.operands[0].reg << 16;
inst.instruction |= inst.operands[1].reg;
inst.instruction |= inst.operands[2].reg << 8;
if (inst.operands[0].reg == inst.operands[1].reg)
as_tsktsk (_("rd and rm should be different in mul"));
}
/* Long Multiply Parser
UMULL RdLo, RdHi, Rm, Rs
SMULL RdLo, RdHi, Rm, Rs
UMLAL RdLo, RdHi, Rm, Rs
SMLAL RdLo, RdHi, Rm, Rs. */
static void
do_mull (void)
{
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].reg << 16;
inst.instruction |= inst.operands[2].reg;
inst.instruction |= inst.operands[3].reg << 8;
/* rdhi, rdlo and rm must all be different. */
if (inst.operands[0].reg == inst.operands[1].reg
|| inst.operands[0].reg == inst.operands[2].reg
|| inst.operands[1].reg == inst.operands[2].reg)
as_tsktsk (_("rdhi, rdlo and rm must all be different"));
}
static void
do_nop (void)
{
if (inst.operands[0].present)
{
/* Architectural NOP hints are CPSR sets with no bits selected. */
inst.instruction &= 0xf0000000;
inst.instruction |= 0x0320f000 + inst.operands[0].imm;
}
}
/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
Condition defaults to COND_ALWAYS.
Error if Rd, Rn or Rm are R15. */
static void
do_pkhbt (void)
{
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].reg << 16;
inst.instruction |= inst.operands[2].reg;
if (inst.operands[3].present)
encode_arm_shift (3);
}
/* ARM V6 PKHTB (Argument Parse). */
static void
do_pkhtb (void)
{
if (!inst.operands[3].present)
{
/* If the shift specifier is omitted, turn the instruction
into pkhbt rd, rm, rn. */
inst.instruction &= 0xfff00010;
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].reg;
inst.instruction |= inst.operands[2].reg << 16;
}
else
{
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].reg << 16;
inst.instruction |= inst.operands[2].reg;
encode_arm_shift (3);
}
}
/* ARMv5TE: Preload-Cache
PLD <addr_mode>
Syntactically, like LDR with B=1, W=0, L=1. */
static void
do_pld (void)
{
constraint (!inst.operands[0].isreg,
_("'[' expected after PLD mnemonic"));
constraint (inst.operands[0].postind,
_("post-indexed expression used in preload instruction"));
constraint (inst.operands[0].writeback,
_("writeback used in preload instruction"));
constraint (!inst.operands[0].preind,
_("unindexed addressing used in preload instruction"));
encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
}
/* ARMv7: PLI <addr_mode> */
static void
do_pli (void)
{
constraint (!inst.operands[0].isreg,
_("'[' expected after PLI mnemonic"));
constraint (inst.operands[0].postind,
_("post-indexed expression used in preload instruction"));
constraint (inst.operands[0].writeback,
_("writeback used in preload instruction"));
constraint (!inst.operands[0].preind,
_("unindexed addressing used in preload instruction"));
encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
inst.instruction &= ~PRE_INDEX;
}
static void
do_push_pop (void)
{
inst.operands[1] = inst.operands[0];
memset (&inst.operands[0], 0, sizeof inst.operands[0]);
inst.operands[0].isreg = 1;
inst.operands[0].writeback = 1;
inst.operands[0].reg = REG_SP;
do_ldmstm ();
}
/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
word at the specified address and the following word
respectively.
Unconditionally executed.
Error if Rn is R15. */
static void
do_rfe (void)
{
inst.instruction |= inst.operands[0].reg << 16;
if (inst.operands[0].writeback)
inst.instruction |= WRITE_BACK;
}
/* ARM V6 ssat (argument parse). */
static void
do_ssat (void)
{
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= (inst.operands[1].imm - 1) << 16;
inst.instruction |= inst.operands[2].reg;
if (inst.operands[3].present)
encode_arm_shift (3);
}
/* ARM V6 usat (argument parse). */
static void
do_usat (void)
{
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].imm << 16;
inst.instruction |= inst.operands[2].reg;
if (inst.operands[3].present)
encode_arm_shift (3);
}
/* ARM V6 ssat16 (argument parse). */
static void
do_ssat16 (void)
{
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= ((inst.operands[1].imm - 1) << 16);
inst.instruction |= inst.operands[2].reg;
}
static void
do_usat16 (void)
{
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].imm << 16;
inst.instruction |= inst.operands[2].reg;
}
/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
preserving the other bits.
setend <endian_specifier>, where <endian_specifier> is either
BE or LE. */
static void
do_setend (void)
{
if (inst.operands[0].imm)
inst.instruction |= 0x200;
}
static void
do_shift (void)
{
unsigned int Rm = (inst.operands[1].present
? inst.operands[1].reg
: inst.operands[0].reg);
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= Rm;
if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
{
inst.instruction |= inst.operands[2].reg << 8;
inst.instruction |= SHIFT_BY_REG;
}
else
inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
}
static void
do_smc (void)
{
inst.reloc.type = BFD_RELOC_ARM_SMC;
inst.reloc.pc_rel = 0;
}
static void
do_swi (void)
{
inst.reloc.type = BFD_RELOC_ARM_SWI;
inst.reloc.pc_rel = 0;
}
/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
SMLAxy{cond} Rd,Rm,Rs,Rn
SMLAWy{cond} Rd,Rm,Rs,Rn
Error if any register is R15. */
static void
do_smla (void)
{
inst.instruction |= inst.operands[0].reg << 16;
inst.instruction |= inst.operands[1].reg;
inst.instruction |= inst.operands[2].reg << 8;
inst.instruction |= inst.operands[3].reg << 12;
}
/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
Error if any register is R15.
Warning if Rdlo == Rdhi. */
static void
do_smlal (void)
{
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].reg << 16;
inst.instruction |= inst.operands[2].reg;
inst.instruction |= inst.operands[3].reg << 8;
if (inst.operands[0].reg == inst.operands[1].reg)
as_tsktsk (_("rdhi and rdlo must be different"));
}
/* ARM V5E (El Segundo) signed-multiply (argument parse)
SMULxy{cond} Rd,Rm,Rs
Error if any register is R15. */
static void
do_smul (void)
{
inst.instruction |= inst.operands[0].reg << 16;
inst.instruction |= inst.operands[1].reg;
inst.instruction |= inst.operands[2].reg << 8;
}
/* ARM V6 srs (argument parse). */
static void
do_srs (void)
{
inst.instruction |= inst.operands[0].imm;
if (inst.operands[0].writeback)
inst.instruction |= WRITE_BACK;
}
/* ARM V6 strex (argument parse). */
static void
do_strex (void)
{
constraint (!inst.operands[2].isreg || !inst.operands[2].preind
|| inst.operands[2].postind || inst.operands[2].writeback
|| inst.operands[2].immisreg || inst.operands[2].shifted
|| inst.operands[2].negative
/* See comment in do_ldrex(). */
|| (inst.operands[2].reg == REG_PC),
BAD_ADDR_MODE);
constraint (inst.operands[0].reg == inst.operands[1].reg
|| inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
constraint (inst.reloc.exp.X_op != O_constant
|| inst.reloc.exp.X_add_number != 0,
_("offset must be zero in ARM encoding"));
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].reg;
inst.instruction |= inst.operands[2].reg << 16;
inst.reloc.type = BFD_RELOC_UNUSED;
}
static void
do_strexd (void)
{
constraint (inst.operands[1].reg % 2 != 0,
_("even register required"));
constraint (inst.operands[2].present
&& inst.operands[2].reg != inst.operands[1].reg + 1,
_("can only store two consecutive registers"));
/* If op 2 were present and equal to PC, this function wouldn't
have been called in the first place. */
constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
constraint (inst.operands[0].reg == inst.operands[1].reg
|| inst.operands[0].reg == inst.operands[1].reg + 1
|| inst.operands[0].reg == inst.operands[3].reg,
BAD_OVERLAP);
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].reg;
inst.instruction |= inst.operands[3].reg << 16;
}
/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
extends it to 32-bits, and adds the result to a value in another
register. You can specify a rotation by 0, 8, 16, or 24 bits
before extracting the 16-bit value.
SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
Condition defaults to COND_ALWAYS.
Error if any register uses R15. */
static void
do_sxtah (void)
{
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].reg << 16;
inst.instruction |= inst.operands[2].reg;
inst.instruction |= inst.operands[3].imm << 10;
}
/* ARM V6 SXTH.
SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
Condition defaults to COND_ALWAYS.
Error if any register uses R15. */
static void
do_sxth (void)
{
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].reg;
inst.instruction |= inst.operands[2].imm << 10;
}
/* VFP instructions. In a logical order: SP variant first, monad
before dyad, arithmetic then move then load/store. */
static void
do_vfp_sp_monadic (void)
{
encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sd);
encode_arm_vfp_sp_reg (inst.operands[1].reg, VFP_REG_Sm);
}
static void
do_vfp_sp_dyadic (void)
{
encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sd);
encode_arm_vfp_sp_reg (inst.operands[1].reg, VFP_REG_Sn);
encode_arm_vfp_sp_reg (inst.operands[2].reg, VFP_REG_Sm);
}
static void
do_vfp_sp_compare_z (void)
{
encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sd);
}
static void
do_vfp_dp_sp_cvt (void)
{
inst.instruction |= inst.operands[0].reg << 12;
encode_arm_vfp_sp_reg (inst.operands[1].reg, VFP_REG_Sm);
}
static void
do_vfp_sp_dp_cvt (void)
{
encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sd);
inst.instruction |= inst.operands[1].reg;
}
static void
do_vfp_reg_from_sp (void)
{
inst.instruction |= inst.operands[0].reg << 12;
encode_arm_vfp_sp_reg (inst.operands[1].reg, VFP_REG_Sn);
}
static void
do_vfp_reg2_from_sp2 (void)
{
constraint (inst.operands[2].imm != 2,
_("only two consecutive VFP SP registers allowed here"));
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].reg << 16;
encode_arm_vfp_sp_reg (inst.operands[2].reg, VFP_REG_Sm);
}
static void
do_vfp_sp_from_reg (void)
{
encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sn);
inst.instruction |= inst.operands[1].reg << 12;
}
static void
do_vfp_sp2_from_reg2 (void)
{
constraint (inst.operands[0].imm != 2,
_("only two consecutive VFP SP registers allowed here"));
encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sm);
inst.instruction |= inst.operands[1].reg << 12;
inst.instruction |= inst.operands[2].reg << 16;
}
static void
do_vfp_sp_ldst (void)
{
encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sd);
encode_arm_cp_address (1, FALSE, TRUE, 0);
}
static void
do_vfp_dp_ldst (void)
{
inst.instruction |= inst.operands[0].reg << 12;
encode_arm_cp_address (1, FALSE, TRUE, 0);
}
static void
vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
{
if (inst.operands[0].writeback)
inst.instruction |= WRITE_BACK;
else
constraint (ldstm_type != VFP_LDSTMIA,
_("this addressing mode requires base-register writeback"));
inst.instruction |= inst.operands[0].reg << 16;
encode_arm_vfp_sp_reg (inst.operands[1].reg, VFP_REG_Sd);
inst.instruction |= inst.operands[1].imm;
}
static void
vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
{
int count;
if (inst.operands[0].writeback)
inst.instruction |= WRITE_BACK;
else
constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
_("this addressing mode requires base-register writeback"));
inst.instruction |= inst.operands[0].reg << 16;
inst.instruction |= inst.operands[1].reg << 12;
count = inst.operands[1].imm << 1;
if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
count += 1;
inst.instruction |= count;
}
static void
do_vfp_sp_ldstmia (void)
{
vfp_sp_ldstm (VFP_LDSTMIA);
}
static void
do_vfp_sp_ldstmdb (void)
{
vfp_sp_ldstm (VFP_LDSTMDB);
}
static void
do_vfp_dp_ldstmia (void)
{
vfp_dp_ldstm (VFP_LDSTMIA);
}
static void
do_vfp_dp_ldstmdb (void)
{
vfp_dp_ldstm (VFP_LDSTMDB);
}
static void
do_vfp_xp_ldstmia (void)
{
vfp_dp_ldstm (VFP_LDSTMIAX);
}
static void
do_vfp_xp_ldstmdb (void)
{
vfp_dp_ldstm (VFP_LDSTMDBX);
}
/* FPA instructions. Also in a logical order. */
static void
do_fpa_cmp (void)
{
inst.instruction |= inst.operands[0].reg << 16;
inst.instruction |= inst.operands[1].reg;
}
static void
do_fpa_ldmstm (void)
{
inst.instruction |= inst.operands[0].reg << 12;
switch (inst.operands[1].imm)
{
case 1: inst.instruction |= CP_T_X; break;
case 2: inst.instruction |= CP_T_Y; break;
case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
case 4: break;
default: abort ();
}
if (inst.instruction & (PRE_INDEX | INDEX_UP))
{
/* The instruction specified "ea" or "fd", so we can only accept
[Rn]{!}. The instruction does not really support stacking or
unstacking, so we have to emulate these by setting appropriate
bits and offsets. */
constraint (inst.reloc.exp.X_op != O_constant
|| inst.reloc.exp.X_add_number != 0,
_("this instruction does not support indexing"));
if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
if (!(inst.instruction & INDEX_UP))
inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
{
inst.operands[2].preind = 0;
inst.operands[2].postind = 1;
}
}
encode_arm_cp_address (2, TRUE, TRUE, 0);
}
/* iWMMXt instructions: strictly in alphabetical order. */
static void
do_iwmmxt_tandorc (void)
{
constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
}
static void
do_iwmmxt_textrc (void)
{
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].imm;
}
static void
do_iwmmxt_textrm (void)
{
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].reg << 16;
inst.instruction |= inst.operands[2].imm;
}
static void
do_iwmmxt_tinsr (void)
{
inst.instruction |= inst.operands[0].reg << 16;
inst.instruction |= inst.operands[1].reg << 12;
inst.instruction |= inst.operands[2].imm;
}
static void
do_iwmmxt_tmia (void)
{
inst.instruction |= inst.operands[0].reg << 5;
inst.instruction |= inst.operands[1].reg;
inst.instruction |= inst.operands[2].reg << 12;
}
static void
do_iwmmxt_waligni (void)
{
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].reg << 16;
inst.instruction |= inst.operands[2].reg;
inst.instruction |= inst.operands[3].imm << 20;
}
static void
do_iwmmxt_wmov (void)
{
/* WMOV rD, rN is an alias for WOR rD, rN, rN. */
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].reg << 16;
inst.instruction |= inst.operands[1].reg;
}
static void
do_iwmmxt_wldstbh (void)
{
int reloc;
inst.instruction |= inst.operands[0].reg << 12;
if (thumb_mode)
reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
else
reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
encode_arm_cp_address (1, TRUE, FALSE, reloc);
}
static void
do_iwmmxt_wldstw (void)
{
/* RIWR_RIWC clears .isreg for a control register. */
if (!inst.operands[0].isreg)
{
constraint (inst.cond != COND_ALWAYS, BAD_COND);
inst.instruction |= 0xf0000000;
}
inst.instruction |= inst.operands[0].reg << 12;
encode_arm_cp_address (1, TRUE, TRUE, 0);
}
static void
do_iwmmxt_wldstd (void)
{
inst.instruction |= inst.operands[0].reg << 12;
encode_arm_cp_address (1, TRUE, FALSE, 0);
}
static void
do_iwmmxt_wshufh (void)
{
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].reg << 16;
inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
inst.instruction |= (inst.operands[2].imm & 0x0f);
}
static void
do_iwmmxt_wzero (void)
{
/* WZERO reg is an alias for WANDN reg, reg, reg. */
inst.instruction |= inst.operands[0].reg;
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[0].reg << 16;
}
/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
operations first, then control, shift, and load/store. */
/* Insns like "foo X,Y,Z". */
static void
do_mav_triple (void)
{
inst.instruction |= inst.operands[0].reg << 16;
inst.instruction |= inst.operands[1].reg;
inst.instruction |= inst.operands[2].reg << 12;
}
/* Insns like "foo W,X,Y,Z".
where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
static void
do_mav_quad (void)
{
inst.instruction |= inst.operands[0].reg << 5;
inst.instruction |= inst.operands[1].reg << 12;
inst.instruction |= inst.operands[2].reg << 16;
inst.instruction |= inst.operands[3].reg;
}
/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
static void
do_mav_dspsc (void)
{
inst.instruction |= inst.operands[1].reg << 12;
}
/* Maverick shift immediate instructions.
cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
static void
do_mav_shift (void)
{
int imm = inst.operands[2].imm;
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].reg << 16;
/* Bits 0-3 of the insn should have bits 0-3 of the immediate.
Bits 5-7 of the insn should have bits 4-6 of the immediate.
Bit 4 should be 0. */
imm = (imm & 0xf) | ((imm & 0x70) << 1);
inst.instruction |= imm;
}
/* XScale instructions. Also sorted arithmetic before move. */
/* Xscale multiply-accumulate (argument parse)
MIAcc acc0,Rm,Rs
MIAPHcc acc0,Rm,Rs
MIAxycc acc0,Rm,Rs. */
static void
do_xsc_mia (void)
{
inst.instruction |= inst.operands[1].reg;
inst.instruction |= inst.operands[2].reg << 12;
}
/* Xscale move-accumulator-register (argument parse)
MARcc acc0,RdLo,RdHi. */
static void
do_xsc_mar (void)
{
inst.instruction |= inst.operands[1].reg << 12;
inst.instruction |= inst.operands[2].reg << 16;
}
/* Xscale move-register-accumulator (argument parse)
MRAcc RdLo,RdHi,acc0. */
static void
do_xsc_mra (void)
{
constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].reg << 16;
}
/* Encoding functions relevant only to Thumb. */
/* inst.operands[i] is a shifted-register operand; encode
it into inst.instruction in the format used by Thumb32. */
static void
encode_thumb32_shifted_operand (int i)
{
unsigned int value = inst.reloc.exp.X_add_number;
unsigned int shift = inst.operands[i].shift_kind;
constraint (inst.operands[i].immisreg,
_("shift by register not allowed in thumb mode"));
inst.instruction |= inst.operands[i].reg;
if (shift == SHIFT_RRX)
inst.instruction |= SHIFT_ROR << 4;
else
{
constraint (inst.reloc.exp.X_op != O_constant,
_("expression too complex"));
constraint (value > 32
|| (value == 32 && (shift == SHIFT_LSL
|| shift == SHIFT_ROR)),
_("shift expression is too large"));
if (value == 0)
shift = SHIFT_LSL;
else if (value == 32)
value = 0;
inst.instruction |= shift << 4;
inst.instruction |= (value & 0x1c) << 10;
inst.instruction |= (value & 0x03) << 6;
}
}
/* inst.operands[i] was set up by parse_address. Encode it into a
Thumb32 format load or store instruction. Reject forms that cannot
be used with such instructions. If is_t is true, reject forms that
cannot be used with a T instruction; if is_d is true, reject forms
that cannot be used with a D instruction. */
static void
encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
{
bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
constraint (!inst.operands[i].isreg,
_("Instruction does not support =N addresses"));
inst.instruction |= inst.operands[i].reg << 16;
if (inst.operands[i].immisreg)
{
constraint (is_pc, _("cannot use register index with PC-relative addressing"));
constraint (is_t || is_d, _("cannot use register index with this instruction"));
constraint (inst.operands[i].negative,
_("Thumb does not support negative register indexing"));
constraint (inst.operands[i].postind,
_("Thumb does not support register post-indexing"));
constraint (inst.operands[i].writeback,
_("Thumb does not support register indexing with writeback"));
constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
_("Thumb supports only LSL in shifted register indexing"));
inst.instruction |= inst.operands[i].imm;
if (inst.operands[i].shifted)
{
constraint (inst.reloc.exp.X_op != O_constant,
_("expression too complex"));
constraint (inst.reloc.exp.X_add_number < 0
|| inst.reloc.exp.X_add_number > 3,
_("shift out of range"));
inst.instruction |= inst.reloc.exp.X_add_number << 4;
}
inst.reloc.type = BFD_RELOC_UNUSED;
}
else if (inst.operands[i].preind)
{
constraint (is_pc && inst.operands[i].writeback,
_("cannot use writeback with PC-relative addressing"));
constraint (is_t && inst.operands[i].writeback,
_("cannot use writeback with this instruction"));
if (is_d)
{
inst.instruction |= 0x01000000;
if (inst.operands[i].writeback)
inst.instruction |= 0x00200000;
}
else
{
inst.instruction |= 0x00000c00;
if (inst.operands[i].writeback)
inst.instruction |= 0x00000100;
}
inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
}
else if (inst.operands[i].postind)
{
assert (inst.operands[i].writeback);
constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
constraint (is_t, _("cannot use post-indexing with this instruction"));
if (is_d)
inst.instruction |= 0x00200000;
else
inst.instruction |= 0x00000900;
inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
}
else /* unindexed - only for coprocessor */
inst.error = _("instruction does not accept unindexed addressing");
}
/* Table of Thumb instructions which exist in both 16- and 32-bit
encodings (the latter only in post-V6T2 cores). The index is the
value used in the insns table below. When there is more than one
possible 16-bit encoding for the instruction, this table always
holds variant (1).
Also contains several pseudo-instructions used during relaxation. */
#define T16_32_TAB \
X(adc, 4140, eb400000), \
X(adcs, 4140, eb500000), \
X(add, 1c00, eb000000), \
X(adds, 1c00, eb100000), \
X(addi, 0000, f1000000), \
X(addis, 0000, f1100000), \
X(add_pc,000f, f20f0000), \
X(add_sp,000d, f10d0000), \
X(adr, 000f, f20f0000), \
X(and, 4000, ea000000), \
X(ands, 4000, ea100000), \
X(asr, 1000, fa40f000), \
X(asrs, 1000, fa50f000), \
X(b, e000, f000b000), \
X(bcond, d000, f0008000), \
X(bic, 4380, ea200000), \
X(bics, 4380, ea300000), \
X(cmn, 42c0, eb100f00), \
X(cmp, 2800, ebb00f00), \
X(cpsie, b660, f3af8400), \
X(cpsid, b670, f3af8600), \
X(cpy, 4600, ea4f0000), \
X(dec_sp,80dd, f1bd0d00), \
X(eor, 4040, ea800000), \
X(eors, 4040, ea900000), \
X(inc_sp,00dd, f10d0d00), \
X(ldmia, c800, e8900000), \
X(ldr, 6800, f8500000), \
X(ldrb, 7800, f8100000), \
X(ldrh, 8800, f8300000), \
X(ldrsb, 5600, f9100000), \
X(ldrsh, 5e00, f9300000), \
X(ldr_pc,4800, f85f0000), \
X(ldr_pc2,4800, f85f0000), \
X(ldr_sp,9800, f85d0000), \
X(lsl, 0000, fa00f000), \
X(lsls, 0000, fa10f000), \
X(lsr, 0800, fa20f000), \
X(lsrs, 0800, fa30f000), \
X(mov, 2000, ea4f0000), \
X(movs, 2000, ea5f0000), \
X(mul, 4340, fb00f000), \
X(muls, 4340, ffffffff), /* no 32b muls */ \
X(mvn, 43c0, ea6f0000), \
X(mvns, 43c0, ea7f0000), \
X(neg, 4240, f1c00000), /* rsb #0 */ \
X(negs, 4240, f1d00000), /* rsbs #0 */ \
X(orr, 4300, ea400000), \
X(orrs, 4300, ea500000), \
X(pop, bc00, e8bd0000), /* ldmia sp!,... */ \
X(push, b400, e92d0000), /* stmdb sp!,... */ \
X(rev, ba00, fa90f080), \
X(rev16, ba40, fa90f090), \
X(revsh, bac0, fa90f0b0), \
X(ror, 41c0, fa60f000), \
X(rors, 41c0, fa70f000), \
X(sbc, 4180, eb600000), \
X(sbcs, 4180, eb700000), \
X(stmia, c000, e8800000), \
X(str, 6000, f8400000), \
X(strb, 7000, f8000000), \
X(strh, 8000, f8200000), \
X(str_sp,9000, f84d0000), \
X(sub, 1e00, eba00000), \
X(subs, 1e00, ebb00000), \
X(subi, 8000, f1a00000), \
X(subis, 8000, f1b00000), \
X(sxtb, b240, fa4ff080), \
X(sxth, b200, fa0ff080), \
X(tst, 4200, ea100f00), \
X(uxtb, b2c0, fa5ff080), \
X(uxth, b280, fa1ff080), \
X(nop, bf00, f3af8000), \
X(yield, bf10, f3af8001), \
X(wfe, bf20, f3af8002), \
X(wfi, bf30, f3af8003), \
X(sev, bf40, f3af9004), /* typo, 8004? */
/* To catch errors in encoding functions, the codes are all offset by
0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
as 16-bit instructions. */
#define X(a,b,c) T_MNEM_##a
enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
#undef X
#define X(a,b,c) 0x##b
static const unsigned short thumb_op16[] = { T16_32_TAB };
#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
#undef X
#define X(a,b,c) 0x##c
static const unsigned int thumb_op32[] = { T16_32_TAB };
#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
#undef X
#undef T16_32_TAB
/* Thumb instruction encoders, in alphabetical order. */
/* ADDW or SUBW. */
static void
do_t_add_sub_w (void)
{
int Rd, Rn;
Rd = inst.operands[0].reg;
Rn = inst.operands[1].reg;
constraint (Rd == 15, _("PC not allowed as destination"));
inst.instruction |= (Rn << 16) | (Rd << 8);
inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
}
/* Parse an add or subtract instruction. We get here with inst.instruction
equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
static void
do_t_add_sub (void)
{
int Rd, Rs, Rn;
Rd = inst.operands[0].reg;
Rs = (inst.operands[1].present
? inst.operands[1].reg /* Rd, Rs, foo */
: inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
if (unified_syntax)
{
bfd_boolean flags;
bfd_boolean narrow;
int opcode;
flags = (inst.instruction == T_MNEM_adds
|| inst.instruction == T_MNEM_subs);
if (flags)
narrow = (current_it_mask == 0);
else
narrow = (current_it_mask != 0);
if (!inst.operands[2].isreg)
{
opcode = 0;
if (inst.size_req != 4)
{
int add;
add = (inst.instruction == T_MNEM_add
|| inst.instruction == T_MNEM_adds);
/* Attempt to use a narrow opcode, with relaxation if
appropriate. */
if (Rd == REG_SP && Rs == REG_SP && !flags)
opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
else if (Rd <= 7 && Rs == REG_SP && add && !flags)
opcode = T_MNEM_add_sp;
else if (Rd <= 7 && Rs == REG_PC && add && !flags)
opcode = T_MNEM_add_pc;
else if (Rd <= 7 && Rs <= 7 && narrow)
{
if (flags)
opcode = add ? T_MNEM_addis : T_MNEM_subis;
else
opcode = add ? T_MNEM_addi : T_MNEM_subi;
}
if (opcode)
{
inst.instruction = THUMB_OP16(opcode);
inst.instruction |= (Rd << 4) | Rs;
inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
if (inst.size_req != 2)
inst.relax = opcode;
}
else
constraint (inst.size_req == 2, BAD_HIREG);
}
if (inst.size_req == 4
|| (inst.size_req != 2 && !opcode))
{
/* ??? Convert large immediates to addw/subw. */
inst.instruction = THUMB_OP32 (inst.instruction);
inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
inst.instruction |= inst.operands[0].reg << 8;
inst.instruction |= inst.operands[1].reg << 16;
inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
}
}
else
{
Rn = inst.operands[2].reg;
/* See if we can do this with a 16-bit instruction. */
if (!inst.operands[2].shifted && inst.size_req != 4)
{
if (Rd > 7 || Rs > 7 || Rn > 7)
narrow = FALSE;
if (narrow)
{
inst.instruction = ((inst.instruction == T_MNEM_adds
|| inst.instruction == T_MNEM_add)
? T_OPCODE_ADD_R3
: T_OPCODE_SUB_R3);
inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
return;
}
if (inst.instruction == T_MNEM_add)
{
if (Rd == Rs)
{
inst.instruction = T_OPCODE_ADD_HI;
inst.instruction |= (Rd & 8) << 4;
inst.instruction |= (Rd & 7);
inst.instruction |= Rn << 3;
return;
}
/* ... because addition is commutative! */
else if (Rd == Rn)
{
inst.instruction = T_OPCODE_ADD_HI;
inst.instruction |= (Rd & 8) << 4;
inst.instruction |= (Rd & 7);
inst.instruction |= Rs << 3;
return;
}
}
}
/* If we get here, it can't be done in 16 bits. */
constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
_("shift must be constant"));
inst.instruction = THUMB_OP32 (inst.instruction);
inst.instruction |= Rd << 8;
inst.instruction |= Rs << 16;
encode_thumb32_shifted_operand (2);
}
}
else
{
constraint (inst.instruction == T_MNEM_adds
|| inst.instruction == T_MNEM_subs,
BAD_THUMB32);
if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
{
constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
|| (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
BAD_HIREG);
inst.instruction = (inst.instruction == T_MNEM_add
? 0x0000 : 0x8000);
inst.instruction |= (Rd << 4) | Rs;
inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
return;
}
Rn = inst.operands[2].reg;
constraint (inst.operands[2].shifted, _("unshifted register required"));
/* We now have Rd, Rs, and Rn set to registers. */
if (Rd > 7 || Rs > 7 || Rn > 7)
{
/* Can't do this for SUB. */
constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
inst.instruction = T_OPCODE_ADD_HI;
inst.instruction |= (Rd & 8) << 4;
inst.instruction |= (Rd & 7);
if (Rs == Rd)
inst.instruction |= Rn << 3;
else if (Rn == Rd)
inst.instruction |= Rs << 3;
else
constraint (1, _("dest must overlap one source register"));
}
else
{
inst.instruction = (inst.instruction == T_MNEM_add
? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
}
}
}
static void
do_t_adr (void)
{
if (unified_syntax && inst.size_req == 0 && inst.operands[0].reg <= 7)
{
/* Defer to section relaxation. */
inst.relax = inst.instruction;
inst.instruction = THUMB_OP16 (inst.instruction);
inst.instruction |= inst.operands[0].reg << 4;
}
else if (unified_syntax && inst.size_req != 2)
{
/* Generate a 32-bit opcode. */
inst.instruction = THUMB_OP32 (inst.instruction);
inst.instruction |= inst.operands[0].reg << 8;
inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
inst.reloc.pc_rel = 1;
}
else
{
/* Generate a 16-bit opcode. */
inst.instruction = THUMB_OP16 (inst.instruction);
inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
inst.reloc.pc_rel = 1;
inst.instruction |= inst.operands[0].reg << 4;
}
}
/* Arithmetic instructions for which there is just one 16-bit
instruction encoding, and it allows only two low registers.
For maximal compatibility with ARM syntax, we allow three register
operands even when Thumb-32 instructions are not available, as long
as the first two are identical. For instance, both "sbc r0,r1" and
"sbc r0,r0,r1" are allowed. */
static void
do_t_arit3 (void)
{
int Rd, Rs, Rn;
Rd = inst.operands[0].reg;
Rs = (inst.operands[1].present
? inst.operands[1].reg /* Rd, Rs, foo */
: inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
Rn = inst.operands[2].reg;
if (unified_syntax)
{
if (!inst.operands[2].isreg)
{
/* For an immediate, we always generate a 32-bit opcode;
section relaxation will shrink it later if possible. */
inst.instruction = THUMB_OP32 (inst.instruction);
inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
inst.instruction |= Rd << 8;
inst.instruction |= Rs << 16;
inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
}
else
{
bfd_boolean narrow;
/* See if we can do this with a 16-bit instruction. */
if (THUMB_SETS_FLAGS (inst.instruction))
narrow = current_it_mask == 0;
else
narrow = current_it_mask != 0;
if (Rd > 7 || Rn > 7 || Rs > 7)
narrow = FALSE;
if (inst.operands[2].shifted)
narrow = FALSE;
if (inst.size_req == 4)
narrow = FALSE;
if (narrow
&& Rd == Rs)
{
inst.instruction = THUMB_OP16 (inst.instruction);
inst.instruction |= Rd;
inst.instruction |= Rn << 3;
return;
}
/* If we get here, it can't be done in 16 bits. */
constraint (inst.operands[2].shifted
&& inst.operands[2].immisreg,
_("shift must be constant"));
inst.instruction = THUMB_OP32 (inst.instruction);
inst.instruction |= Rd << 8;
inst.instruction |= Rs << 16;
encode_thumb32_shifted_operand (2);
}
}
else
{
/* On its face this is a lie - the instruction does set the
flags. However, the only supported mnemonic in this mode
says it doesn't. */
constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
_("unshifted register required"));
constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
constraint (Rd != Rs,
_("dest and source1 must be the same register"));
inst.instruction = THUMB_OP16 (inst.instruction);
inst.instruction |= Rd;
inst.instruction |= Rn << 3;
}
}
/* Similarly, but for instructions where the arithmetic operation is
commutative, so we can allow either of them to be different from
the destination operand in a 16-bit instruction. For instance, all
three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
accepted. */
static void
do_t_arit3c (void)
{
int Rd, Rs, Rn;
Rd = inst.operands[0].reg;
Rs = (inst.operands[1].present
? inst.operands[1].reg /* Rd, Rs, foo */
: inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
Rn = inst.operands[2].reg;
if (unified_syntax)
{
if (!inst.operands[2].isreg)
{
/* For an immediate, we always generate a 32-bit opcode;
section relaxation will shrink it later if possible. */
inst.instruction = THUMB_OP32 (inst.instruction);
inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
inst.instruction |= Rd << 8;
inst.instruction |= Rs << 16;
inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
}
else
{
bfd_boolean narrow;
/* See if we can do this with a 16-bit instruction. */
if (THUMB_SETS_FLAGS (inst.instruction))
narrow = current_it_mask == 0;
else
narrow = current_it_mask != 0;
if (Rd > 7 || Rn > 7 || Rs > 7)
narrow = FALSE;
if (inst.operands[2].shifted)
narrow = FALSE;
if (inst.size_req == 4)
narrow = FALSE;
if (narrow)
{
if (Rd == Rs)
{
inst.instruction = THUMB_OP16 (inst.instruction);
inst.instruction |= Rd;
inst.instruction |= Rn << 3;
return;
}
if (Rd == Rn)
{
inst.instruction = THUMB_OP16 (inst.instruction);
inst.instruction |= Rd;
inst.instruction |= Rs << 3;
return;
}
}
/* If we get here, it can't be done in 16 bits. */
constraint (inst.operands[2].shifted
&& inst.operands[2].immisreg,
_("shift must be constant"));
inst.instruction = THUMB_OP32 (inst.instruction);
inst.instruction |= Rd << 8;
inst.instruction |= Rs << 16;
encode_thumb32_shifted_operand (2);
}
}
else
{
/* On its face this is a lie - the instruction does set the
flags. However, the only supported mnemonic in this mode
says it doesn't. */
constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
_("unshifted register required"));
constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
inst.instruction = THUMB_OP16 (inst.instruction);
inst.instruction |= Rd;
if (Rd == Rs)
inst.instruction |= Rn << 3;
else if (Rd == Rn)
inst.instruction |= Rs << 3;
else
constraint (1, _("dest must overlap one source register"));
}
}
static void
do_t_barrier (void)
{
if (inst.operands[0].present)
{
constraint ((inst.instruction & 0xf0) != 0x40
&& inst.operands[0].imm != 0xf,
"bad barrier type");
inst.instruction |= inst.operands[0].imm;
}
else
inst.instruction |= 0xf;
}
static void
do_t_bfc (void)
{
unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
constraint (msb > 32, _("bit-field extends past end of register"));
/* The instruction encoding stores the LSB and MSB,
not the LSB and width. */
inst.instruction |= inst.operands[0].reg << 8;
inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
inst.instruction |= msb - 1;
}
static void
do_t_bfi (void)
{
unsigned int msb;
/* #0 in second position is alternative syntax for bfc, which is
the same instruction but with REG_PC in the Rm field. */
if (!inst.operands[1].isreg)
inst.operands[1].reg = REG_PC;
msb = inst.operands[2].imm + inst.operands[3].imm;
constraint (msb > 32, _("bit-field extends past end of register"));
/* The instruction encoding stores the LSB and MSB,
not the LSB and width. */
inst.instruction |= inst.operands[0].reg << 8;
inst.instruction |= inst.operands[1].reg << 16;
inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
inst.instruction |= msb - 1;
}
static void
do_t_bfx (void)
{
constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
_("bit-field extends past end of register"));
inst.instruction |= inst.operands[0].reg << 8;
inst.instruction |= inst.operands[1].reg << 16;
inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
inst.instruction |= inst.operands[3].imm - 1;
}
/* ARM V5 Thumb BLX (argument parse)
BLX <target_addr> which is BLX(1)
BLX <Rm> which is BLX(2)
Unfortunately, there are two different opcodes for this mnemonic.
So, the insns[].value is not used, and the code here zaps values
into inst.instruction.
??? How to take advantage of the additional two bits of displacement
available in Thumb32 mode? Need new relocation? */
static void
do_t_blx (void)
{
constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
if (inst.operands[0].isreg)
/* We have a register, so this is BLX(2). */
inst.instruction |= inst.operands[0].reg << 3;
else
{
/* No register. This must be BLX(1). */
inst.instruction = 0xf000e800;
#ifdef OBJ_ELF
if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
else
#endif
inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
inst.reloc.pc_rel = 1;
}
}
static void
do_t_branch (void)
{
int opcode;
int cond;
if (current_it_mask)
{
/* Conditional branches inside IT blocks are encoded as unconditional
branches. */
cond = COND_ALWAYS;
/* A branch must be the last instruction in an IT block. */
constraint (current_it_mask != 0x10, BAD_BRANCH);
}
else
cond = inst.cond;
if (cond != COND_ALWAYS)
opcode = T_MNEM_bcond;
else
opcode = inst.instruction;
if (unified_syntax && inst.size_req == 4)
{
inst.instruction = THUMB_OP32(opcode);
if (cond == COND_ALWAYS)
inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
else
{
assert (cond != 0xF);
inst.instruction |= cond << 22;
inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
}
}
else
{
inst.instruction = THUMB_OP16(opcode);
if (cond == COND_ALWAYS)
inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
else
{
inst.instruction |= cond << 8;
inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
}
/* Allow section relaxation. */
if (unified_syntax && inst.size_req != 2)
inst.relax = opcode;
}
inst.reloc.pc_rel = 1;
}
static void
do_t_bkpt (void)
{
constraint (inst.cond != COND_ALWAYS,
_("instruction is always unconditional"));
if (inst.operands[0].present)
{
constraint (inst.operands[0].imm > 255,
_("immediate value out of range"));
inst.instruction |= inst.operands[0].imm;
}
}
static void
do_t_branch23 (void)
{
constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
inst.reloc.pc_rel = 1;
/* If the destination of the branch is a defined symbol which does not have
the THUMB_FUNC attribute, then we must be calling a function which has
the (interfacearm) attribute. We look for the Thumb entry point to that
function and change the branch to refer to that function instead. */
if ( inst.reloc.exp.X_op == O_symbol
&& inst.reloc.exp.X_add_symbol != NULL
&& S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
&& ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
inst.reloc.exp.X_add_symbol =
find_real_start (inst.reloc.exp.X_add_symbol);
}
static void
do_t_bx (void)
{
constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
inst.instruction |= inst.operands[0].reg << 3;
/* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
should cause the alignment to be checked once it is known. This is
because BX PC only works if the instruction is word aligned. */
}
static void
do_t_bxj (void)
{
constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
if (inst.operands[0].reg == REG_PC)
as_tsktsk (_("use of r15 in bxj is not really useful"));
inst.instruction |= inst.operands[0].reg << 16;
}
static void
do_t_clz (void)
{
inst.instruction |= inst.operands[0].reg << 8;
inst.instruction |= inst.operands[1].reg << 16;
inst.instruction |= inst.operands[1].reg;
}
static void
do_t_cps (void)
{
constraint (current_it_mask, BAD_NOT_IT);
inst.instruction |= inst.operands[0].imm;
}
static void
do_t_cpsi (void)
{
constraint (current_it_mask, BAD_NOT_IT);
if (unified_syntax
&& (inst.operands[1].present || inst.size_req == 4)
&& ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
{
unsigned int imod = (inst.instruction & 0x0030) >> 4;
inst.instruction = 0xf3af8000;
inst.instruction |= imod << 9;
inst.instruction |= inst.operands[0].imm << 5;
if (inst.operands[1].present)
inst.instruction |= 0x100 | inst.operands[1].imm;
}
else
{
constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
&& (inst.operands[0].imm & 4),
_("selected processor does not support 'A' form "
"of this instruction"));
constraint (inst.operands[1].present || inst.size_req == 4,
_("Thumb does not support the 2-argument "
"form of this instruction"));
inst.instruction |= inst.operands[0].imm;
}
}
/* THUMB CPY instruction (argument parse). */
static void
do_t_cpy (void)
{
if (inst.size_req == 4)
{
inst.instruction = THUMB_OP32 (T_MNEM_mov);
inst.instruction |= inst.operands[0].reg << 8;
inst.instruction |= inst.operands[1].reg;
}
else
{
inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
inst.instruction |= (inst.operands[0].reg & 0x7);
inst.instruction |= inst.operands[1].reg << 3;
}
}
static void
do_t_czb (void)
{
constraint (current_it_mask, BAD_NOT_IT);
constraint (inst.operands[0].reg > 7, BAD_HIREG);
inst.instruction |= inst.operands[0].reg;
inst.reloc.pc_rel = 1;
inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
}
static void
do_t_dbg (void)
{
inst.instruction |= inst.operands[0].imm;
}
static void
do_t_div (void)
{
if (!inst.operands[1].present)
inst.operands[1].reg = inst.operands[0].reg;
inst.instruction |= inst.operands[0].reg << 8;
inst.instruction |= inst.operands[1].reg << 16;
inst.instruction |= inst.operands[2].reg;
}
static void
do_t_hint (void)
{
if (unified_syntax && inst.size_req == 4)
inst.instruction = THUMB_OP32 (inst.instruction);
else
inst.instruction = THUMB_OP16 (inst.instruction);
}
static void
do_t_it (void)
{
unsigned int cond = inst.operands[0].imm;
constraint (current_it_mask, BAD_NOT_IT);
current_it_mask = (inst.instruction & 0xf) | 0x10;
current_cc = cond;
/* If the condition is a negative condition, invert the mask. */
if ((cond & 0x1) == 0x0)
{
unsigned int mask = inst.instruction & 0x000f;
if ((mask & 0x7) == 0)
/* no conversion needed */;
else if ((mask & 0x3) == 0)
mask ^= 0x8;
else if ((mask & 0x1) == 0)
mask ^= 0xC;
else
mask ^= 0xE;
inst.instruction &= 0xfff0;
inst.instruction |= mask;
}
inst.instruction |= cond << 4;
}
static void
do_t_ldmstm (void)
{
/* This really doesn't seem worth it. */
constraint (inst.reloc.type != BFD_RELOC_UNUSED,
_("expression too complex"));
constraint (inst.operands[1].writeback,
_("Thumb load/store multiple does not support {reglist}^"));
if (unified_syntax)
{
/* See if we can use a 16-bit instruction. */
if (inst.instruction < 0xffff /* not ldmdb/stmdb */
&& inst.size_req != 4
&& inst.operands[0].reg <= 7
&& !(inst.operands[1].imm & ~0xff)
&& (inst.instruction == T_MNEM_stmia
? inst.operands[0].writeback
: (inst.operands[0].writeback
== !(inst.operands[1].imm & (1 << inst.operands[0].reg)))))
{
if (inst.instruction == T_MNEM_stmia
&& (inst.operands[1].imm & (1 << inst.operands[0].reg))
&& (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
as_warn (_("value stored for r%d is UNPREDICTABLE"),
inst.operands[0].reg);
inst.instruction = THUMB_OP16 (inst.instruction);
inst.instruction |= inst.operands[0].reg << 8;
inst.instruction |= inst.operands[1].imm;
}
else
{
if (inst.operands[1].imm & (1 << 13))
as_warn (_("SP should not be in register list"));
if (inst.instruction == T_MNEM_stmia)
{
if (inst.operands[1].imm & (1 << 15))
as_warn (_("PC should not be in register list"));
if (inst.operands[1].imm & (1 << inst.operands[0].reg))
as_warn (_("value stored for r%d is UNPREDICTABLE"),
inst.operands[0].reg);
}
else
{
if (inst.operands[1].imm & (1 << 14)
&& inst.operands[1].imm & (1 << 15))
as_warn (_("LR and PC should not both be in register list"));
if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
&& inst.operands[0].writeback)
as_warn (_("base register should not be in register list "
"when written back"));
}
if (inst.instruction < 0xffff)
inst.instruction = THUMB_OP32 (inst.instruction);
inst.instruction |= inst.operands[0].reg << 16;
inst.instruction |= inst.operands[1].imm;
if (inst.operands[0].writeback)
inst.instruction |= WRITE_BACK;
}
}
else
{
constraint (inst.operands[0].reg > 7
|| (inst.operands[1].imm & ~0xff), BAD_HIREG);
if (inst.instruction == T_MNEM_stmia)
{
if (!inst.operands[0].writeback)
as_warn (_("this instruction will write back the base register"));
if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
&& (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
as_warn (_("value stored for r%d is UNPREDICTABLE"),
inst.operands[0].reg);
}
else
{
if (!inst.operands[0].writeback
&& !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
as_warn (_("this instruction will write back the base register"));
else if (inst.operands[0].writeback
&& (inst.operands[1].imm & (1 << inst.operands[0].reg)))
as_warn (_("this instruction will not write back the base register"));
}
inst.instruction = THUMB_OP16 (inst.instruction);
inst.instruction |= inst.operands[0].reg << 8;
inst.instruction |= inst.operands[1].imm;
}
}
static void
do_t_ldrex (void)
{
constraint (!inst.operands[1].isreg || !inst.operands[1].preind
|| inst.operands[1].postind || inst.operands[1].writeback
|| inst.operands[1].immisreg || inst.operands[1].shifted
|| inst.operands[1].negative,
BAD_ADDR_MODE);
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].reg << 16;
inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
}
static void
do_t_ldrexd (void)
{
if (!inst.operands[1].present)
{
constraint (inst.operands[0].reg == REG_LR,
_("r14 not allowed as first register "
"when second register is omitted"));
inst.operands[1].reg = inst.operands[0].reg + 1;
}
constraint (inst.operands[0].reg == inst.operands[1].reg,
BAD_OVERLAP);
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].reg << 8;
inst.instruction |= inst.operands[2].reg << 16;
}
static void
do_t_ldst (void)
{
unsigned long opcode;
int Rn;
opcode = inst.instruction;
if (unified_syntax)
{
if (!inst.operands[1].isreg)
{
if (opcode <= 0xffff)
inst.instruction = THUMB_OP32 (opcode);
if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
return;
}
if (inst.operands[1].isreg
&& !inst.operands[1].writeback
&& !inst.operands[1].shifted && !inst.operands[1].postind
&& !inst.operands[1].negative && inst.operands[0].reg <= 7
&& opcode <= 0xffff
&& inst.size_req != 4)
{
/* Insn may have a 16-bit form. */
Rn = inst.operands[1].reg;
if (inst.operands[1].immisreg)
{
inst.instruction = THUMB_OP16 (opcode);
/* [Rn, Ri] */
if (Rn <= 7 && inst.operands[1].imm <= 7)
goto op16;
}
else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
&& opcode != T_MNEM_ldrsb)
|| ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
|| (Rn == REG_SP && opcode == T_MNEM_str))
{
/* [Rn, #const] */
if (Rn > 7)
{
if (Rn == REG_PC)
{
if (inst.reloc.pc_rel)
opcode = T_MNEM_ldr_pc2;
else
opcode = T_MNEM_ldr_pc;
}
else
{
if (opcode == T_MNEM_ldr)
opcode = T_MNEM_ldr_sp;
else
opcode = T_MNEM_str_sp;
}
inst.instruction = inst.operands[0].reg << 8;
}
else
{
inst.instruction = inst.operands[0].reg;
inst.instruction |= inst.operands[1].reg << 3;
}
inst.instruction |= THUMB_OP16 (opcode);
if (inst.size_req == 2)
inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
else
inst.relax = opcode;
return;
}
}
/* Definitely a 32-bit variant. */
inst.instruction = THUMB_OP32 (opcode);
inst.instruction |= inst.operands[0].reg << 12;
encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
return;
}
constraint (inst.operands[0].reg > 7, BAD_HIREG);
if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
{
/* Only [Rn,Rm] is acceptable. */
constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
|| inst.operands[1].postind || inst.operands[1].shifted
|| inst.operands[1].negative,
_("Thumb does not support this addressing mode"));
inst.instruction = THUMB_OP16 (inst.instruction);
goto op16;
}
inst.instruction = THUMB_OP16 (inst.instruction);
if (!inst.operands[1].isreg)
if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
return;
constraint (!inst.operands[1].preind
|| inst.operands[1].shifted
|| inst.operands[1].writeback,
_("Thumb does not support this addressing mode"));
if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
{
constraint (inst.instruction & 0x0600,
_("byte or halfword not valid for base register"));
constraint (inst.operands[1].reg == REG_PC
&& !(inst.instruction & THUMB_LOAD_BIT),
_("r15 based store not allowed"));
constraint (inst.operands[1].immisreg,
_("invalid base register for register offset"));
if (inst.operands[1].reg == REG_PC)
inst.instruction = T_OPCODE_LDR_PC;
else if (inst.instruction & THUMB_LOAD_BIT)
inst.instruction = T_OPCODE_LDR_SP;
else
inst.instruction = T_OPCODE_STR_SP;
inst.instruction |= inst.operands[0].reg << 8;
inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
return;
}
constraint (inst.operands[1].reg > 7, BAD_HIREG);
if (!inst.operands[1].immisreg)
{
/* Immediate offset. */
inst.instruction |= inst.operands[0].reg;
inst.instruction |= inst.operands[1].reg << 3;
inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
return;
}
/* Register offset. */
constraint (inst.operands[1].imm > 7, BAD_HIREG);
constraint (inst.operands[1].negative,
_("Thumb does not support this addressing mode"));
op16:
switch (inst.instruction)
{
case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
case 0x5600 /* ldrsb */:
case 0x5e00 /* ldrsh */: break;
default: abort ();
}
inst.instruction |= inst.operands[0].reg;
inst.instruction |= inst.operands[1].reg << 3;
inst.instruction |= inst.operands[1].imm << 6;
}
static void
do_t_ldstd (void)
{
if (!inst.operands[1].present)
{
inst.operands[1].reg = inst.operands[0].reg + 1;
constraint (inst.operands[0].reg == REG_LR,
_("r14 not allowed here"));
}
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].reg << 8;
encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
}
static void
do_t_ldstt (void)
{
inst.instruction |= inst.operands[0].reg << 12;
encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
}
static void
do_t_mla (void)
{
inst.instruction |= inst.operands[0].reg << 8;
inst.instruction |= inst.operands[1].reg << 16;
inst.instruction |= inst.operands[2].reg;
inst.instruction |= inst.operands[3].reg << 12;
}
static void
do_t_mlal (void)
{
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].reg << 8;
inst.instruction |= inst.operands[2].reg << 16;
inst.instruction |= inst.operands[3].reg;
}
static void
do_t_mov_cmp (void)
{
if (unified_syntax)
{
int r0off = (inst.instruction == T_MNEM_mov
|| inst.instruction == T_MNEM_movs) ? 8 : 16;
unsigned long opcode;
bfd_boolean narrow;
bfd_boolean low_regs;
low_regs = (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7);
opcode = inst.instruction;
if (current_it_mask)
narrow = opcode != T_MNEM_movs;
else
narrow = opcode != T_MNEM_movs || low_regs;
if (inst.size_req == 4
|| inst.operands[1].shifted)
narrow = FALSE;
if (!inst.operands[1].isreg)
{
/* Immediate operand. */
if (current_it_mask == 0 && opcode == T_MNEM_mov)
narrow = 0;
if (low_regs && narrow)
{
inst.instruction = THUMB_OP16 (opcode);
inst.instruction |= inst.operands[0].reg << 8;
if (inst.size_req == 2)
inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
else
inst.relax = opcode;
}
else
{
inst.instruction = THUMB_OP32 (inst.instruction);
inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
inst.instruction |= inst.operands[0].reg << r0off;
inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
}
}
else if (!narrow)
{
inst.instruction = THUMB_OP32 (inst.instruction);
inst.instruction |= inst.operands[0].reg << r0off;
encode_thumb32_shifted_operand (1);
}
else
switch (inst.instruction)
{
case T_MNEM_mov:
inst.instruction = T_OPCODE_MOV_HR;
inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
inst.instruction |= (inst.operands[0].reg & 0x7);
inst.instruction |= inst.operands[1].reg << 3;
break;
case T_MNEM_movs:
/* We know we have low registers at this point.
Generate ADD Rd, Rs, #0. */
inst.instruction = T_OPCODE_ADD_I3;
inst.instruction |= inst.operands[0].reg;
inst.instruction |= inst.operands[1].reg << 3;
break;
case T_MNEM_cmp:
if (low_regs)
{
inst.instruction = T_OPCODE_CMP_LR;
inst.instruction |= inst.operands[0].reg;
inst.instruction |= inst.operands[1].reg << 3;
}
else
{
inst.instruction = T_OPCODE_CMP_HR;
inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
inst.instruction |= (inst.operands[0].reg & 0x7);
inst.instruction |= inst.operands[1].reg << 3;
}
break;
}
return;
}
inst.instruction = THUMB_OP16 (inst.instruction);
if (inst.operands[1].isreg)
{
if (inst.operands[0].reg < 8 && inst.operands[1].reg < 8)
{
/* A move of two lowregs is encoded as ADD Rd, Rs, #0
since a MOV instruction produces unpredictable results. */
if (inst.instruction == T_OPCODE_MOV_I8)
inst.instruction = T_OPCODE_ADD_I3;
else
inst.instruction = T_OPCODE_CMP_LR;
inst.instruction |= inst.operands[0].reg;
inst.instruction |= inst.operands[1].reg << 3;
}
else
{
if (inst.instruction == T_OPCODE_MOV_I8)
inst.instruction = T_OPCODE_MOV_HR;
else
inst.instruction = T_OPCODE_CMP_HR;
do_t_cpy ();
}
}
else
{
constraint (inst.operands[0].reg > 7,
_("only lo regs allowed with immediate"));
inst.instruction |= inst.operands[0].reg << 8;
inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
}
}
static void
do_t_mov16 (void)
{
inst.instruction |= inst.operands[0].reg << 8;
inst.instruction |= (inst.operands[1].imm & 0xf000) << 4;
inst.instruction |= (inst.operands[1].imm & 0x0800) << 15;
inst.instruction |= (inst.operands[1].imm & 0x0700) << 4;
inst.instruction |= (inst.operands[1].imm & 0x00ff);
}
static void
do_t_mvn_tst (void)
{
if (unified_syntax)
{
int r0off = (inst.instruction == T_MNEM_mvn
|| inst.instruction == T_MNEM_mvns) ? 8 : 16;
bfd_boolean narrow;
if (inst.size_req == 4
|| inst.instruction > 0xffff
|| inst.operands[1].shifted
|| inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
narrow = FALSE;
else if (inst.instruction == T_MNEM_cmn)
narrow = TRUE;
else if (THUMB_SETS_FLAGS (inst.instruction))
narrow = (current_it_mask == 0);
else
narrow = (current_it_mask != 0);
if (!inst.operands[1].isreg)
{
/* For an immediate, we always generate a 32-bit opcode;
section relaxation will shrink it later if possible. */
if (inst.instruction < 0xffff)
inst.instruction = THUMB_OP32 (inst.instruction);
inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
inst.instruction |= inst.operands[0].reg << r0off;
inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
}
else
{
/* See if we can do this with a 16-bit instruction. */
if (narrow)
{
inst.instruction = THUMB_OP16 (inst.instruction);
inst.instruction |= inst.operands[0].reg;
inst.instruction |= inst.operands[1].reg << 3;
}
else
{
constraint (inst.operands[1].shifted
&& inst.operands[1].immisreg,
_("shift must be constant"));
if (inst.instruction < 0xffff)
inst.instruction = THUMB_OP32 (inst.instruction);
inst.instruction |= inst.operands[0].reg << r0off;
encode_thumb32_shifted_operand (1);
}
}
}
else
{
constraint (inst.instruction > 0xffff
|| inst.instruction == T_MNEM_mvns, BAD_THUMB32);
constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
_("unshifted register required"));
constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
BAD_HIREG);
inst.instruction = THUMB_OP16 (inst.instruction);
inst.instruction |= inst.operands[0].reg;
inst.instruction |= inst.operands[1].reg << 3;
}
}
static void
do_t_mrs (void)
{
int flags;
flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
if (flags == 0)
{
constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m),
_("selected processor does not support "
"requested special purpose register"));
}
else
{
constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
_("selected processor does not support "
"requested special purpose register %x"));
/* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
_("'CPSR' or 'SPSR' expected"));
}
inst.instruction |= inst.operands[0].reg << 8;
inst.instruction |= (flags & SPSR_BIT) >> 2;
inst.instruction |= inst.operands[1].imm & 0xff;
}
static void
do_t_msr (void)
{
int flags;
constraint (!inst.operands[1].isreg,
_("Thumb encoding does not support an immediate here"));
flags = inst.operands[0].imm;
if (flags & ~0xff)
{
constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
_("selected processor does not support "
"requested special purpose register"));
}
else
{
constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m),
_("selected processor does not support "
"requested special purpose register"));
flags |= PSR_f;
}
inst.instruction |= (flags & SPSR_BIT) >> 2;
inst.instruction |= (flags & ~SPSR_BIT) >> 8;
inst.instruction |= (flags & 0xff);
inst.instruction |= inst.operands[1].reg << 16;
}
static void
do_t_mul (void)
{
if (!inst.operands[2].present)
inst.operands[2].reg = inst.operands[0].reg;
/* There is no 32-bit MULS and no 16-bit MUL. */
if (unified_syntax && inst.instruction == T_MNEM_mul)
{
inst.instruction = THUMB_OP32 (inst.instruction);
inst.instruction |= inst.operands[0].reg << 8;
inst.instruction |= inst.operands[1].reg << 16;
inst.instruction |= inst.operands[2].reg << 0;
}
else
{
constraint (!unified_syntax
&& inst.instruction == T_MNEM_muls, BAD_THUMB32);
constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
BAD_HIREG);
inst.instruction = THUMB_OP16 (inst.instruction);
inst.instruction |= inst.operands[0].reg;
if (inst.operands[0].reg == inst.operands[1].reg)
inst.instruction |= inst.operands[2].reg << 3;
else if (inst.operands[0].reg == inst.operands[2].reg)
inst.instruction |= inst.operands[1].reg << 3;
else
constraint (1, _("dest must overlap one source register"));
}
}
static void
do_t_mull (void)
{
inst.instruction |= inst.operands[0].reg << 12;
inst.instruction |= inst.operands[1].reg << 8;
inst.instruction |= inst.operands[2].reg << 16;
inst.instruction |= inst.operands[3].reg;
if (inst.operands[0].reg == inst.operands[1].reg)
as_tsktsk (_("rdhi and rdlo must be different"));
}
static void
do_t_nop (void)
{
if (unified_syntax)
{
if (inst.size_req == 4 || inst.operands[0].imm > 15)
{
inst.instruction = THUMB_OP32 (inst.instruction);
inst.instruction |= inst.operands[0].imm;
}
else
{
inst.instruction = THUMB_OP16 (inst.instruction);
inst.instruction |= inst.operands[0].imm << 4;
}
}
else
{
constraint (inst.operands[0].present,
_("Thumb does not support NOP with hints"));
inst.instruction = 0x46c0;
}
}
static void
do_t_neg (void)
{
if (unified_syntax)
{
bfd_boolean narrow;
if (THUMB_SETS_FLAGS (inst.instruction))
narrow = (current_it_mask == 0);
else
narrow = (current_it_mask != 0);
if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
narrow = FALSE;
if (inst.size_req == 4)
narrow = FALSE;
if (!narrow)
{
inst.instruction = THUMB_OP32 (inst.instruction);
inst.instruction |= inst.operands[0].reg << 8;
inst.instruction |= inst.operands[1].reg << 16;
}
else
{
inst.instruction = THUMB_OP16 (inst.instruction);
inst.instruction |= inst.operands[0].reg;
inst.instruction |= inst.operands[1].reg << 3;
}
}
else
{
constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
BAD_HIREG);
constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
inst.instruction = THUMB_OP16 (inst.instruction);
inst.instruction |= inst.operands[0].reg;
inst.instruction |= inst.operands[1].reg << 3;
}
}
static void
do_t_pkhbt (void)
{
inst.instruction |= inst.operands[0].reg << 8;
inst.instruction |= inst.operands[1].reg << 16;
inst.instruction |= inst.operands[2].reg;
if (inst.operands[3].present)
{
unsigned int val = inst.reloc.exp.X_add_number;
constraint (inst.reloc.exp.X_op != O_constant,
_("expression too complex"));
inst.instruction |= (val & 0x1c) << 10;
inst.instruction |= (val & 0x03) << 6;
}
}
static void
do_t_pkhtb (void)
{
if (!inst.operands[3].present)
inst.instruction &= ~0x00000020;
do_t_pkhbt ();
}
static void
do_t_pld (void)
{
encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
}
static void
do_t_push_pop (void)
{
unsigned mask;
constraint (inst.operands[0].writeback,
_("push/pop do not support {reglist}^"));
constraint (inst.reloc.type != BFD_RELOC_UNUSED,
_("expression too complex"));
mask = inst.operands[0].imm;
if ((mask & ~0xff) == 0)
inst.instruction = THUMB_OP16 (inst.instruction);
else if ((inst.instruction == T_MNEM_push
&& (mask & ~0xff) == 1 << REG_LR)
|| (inst.instruction == T_MNEM_pop
&& (mask & ~0xff) == 1 << REG_PC))
{
inst.instruction = THUMB_OP16 (inst.instruction);
inst.instruction |= THUMB_PP_PC_LR;
mask &= 0xff;
}
else if (unified_syntax)
{
if (mask & (1 << 13))
inst.error = _("SP not allowed in register list");
if (inst.instruction == T_MNEM_push)
{
if (mask & (1 << 15))
inst.error = _("PC not allowed in register list");
}
else
{
if (mask & (1 << 14)
&& mask & (1 << 15))
inst.error = _("LR and PC should not both be in register list");
}
if ((mask & (mask - 1)) == 0)
{
/* Single register push/pop implemented as str/ldr. */
if (inst.instruction == T_MNEM_push)
inst.instruction = 0xf84d0d04; /* str reg, [sp, #-4]! */
else
inst.instruction = 0xf85d0b04; /* ldr reg, [sp], #4 */
mask = ffs(mask) - 1;
mask <<= 12;
}
else
inst.instruction = THUMB_OP32 (inst.instruction);
}
else
{
inst.error = _("invalid register list to push/pop instruction");
return;
}
inst.instruction |= mask;
}
static void
do_t_rbit (void)
{
inst.instruction |= inst.operands[0].reg << 8;
inst.instruction |= inst.operands[1].reg << 16;
}
static void
do_t_rev (void)
{
if (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
&& inst.size_req != 4)
{
inst.instruction = THUMB_OP16 (inst.instruction);
inst.instruction |= inst.operands[0].reg;
inst.instruction |= inst.operands[1].reg << 3;
}
else if (unified_syntax)
{
inst.instruction = THUMB_OP32 (inst.instruction);
inst.instruction |= inst.operands[0].reg << 8;
inst.instruction |= inst.operands[1].reg << 16;
inst.instruction |= inst.operands[1].reg;
}
else
inst.error = BAD_HIREG;
}
static void
do_t_rsb (void)
{
int Rd, Rs;
Rd = inst.operands[0].reg;
Rs = (inst.operands[1].present
? inst.operands[1].reg /* Rd, Rs, foo */
: inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
inst.instruction |= Rd << 8;
inst.instruction |= Rs << 16;
if (!inst.operands[2].isreg)
{
inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
}
else
encode_thumb32_shifted_operand (2);
}
static void
do_t_setend (void)
{
constraint (current_it_mask, BAD_NOT_IT);
if (inst.operands[0].imm)
inst.instruction |= 0x8;
}
static void
do_t_shift (void)
{
if (!inst.operands[1].present)
inst.operands[1].reg = inst.operands[0].reg;
if (unified_syntax)
{
bfd_boolean narrow;
int shift_kind;
switch (inst.instruction)
{
case T_MNEM_asr:
case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
case T_MNEM_lsl:
case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
case T_MNEM_lsr:
case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
case T_MNEM_ror:
case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
default: abort ();
}
if (THUMB_SETS_FLAGS (inst.instruction))
narrow = (current_it_mask == 0);
else
narrow = (current_it_mask != 0);
if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
narrow = FALSE;
if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
narrow = FALSE;
if (inst.operands[2].isreg
&& (inst.operands[1].reg != inst.operands[0].reg
|| inst.operands[2].reg > 7))
narrow = FALSE;
if (inst.size_req == 4)
narrow = FALSE;
if (!narrow)
{
if (inst.operands[2].isreg)
{
inst.instruction = THUMB_OP32 (inst.instruction);
inst.instruction |= inst.operands[0].reg << 8;
inst.instruction |= inst.operands[1].reg << 16;
inst.instruction |= inst.operands[2].reg;
}
else
{
inst.operands[1].shifted = 1;
inst.operands[1].shift_kind = shift_kind;
inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
? T_MNEM_movs : T_MNEM_mov);
inst.instruction |= inst.operands[0].reg << 8;
encode_thumb32_shifted_operand (1);
/* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
inst.reloc.type = BFD_RELOC_UNUSED;
}
}
else
{
if (inst.operands[2].isreg)
{
switch (shift_kind)
{
case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
default: abort ();
}
inst.instruction |= inst.operands[0].reg;
inst.instruction |= inst.operands[2].reg << 3;
}
else
{
switch (shift_kind)
{
case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
default: abort ();
}
inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
inst.instruction |= inst.operands[0].reg;
inst.instruction |= inst.operands[1].reg << 3;
}
}
}
else
{
constraint (inst.operands[0].reg > 7
|| inst.operands[1].reg > 7, BAD_HIREG);
constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
{
constraint (inst.operands[2].reg > 7, BAD_HIREG);
constraint (inst.operands[0].reg != inst.operands[1].reg,
_("source1 and dest must be same register"));
switch (inst.instruction)
{
case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
default: abort ();
}
inst.instruction |= inst.operands[0].reg;
inst.instruction |= inst.operands[2].reg << 3;
}
else
{
switch (inst.instruction)
{
case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
default: abort ();
}
inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
inst.instruction |= inst.operands[0].reg;
inst.instruction |= inst.operands[1].reg << 3;
}
}
}
static void
do_t_simd (void)
{
inst.instruction |= inst.operands[0].reg << 8;
inst.instruction |= inst.operands[1].reg << 16;
inst.instruction |= inst.operands[2].reg;
}
static void
do_t_smc (void)
{
unsigned int value = inst.reloc.exp.X_add_number;
constraint (inst.reloc.exp.X_op != O_constant,
_("expression too complex"));
inst.reloc.type = BFD_RELOC_UNUSED;
inst.instruction |= (value & 0xf000) >> 12;
inst.instruction |= (value & 0x0ff0);
inst.instruction |= (value & 0x000f) << 16;
}
static void
do_t_ssat (void)
{
inst.instruction |= inst.operands[0].reg << 8;
inst.instruction |= inst.operands[1].imm - 1;
inst.instruction |= inst.operands[2].reg << 16;
if (inst.operands[3].present)
{
constraint (inst.reloc.exp.X_op != O_constant,
_("expression too complex"));
if (inst.reloc.exp.X_add_number != 0)
{
if (inst.operands[3].shift_kind == SHIFT_ASR)
inst.instruction |= 0x00200000; /* sh bit */
inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
}
inst.reloc.type = BFD_RELOC_UNUSED;
}
}
static void
do_t_ssat16 (void)
{
inst.instruction |= inst.operands[0].reg << 8;
inst.instruction |= inst.operands[1].imm - 1;
inst.instruction |= inst.operands[2].reg << 16;
}
static void
do_t_strex (void)
{
constraint (!inst.operands[2].isreg || !inst.operands[2].preind
|| inst.operands[2].postind || inst.operands[2].writeback
|| inst.operands[2].immisreg || inst.operands[2].shifted
|| inst.operands[2].negative,
BAD_ADDR_MODE);
inst.instruction |= inst.operands[0].reg << 8;
inst.instruction |= inst.operands[1].reg << 12;
inst.instruction |= inst.operands[2].reg << 16;
inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
}
static void
do_t_strexd (void)
{
if (!inst.operands[2].present)
inst.operands[2].reg = inst.operands[1].reg + 1;
constraint (inst.operands[0].reg == inst.operands[1].reg
|| inst.operands[0].reg == inst.operands[2].reg
|| inst.operands[0].reg == inst.operands[3].reg
|| inst.operands[1].reg == inst.operands[2].reg,
BAD_OVERLAP);
inst.instruction |= inst.operands[0].reg;
inst.instruction |= inst.operands[1].reg << 12;
inst.instruction |= inst.operands[2].reg << 8;
inst.instruction |= inst.operands[3].reg << 16;
}
static void
do_t_sxtah (void)
{
inst.instruction |= inst.operands[0].reg << 8;
inst.instruction |= inst.operands[1].reg << 16;
inst.instruction |= inst.operands[2].reg;
inst.instruction |= inst.operands[3].imm << 4;
}
static void
do_t_sxth (void)
{
if (inst.instruction <= 0xffff && inst.size_req != 4
&& inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
&& (!inst.operands[2].present || inst.operands[2].imm == 0))
{
inst.instruction = THUMB_OP16 (inst.instruction);
inst.instruction |= inst.operands[0].reg;
inst.instruction |= inst.operands[1].reg << 3;
}
else if (unified_syntax)
{
if (inst.instruction <= 0xffff)
inst.instruction = THUMB_OP32 (inst.instruction);
inst.instruction |= inst.operands[0].reg << 8;
inst.instruction |= inst.operands[1].reg;
inst.instruction |= inst.operands[2].imm << 4;
}
else
{
constraint (inst.operands[2].present && inst.operands[2].imm != 0,
_("Thumb encoding does not support rotation"));
constraint (1, BAD_HIREG);
}
}
static void
do_t_swi (void)
{
inst.reloc.type = BFD_RELOC_ARM_SWI;
}
static void
do_t_tb (void)
{
int half;
half = (inst.instruction & 0x10) != 0;
constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
constraint (inst.operands[0].immisreg,
_("instruction requires register index"));
constraint (inst.operands[0].imm == 15,
_("PC is not a valid index register"));
constraint (!half && inst.operands[0].shifted,
_("instruction does not allow shifted index"));
inst.instruction |= (inst.operands[0].reg << 16) | inst.operands[0].imm;
}
static void
do_t_usat (void)
{
inst.instruction |= inst.operands[0].reg << 8;
inst.instruction |= inst.operands[1].imm;
inst.instruction |= inst.operands[2].reg << 16;
if (inst.operands[3].present)
{
constraint (inst.reloc.exp.X_op != O_constant,
_("expression too complex"));
if (inst.reloc.exp.X_add_number != 0)
{
if (inst.operands[3].shift_kind == SHIFT_ASR)
inst.instruction |= 0x00200000; /* sh bit */
inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
}
inst.reloc.type = BFD_RELOC_UNUSED;
}
}
static void
do_t_usat16 (void)
{
inst.instruction |= inst.operands[0].reg << 8;
inst.instruction |= inst.operands[1].imm;
inst.instruction |= inst.operands[2].reg << 16;
}
/* Overall per-instruction processing. */
/* We need to be able to fix up arbitrary expressions in some statements.
This is so that we can handle symbols that are an arbitrary distance from
the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
which returns part of an address in a form which will be valid for
a data instruction. We do this by pushing the expression into a symbol
in the expr_section, and creating a fix for that. */
static void
fix_new_arm (fragS * frag,
int where,
short int size,
expressionS * exp,
int pc_rel,
int reloc)
{
fixS * new_fix;
switch (exp->X_op)
{
case O_constant:
case O_symbol:
case O_add:
case O_subtract:
new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
break;
default:
new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
pc_rel, reloc);
break;
}
/* Mark whether the fix is to a THUMB instruction, or an ARM
instruction. */
new_fix->tc_fix_data = thumb_mode;
}
/* Create a frg for an instruction requiring relaxation. */
static void
output_relax_insn (void)
{
char * to;
symbolS *sym;
int offset;
#ifdef OBJ_ELF
/* The size of the instruction is unknown, so tie the debug info to the
start of the instruction. */
dwarf2_emit_insn (0);
#endif
switch (inst.reloc.exp.X_op)
{
case O_symbol:
sym = inst.reloc.exp.X_add_symbol;
offset = inst.reloc.exp.X_add_number;
break;
case O_constant:
sym = NULL;
offset = inst.reloc.exp.X_add_number;
break;
default:
sym = make_expr_symbol (&inst.reloc.exp);
offset = 0;
break;
}
to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
inst.relax, sym, offset, NULL/*offset, opcode*/);
md_number_to_chars (to, inst.instruction, THUMB_SIZE);
}
/* Write a 32-bit thumb instruction to buf. */
static void
put_thumb32_insn (char * buf, unsigned long insn)
{
md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
}
static void
output_inst (const char * str)
{
char * to = NULL;
if (inst.error)
{
as_bad ("%s -- `%s'", inst.error, str);
return;
}
if (inst.relax) {
output_relax_insn();
return;
}
if (inst.size == 0)
return;
to = frag_more (inst.size);
if (thumb_mode && (inst.size > THUMB_SIZE))
{
assert (inst.size == (2 * THUMB_SIZE));
put_thumb32_insn (to, inst.instruction);
}
else if (inst.size > INSN_SIZE)
{
assert (inst.size == (2 * INSN_SIZE));
md_number_to_chars (to, inst.instruction, INSN_SIZE);
md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
}
else
md_number_to_chars (to, inst.instruction, inst.size);
if (inst.reloc.type != BFD_RELOC_UNUSED)
fix_new_arm (frag_now, to - frag_now->fr_literal,
inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
inst.reloc.type);
#ifdef OBJ_ELF
dwarf2_emit_insn (inst.size);
#endif
}
/* Tag values used in struct asm_opcode's tag field. */
enum opcode_tag
{
OT_unconditional, /* Instruction cannot be conditionalized.
The ARM condition field is still 0xE. */
OT_unconditionalF, /* Instruction cannot be conditionalized
and carries 0xF in its ARM condition field. */
OT_csuffix, /* Instruction takes a conditional suffix. */
OT_cinfix3, /* Instruction takes a conditional infix,
beginning at character index 3. (In
unified mode, it becomes a suffix.) */
OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
character index 3, even in unified mode. Used for
legacy instructions where suffix and infix forms
may be ambiguous. */
OT_csuf_or_in3, /* Instruction takes either a conditional
suffix or an infix at character index 3. */
OT_odd_infix_unc, /* This is the unconditional variant of an
instruction that takes a conditional infix
at an unusual position. In unified mode,
this variant will accept a suffix. */
OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
are the conditional variants of instructions that
take conditional infixes in unusual positions.
The infix appears at character index
(tag - OT_odd_infix_0). These are not accepted
in unified mode. */
};
/* Subroutine of md_assemble, responsible for looking up the primary
opcode from the mnemonic the user wrote. STR points to the
beginning of the mnemonic.
This is not simply a hash table lookup, because of conditional
variants. Most instructions have conditional variants, which are
expressed with a _conditional affix_ to the mnemonic. If we were
to encode each conditional variant as a literal string in the opcode
table, it would have approximately 20,000 entries.
Most mnemonics take this affix as a suffix, and in unified syntax,
'most' is upgraded to 'all'. However, in the divided syntax, some
instructions take the affix as an infix, notably the s-variants of
the arithmetic instructions. Of those instructions, all but six
have the infix appear after the third character of the mnemonic.
Accordingly, the algorithm for looking up primary opcodes given
an identifier is:
1. Look up the identifier in the opcode table.
If we find a match, go to step U.
2. Look up the last two characters of the identifier in the
conditions table. If we find a match, look up the first N-2
characters of the identifier in the opcode table. If we
find a match, go to step CE.
3. Look up the fourth and fifth characters of the identifier in
the conditions table. If we find a match, extract those
characters from the identifier, and look up the remaining
characters in the opcode table. If we find a match, go
to step CM.
4. Fail.
U. Examine the tag field of the opcode structure, in case this is
one of the six instructions with its conditional infix in an
unusual place. If it is, the tag tells us where to find the
infix; look it up in the conditions table and set inst.cond
accordingly. Otherwise, this is an unconditional instruction.
Again set inst.cond accordingly. Return the opcode structure.
CE. Examine the tag field to make sure this is an instruction that
should receive a conditional suffix. If it is not, fail.
Otherwise, set inst.cond from the suffix we already looked up,
and return the opcode structure.
CM. Examine the tag field to make sure this is an instruction that
should receive a conditional infix after the third character.
If it is not, fail. Otherwise, undo the edits to the current
line of input and proceed as for case CE. */
static const struct asm_opcode *
opcode_lookup (char **str)
{
char *end, *base;
char *affix;
const struct asm_opcode *opcode;
const struct asm_cond *cond;
char save[2];
/* Scan up to the end of the mnemonic, which must end in white space,
'.' (in unified mode only), or end of string. */
for (base = end = *str; *end != '\0'; end++)
if (*end == ' ' || (unified_syntax && *end == '.'))
break;
if (end == base)
return 0;
/* Handle a possible width suffix. */
if (end[0] == '.')
{
if (end[1] == 'w' && (end[2] == ' ' || end[2] == '\0'))
inst.size_req = 4;
else if (end[1] == 'n' && (end[2] == ' ' || end[2] == '\0'))
inst.size_req = 2;
else
return 0;
*str = end + 2;
}
else
*str = end;
/* Look for unaffixed or special-case affixed mnemonic. */
opcode = hash_find_n (arm_ops_hsh, base, end - base);
if (opcode)
{
/* step U */
if (opcode->tag < OT_odd_infix_0)
{
inst.cond = COND_ALWAYS;
return opcode;
}
if (unified_syntax)
as_warn (_("conditional infixes are deprecated in unified syntax"));
affix = base + (opcode->tag - OT_odd_infix_0);
cond = hash_find_n (arm_cond_hsh, affix, 2);
assert (cond);
inst.cond = cond->value;
return opcode;
}
/* Cannot have a conditional suffix on a mnemonic of less than two
characters. */
if (end - base < 3)
return 0;
/* Look for suffixed mnemonic. */
affix = end - 2;
cond = hash_find_n (arm_cond_hsh, affix, 2);
opcode = hash_find_n (arm_ops_hsh, base, affix - base);
if (opcode && cond)
{
/* step CE */
switch (opcode->tag)
{
case OT_cinfix3_legacy:
/* Ignore conditional suffixes matched on infix only mnemonics. */
break;
case OT_cinfix3:
case OT_odd_infix_unc:
if (!unified_syntax)
return 0;
/* else fall through */
case OT_csuffix:
case OT_csuf_or_in3:
inst.cond = cond->value;
return opcode;
case OT_unconditional:
case OT_unconditionalF:
if (thumb_mode)
{
inst.cond = cond->value;
}
else
{
/* delayed diagnostic */
inst.error = BAD_COND;
inst.cond = COND_ALWAYS;
}
return opcode;
default:
return 0;
}
}
/* Cannot have a usual-position infix on a mnemonic of less than
six characters (five would be a suffix). */
if (end - base < 6)
return 0;
/* Look for infixed mnemonic in the usual position. */
affix = base + 3;
cond = hash_find_n (arm_cond_hsh, affix, 2);
if (!cond)
return 0;
memcpy (save, affix, 2);
memmove (affix, affix + 2, (end - affix) - 2);
opcode = hash_find_n (arm_ops_hsh, base, (end - base) - 2);
memmove (affix + 2, affix, (end - affix) - 2);
memcpy (affix, save, 2);
if (opcode && (opcode->tag == OT_cinfix3 || opcode->tag == OT_csuf_or_in3
|| opcode->tag == OT_cinfix3_legacy))
{
/* step CM */
if (unified_syntax && opcode->tag == OT_cinfix3)
as_warn (_("conditional infixes are deprecated in unified syntax"));
inst.cond = cond->value;
return opcode;
}
return 0;
}
void
md_assemble (char *str)
{
char *p = str;
const struct asm_opcode * opcode;
/* Align the previous label if needed. */
if (last_label_seen != NULL)
{
symbol_set_frag (last_label_seen, frag_now);
S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
S_SET_SEGMENT (last_label_seen, now_seg);
}
memset (&inst, '\0', sizeof (inst));
inst.reloc.type = BFD_RELOC_UNUSED;
opcode = opcode_lookup (&p);
if (!opcode)
{
/* It wasn't an instruction, but it might be a register alias of
the form alias .req reg. */
if (!create_register_alias (str, p))
as_bad (_("bad instruction `%s'"), str);
return;
}
if (thumb_mode)
{
arm_feature_set variant;
variant = cpu_variant;
/* Only allow coprocessor instructions on Thumb-2 capable devices. */
if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
/* Check that this instruction is supported for this CPU. */
if (!opcode->tvariant
|| (thumb_mode == 1
&& !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
{
as_bad (_("selected processor does not support `%s'"), str);
return;
}
if (inst.cond != COND_ALWAYS && !unified_syntax
&& opcode->tencode != do_t_branch)
{
as_bad (_("Thumb does not support conditional execution"));
return;
}
/* Check conditional suffixes. */
if (current_it_mask)
{
int cond;
cond = current_cc ^ ((current_it_mask >> 4) & 1) ^ 1;
current_it_mask <<= 1;
current_it_mask &= 0x1f;
/* The BKPT instruction is unconditional even in an IT block. */
if (!inst.error
&& cond != inst.cond && opcode->tencode != do_t_bkpt)
{
as_bad (_("incorrect condition in IT block"));
return;
}
}
else if (inst.cond != COND_ALWAYS && opcode->tencode != do_t_branch)
{
as_bad (_("thumb conditional instrunction not in IT block"));
return;
}
mapping_state (MAP_THUMB);
inst.instruction = opcode->tvalue;
if (!parse_operands (p, opcode->operands))
opcode->tencode ();
/* Clear current_it_mask at the end of an IT block. */
if (current_it_mask == 0x10)
current_it_mask = 0;
if (!(inst.error || inst.relax))
{
assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
inst.size = (inst.instruction > 0xffff ? 4 : 2);
if (inst.size_req && inst.size_req != inst.size)
{
as_bad (_("cannot honor width suffix -- `%s'"), str);
return;
}
}
ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
*opcode->tvariant);
/* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
set those bits when Thumb-2 32-bit instuctions are seen. ie.
anything other than bl/blx.
This is overly pessimistic for relaxable instructions. */
if ((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
|| inst.relax)
ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
arm_ext_v6t2);
}
else
{
/* Check that this instruction is supported for this CPU. */
if (!opcode->avariant ||
!ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant))
{
as_bad (_("selected processor does not support `%s'"), str);
return;
}
if (inst.size_req)
{
as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
return;
}
mapping_state (MAP_ARM);
inst.instruction = opcode->avalue;
if (opcode->tag == OT_unconditionalF)
inst.instruction |= 0xF << 28;
else
inst.instruction |= inst.cond << 28;
inst.size = INSN_SIZE;
if (!parse_operands (p, opcode->operands))
opcode->aencode ();
/* Arm mode bx is marked as both v4T and v5 because it's still required
on a hypothetical non-thumb v5 core. */
if (ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v4t)
|| ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v5))
ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
else
ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
*opcode->avariant);
}
output_inst (str);
}
/* Various frobbings of labels and their addresses. */
void
arm_start_line_hook (void)
{
last_label_seen = NULL;
}
void
arm_frob_label (symbolS * sym)
{
last_label_seen = sym;
ARM_SET_THUMB (sym, thumb_mode);
#if defined OBJ_COFF || defined OBJ_ELF
ARM_SET_INTERWORK (sym, support_interwork);
#endif
/* Note - do not allow local symbols (.Lxxx) to be labeled
as Thumb functions. This is because these labels, whilst
they exist inside Thumb code, are not the entry points for
possible ARM->Thumb calls. Also, these labels can be used
as part of a computed goto or switch statement. eg gcc
can generate code that looks like this:
ldr r2, [pc, .Laaa]
lsl r3, r3, #2
ldr r2, [r3, r2]
mov pc, r2
.Lbbb: .word .Lxxx
.Lccc: .word .Lyyy
..etc...
.Laaa: .word Lbbb
The first instruction loads the address of the jump table.
The second instruction converts a table index into a byte offset.
The third instruction gets the jump address out of the table.
The fourth instruction performs the jump.
If the address stored at .Laaa is that of a symbol which has the
Thumb_Func bit set, then the linker will arrange for this address
to have the bottom bit set, which in turn would mean that the
address computation performed by the third instruction would end
up with the bottom bit set. Since the ARM is capable of unaligned
word loads, the instruction would then load the incorrect address
out of the jump table, and chaos would ensue. */
if (label_is_thumb_function_name
&& (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
&& (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
{
/* When the address of a Thumb function is taken the bottom
bit of that address should be set. This will allow
interworking between Arm and Thumb functions to work
correctly. */
THUMB_SET_FUNC (sym, 1);
label_is_thumb_function_name = FALSE;
}
#ifdef OBJ_ELF
dwarf2_emit_label (sym);
#endif
}
int
arm_data_in_code (void)
{
if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
{
*input_line_pointer = '/';
input_line_pointer += 5;
*input_line_pointer = 0;
return 1;
}
return 0;
}
char *
arm_canonicalize_symbol_name (char * name)
{
int len;
if (thumb_mode && (len = strlen (name)) > 5
&& streq (name + len - 5, "/data"))
*(name + len - 5) = 0;
return name;
}
/* Table of all register names defined by default. The user can
define additional names with .req. Note that all register names
should appear in both upper and lowercase variants. Some registers
also have mixed-case names. */
#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
#define REGNUM(p,n,t) REGDEF(p##n, n, t)
#define REGSET(p,t) \
REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
static const struct reg_entry reg_names[] =
{
/* ARM integer registers. */
REGSET(r, RN), REGSET(R, RN),
/* ATPCS synonyms. */
REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
/* Well-known aliases. */
REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
/* Coprocessor numbers. */
REGSET(p, CP), REGSET(P, CP),
/* Coprocessor register numbers. The "cr" variants are for backward
compatibility. */
REGSET(c, CN), REGSET(C, CN),
REGSET(cr, CN), REGSET(CR, CN),
/* FPA registers. */
REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
/* VFP SP registers. */
REGSET(s,VFS),
REGNUM(s,16,VFS), REGNUM(s,17,VFS), REGNUM(s,18,VFS), REGNUM(s,19,VFS),
REGNUM(s,20,VFS), REGNUM(s,21,VFS), REGNUM(s,22,VFS), REGNUM(s,23,VFS),
REGNUM(s,24,VFS), REGNUM(s,25,VFS), REGNUM(s,26,VFS), REGNUM(s,27,VFS),
REGNUM(s,28,VFS), REGNUM(s,29,VFS), REGNUM(s,30,VFS), REGNUM(s,31,VFS),
REGSET(S,VFS),
REGNUM(S,16,VFS), REGNUM(S,17,VFS), REGNUM(S,18,VFS), REGNUM(S,19,VFS),
REGNUM(S,20,VFS), REGNUM(S,21,VFS), REGNUM(S,22,VFS), REGNUM(S,23,VFS),
REGNUM(S,24,VFS), REGNUM(S,25,VFS), REGNUM(S,26,VFS), REGNUM(S,27,VFS),
REGNUM(S,28,VFS), REGNUM(S,29,VFS), REGNUM(S,30,VFS), REGNUM(S,31,VFS),
/* VFP DP Registers. */
REGSET(d,VFD), REGSET(D,VFS),
/* VFP control registers. */
REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
/* Maverick DSP coprocessor registers. */
REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
REGDEF(dspsc,0,DSPSC),
REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
REGDEF(DSPSC,0,DSPSC),
/* iWMMXt data registers - p0, c0-15. */
REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
/* iWMMXt control registers - p1, c0-3. */
REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
/* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
/* XScale accumulator registers. */
REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
};
#undef REGDEF
#undef REGNUM
#undef REGSET
/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
within psr_required_here. */
static const struct asm_psr psrs[] =
{
/* Backward compatibility notation. Note that "all" is no longer
truly all possible PSR bits. */
{"all", PSR_c | PSR_f},
{"flg", PSR_f},
{"ctl", PSR_c},
/* Individual flags. */
{"f", PSR_f},
{"c", PSR_c},
{"x", PSR_x},
{"s", PSR_s},
/* Combinations of flags. */
{"fs", PSR_f | PSR_s},
{"fx", PSR_f | PSR_x},
{"fc", PSR_f | PSR_c},
{"sf", PSR_s | PSR_f},
{"sx", PSR_s | PSR_x},
{"sc", PSR_s | PSR_c},
{"xf", PSR_x | PSR_f},
{"xs", PSR_x | PSR_s},
{"xc", PSR_x | PSR_c},
{"cf", PSR_c | PSR_f},
{"cs", PSR_c | PSR_s},
{"cx", PSR_c | PSR_x},
{"fsx", PSR_f | PSR_s | PSR_x},
{"fsc", PSR_f | PSR_s | PSR_c},
{"fxs", PSR_f | PSR_x | PSR_s},
{"fxc", PSR_f | PSR_x | PSR_c},
{"fcs", PSR_f | PSR_c | PSR_s},
{"fcx", PSR_f | PSR_c | PSR_x},
{"sfx", PSR_s | PSR_f | PSR_x},
{"sfc", PSR_s | PSR_f | PSR_c},
{"sxf", PSR_s | PSR_x | PSR_f},
{"sxc", PSR_s | PSR_x | PSR_c},
{"scf", PSR_s | PSR_c | PSR_f},
{"scx", PSR_s | PSR_c | PSR_x},
{"xfs", PSR_x | PSR_f | PSR_s},
{"xfc", PSR_x | PSR_f | PSR_c},
{"xsf", PSR_x | PSR_s | PSR_f},
{"xsc", PSR_x | PSR_s | PSR_c},
{"xcf", PSR_x | PSR_c | PSR_f},
{"xcs", PSR_x | PSR_c | PSR_s},
{"cfs", PSR_c | PSR_f | PSR_s},
{"cfx", PSR_c | PSR_f | PSR_x},
{"csf", PSR_c | PSR_s | PSR_f},
{"csx", PSR_c | PSR_s | PSR_x},
{"cxf", PSR_c | PSR_x | PSR_f},
{"cxs", PSR_c | PSR_x | PSR_s},
{"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
{"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
{"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
{"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
{"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
{"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
{"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
{"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
{"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
{"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
{"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
{"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
{"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
{"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
{"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
{"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
{"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
{"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
{"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
{"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
{"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
{"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
{"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
{"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
};
/* Table of V7M psr names. */
static const struct asm_psr v7m_psrs[] =
{
{"apsr", 0 },
{"iapsr", 1 },
{"eapsr", 2 },
{"psr", 3 },
{"ipsr", 5 },
{"epsr", 6 },
{"iepsr", 7 },
{"msp", 8 },
{"psp", 9 },
{"primask", 16},
{"basepri", 17},
{"basepri_max", 18},
{"faultmask", 19},
{"control", 20}
};
/* Table of all shift-in-operand names. */
static const struct asm_shift_name shift_names [] =
{
{ "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
{ "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
{ "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
{ "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
{ "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
{ "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
};
/* Table of all explicit relocation names. */
#ifdef OBJ_ELF
static struct reloc_entry reloc_names[] =
{
{ "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
{ "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
{ "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
{ "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
{ "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
{ "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
{ "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
{ "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
{ "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
{ "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
{ "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
};
#endif
/* Table of all conditional affixes. 0xF is not defined as a condition code. */
static const struct asm_cond conds[] =
{
{"eq", 0x0},
{"ne", 0x1},
{"cs", 0x2}, {"hs", 0x2},
{"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
{"mi", 0x4},
{"pl", 0x5},
{"vs", 0x6},
{"vc", 0x7},
{"hi", 0x8},
{"ls", 0x9},
{"ge", 0xa},
{"lt", 0xb},
{"gt", 0xc},
{"le", 0xd},
{"al", 0xe}
};
static struct asm_barrier_opt barrier_opt_names[] =
{
{ "sy", 0xf },
{ "un", 0x7 },
{ "st", 0xe },
{ "unst", 0x6 }
};
/* Table of ARM-format instructions. */
/* Macros for gluing together operand strings. N.B. In all cases
other than OPS0, the trailing OP_stop comes from default
zero-initialization of the unspecified elements of the array. */
#define OPS0() { OP_stop, }
#define OPS1(a) { OP_##a, }
#define OPS2(a,b) { OP_##a,OP_##b, }
#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
/* These macros abstract out the exact format of the mnemonic table and
save some repeated characters. */
/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
#define TxCE(mnem, op, top, nops, ops, ae, te) \
{ #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
THUMB_VARIANT, do_##ae, do_##te }
/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
a T_MNEM_xyz enumerator. */
#define TCE(mnem, aop, top, nops, ops, ae, te) \
TxCE(mnem, aop, 0x##top, nops, ops, ae, te)
#define tCE(mnem, aop, top, nops, ops, ae, te) \
TxCE(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
infix after the third character. */
#define TxC3(mnem, op, top, nops, ops, ae, te) \
{ #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
THUMB_VARIANT, do_##ae, do_##te }
#define TC3(mnem, aop, top, nops, ops, ae, te) \
TxC3(mnem, aop, 0x##top, nops, ops, ae, te)
#define tC3(mnem, aop, top, nops, ops, ae, te) \
TxC3(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
appear in the condition table. */
#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
{ #m1 #m2 #m3, OPS##nops ops, sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
TxCM_(m1, , m2, op, top, nops, ops, ae, te), \
TxCM_(m1, eq, m2, op, top, nops, ops, ae, te), \
TxCM_(m1, ne, m2, op, top, nops, ops, ae, te), \
TxCM_(m1, cs, m2, op, top, nops, ops, ae, te), \
TxCM_(m1, hs, m2, op, top, nops, ops, ae, te), \
TxCM_(m1, cc, m2, op, top, nops, ops, ae, te), \
TxCM_(m1, ul, m2, op, top, nops, ops, ae, te), \
TxCM_(m1, lo, m2, op, top, nops, ops, ae, te), \
TxCM_(m1, mi, m2, op, top, nops, ops, ae, te), \
TxCM_(m1, pl, m2, op, top, nops, ops, ae, te), \
TxCM_(m1, vs, m2, op, top, nops, ops, ae, te), \
TxCM_(m1, vc, m2, op, top, nops, ops, ae, te), \
TxCM_(m1, hi, m2, op, top, nops, ops, ae, te), \
TxCM_(m1, ls, m2, op, top, nops, ops, ae, te), \
TxCM_(m1, ge, m2, op, top, nops, ops, ae, te), \
TxCM_(m1, lt, m2, op, top, nops, ops, ae, te), \
TxCM_(m1, gt, m2, op, top, nops, ops, ae, te), \
TxCM_(m1, le, m2, op, top, nops, ops, ae, te), \
TxCM_(m1, al, m2, op, top, nops, ops, ae, te)
#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
TxCM(m1,m2, aop, 0x##top, nops, ops, ae, te)
#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
TxCM(m1,m2, aop, T_MNEM_##top, nops, ops, ae, te)
/* Mnemonic that cannot be conditionalized. The ARM condition-code
field is still 0xE. Many of the Thumb variants can be executed
conditionally, so this is checked separately. */
#define TUE(mnem, op, top, nops, ops, ae, te) \
{ #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
THUMB_VARIANT, do_##ae, do_##te }
/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
condition code field. */
#define TUF(mnem, op, top, nops, ops, ae, te) \
{ #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
THUMB_VARIANT, do_##ae, do_##te }
/* ARM-only variants of all the above. */
#define CE(mnem, op, nops, ops, ae) \
{ #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
#define C3(mnem, op, nops, ops, ae) \
{ #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
/* Legacy mnemonics that always have conditional infix after the third
character. */
#define CL(mnem, op, nops, ops, ae) \
{ #mnem, OPS##nops ops, OT_cinfix3_legacy, \
0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
#define cCE(mnem, op, nops, ops, ae) \
{ #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
/* Legacy coprocessor instructions where conditional infix and conditional
suffix are ambiguous. For consistency this includes all FPA instructions,
not just the potentially ambiguous ones. */
#define cCL(mnem, op, nops, ops, ae) \
{ #mnem, OPS##nops ops, OT_cinfix3_legacy, \
0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
/* Coprocessor, takes either a suffix or a position-3 infix
(for an FPA corner case). */
#define C3E(mnem, op, nops, ops, ae) \
{ #mnem, OPS##nops ops, OT_csuf_or_in3, \
0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
#define xCM_(m1, m2, m3, op, nops, ops, ae) \
{ #m1 #m2 #m3, OPS##nops ops, \
sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
#define CM(m1, m2, op, nops, ops, ae) \
xCM_(m1, , m2, op, nops, ops, ae), \
xCM_(m1, eq, m2, op, nops, ops, ae), \
xCM_(m1, ne, m2, op, nops, ops, ae), \
xCM_(m1, cs, m2, op, nops, ops, ae), \
xCM_(m1, hs, m2, op, nops, ops, ae), \
xCM_(m1, cc, m2, op, nops, ops, ae), \
xCM_(m1, ul, m2, op, nops, ops, ae), \
xCM_(m1, lo, m2, op, nops, ops, ae), \
xCM_(m1, mi, m2, op, nops, ops, ae), \
xCM_(m1, pl, m2, op, nops, ops, ae), \
xCM_(m1, vs, m2, op, nops, ops, ae), \
xCM_(m1, vc, m2, op, nops, ops, ae), \
xCM_(m1, hi, m2, op, nops, ops, ae), \
xCM_(m1, ls, m2, op, nops, ops, ae), \
xCM_(m1, ge, m2, op, nops, ops, ae), \
xCM_(m1, lt, m2, op, nops, ops, ae), \
xCM_(m1, gt, m2, op, nops, ops, ae), \
xCM_(m1, le, m2, op, nops, ops, ae), \
xCM_(m1, al, m2, op, nops, ops, ae)
#define UE(mnem, op, nops, ops, ae) \
{ #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
#define UF(mnem, op, nops, ops, ae) \
{ #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
#define do_0 0
/* Thumb-only, unconditional. */
#define UT(mnem, op, nops, ops, te) TUE(mnem, 0, op, nops, ops, 0, te)
static const struct asm_opcode insns[] =
{
#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
#define THUMB_VARIANT &arm_ext_v4t
tCE(and, 0000000, and, 3, (RR, oRR, SH), arit, t_arit3c),
tC3(ands, 0100000, ands, 3, (RR, oRR, SH), arit, t_arit3c),
tCE(eor, 0200000, eor, 3, (RR, oRR, SH), arit, t_arit3c),
tC3(eors, 0300000, eors, 3, (RR, oRR, SH), arit, t_arit3c),
tCE(sub, 0400000, sub, 3, (RR, oRR, SH), arit, t_add_sub),
tC3(subs, 0500000, subs, 3, (RR, oRR, SH), arit, t_add_sub),
tCE(add, 0800000, add, 3, (RR, oRR, SH), arit, t_add_sub),
tC3(adds, 0900000, adds, 3, (RR, oRR, SH), arit, t_add_sub),
tCE(adc, 0a00000, adc, 3, (RR, oRR, SH), arit, t_arit3c),
tC3(adcs, 0b00000, adcs, 3, (RR, oRR, SH), arit, t_arit3c),
tCE(sbc, 0c00000, sbc, 3, (RR, oRR, SH), arit, t_arit3),
tC3(sbcs, 0d00000, sbcs, 3, (RR, oRR, SH), arit, t_arit3),
tCE(orr, 1800000, orr, 3, (RR, oRR, SH), arit, t_arit3c),
tC3(orrs, 1900000, orrs, 3, (RR, oRR, SH), arit, t_arit3c),
tCE(bic, 1c00000, bic, 3, (RR, oRR, SH), arit, t_arit3),
tC3(bics, 1d00000, bics, 3, (RR, oRR, SH), arit, t_arit3),
/* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
for setting PSR flag bits. They are obsolete in V6 and do not
have Thumb equivalents. */
tCE(tst, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
tC3(tsts, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
CL(tstp, 110f000, 2, (RR, SH), cmp),
tCE(cmp, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
tC3(cmps, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
CL(cmpp, 150f000, 2, (RR, SH), cmp),
tCE(cmn, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
tC3(cmns, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
CL(cmnp, 170f000, 2, (RR, SH), cmp),
tCE(mov, 1a00000, mov, 2, (RR, SH), mov, t_mov_cmp),
tC3(movs, 1b00000, movs, 2, (RR, SH), mov, t_mov_cmp),
tCE(mvn, 1e00000, mvn, 2, (RR, SH), mov, t_mvn_tst),
tC3(mvns, 1f00000, mvns, 2, (RR, SH), mov, t_mvn_tst),
tCE(ldr, 4100000, ldr, 2, (RR, ADDR), ldst, t_ldst),
tC3(ldrb, 4500000, ldrb, 2, (RR, ADDR), ldst, t_ldst),
tCE(str, 4000000, str, 2, (RR, ADDR), ldst, t_ldst),
tC3(strb, 4400000, strb, 2, (RR, ADDR), ldst, t_ldst),
tCE(stm, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
tC3(stmia, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
tC3(stmea, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
tCE(ldm, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
tC3(ldmia, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
tC3(ldmfd, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
TCE(swi, f000000, df00, 1, (EXPi), swi, t_swi),
TCE(svc, f000000, df00, 1, (EXPi), swi, t_swi),
tCE(b, a000000, b, 1, (EXPr), branch, t_branch),
TCE(bl, b000000, f000f800, 1, (EXPr), bl, t_branch23),
/* Pseudo ops. */
tCE(adr, 28f0000, adr, 2, (RR, EXP), adr, t_adr),
C3(adrl, 28f0000, 2, (RR, EXP), adrl),
tCE(nop, 1a00000, nop, 1, (oI255c), nop, t_nop),
/* Thumb-compatibility pseudo ops. */
tCE(lsl, 1a00000, lsl, 3, (RR, oRR, SH), shift, t_shift),
tC3(lsls, 1b00000, lsls, 3, (RR, oRR, SH), shift, t_shift),
tCE(lsr, 1a00020, lsr, 3, (RR, oRR, SH), shift, t_shift),
tC3(lsrs, 1b00020, lsrs, 3, (RR, oRR, SH), shift, t_shift),
tCE(asr, 1a00040, asr, 3, (RR, oRR, SH), shift, t_shift),
tC3(asrs, 1b00040, asrs, 3, (RR, oRR, SH), shift, t_shift),
tCE(ror, 1a00060, ror, 3, (RR, oRR, SH), shift, t_shift),
tC3(rors, 1b00060, rors, 3, (RR, oRR, SH), shift, t_shift),
tCE(neg, 2600000, neg, 2, (RR, RR), rd_rn, t_neg),
tC3(negs, 2700000, negs, 2, (RR, RR), rd_rn, t_neg),
tCE(push, 92d0000, push, 1, (REGLST), push_pop, t_push_pop),
tCE(pop, 8bd0000, pop, 1, (REGLST), push_pop, t_push_pop),
#undef THUMB_VARIANT
#define THUMB_VARIANT &arm_ext_v6
TCE(cpy, 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
/* V1 instructions with no Thumb analogue prior to V6T2. */
#undef THUMB_VARIANT
#define THUMB_VARIANT &arm_ext_v6t2
TCE(rsb, 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
TC3(rsbs, 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
TCE(teq, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
TC3(teqs, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
CL(teqp, 130f000, 2, (RR, SH), cmp),
TC3(ldrt, 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
TC3(ldrbt, 4700000, f8100e00, 2, (RR, ADDR), ldstt, t_ldstt),
TC3(strt, 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
TC3(strbt, 4600000, f8000e00, 2, (RR, ADDR), ldstt, t_ldstt),
TC3(stmdb, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
TC3(stmfd, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
TC3(ldmdb, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
TC3(ldmea, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
/* V1 instructions with no Thumb analogue at all. */
CE(rsc, 0e00000, 3, (RR, oRR, SH), arit),
C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
#undef ARM_VARIANT
#define ARM_VARIANT &arm_ext_v2 /* ARM 2 - multiplies. */
#undef THUMB_VARIANT
#define THUMB_VARIANT &arm_ext_v4t
tCE(mul, 0000090, mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
tC3(muls, 0100090, muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
#undef THUMB_VARIANT
#define THUMB_VARIANT &arm_ext_v6t2
TCE(mla, 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
/* Generic coprocessor instructions. */
TCE(cdp, e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
TCE(ldc, c100000, ec100000, 3, (RCP, RCN, ADDR), lstc, lstc),
TC3(ldcl, c500000, ec500000, 3, (RCP, RCN, ADDR), lstc, lstc),
TCE(stc, c000000, ec000000, 3, (RCP, RCN, ADDR), lstc, lstc),
TC3(stcl, c400000, ec400000, 3, (RCP, RCN, ADDR), lstc, lstc),
TCE(mcr, e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
TCE(mrc, e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
#undef ARM_VARIANT
#define ARM_VARIANT &arm_ext_v2s /* ARM 3 - swp instructions. */
CE(swp, 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
#undef ARM_VARIANT
#define ARM_VARIANT &arm_ext_v3 /* ARM 6 Status register instructions. */
TCE(mrs, 10f0000, f3ef8000, 2, (RR, PSR), mrs, t_mrs),
TCE(msr, 120f000, f3808000, 2, (PSR, RR_EXi), msr, t_msr),
#undef ARM_VARIANT
#define ARM_VARIANT &arm_ext_v3m /* ARM 7M long multiplies. */
TCE(smull, 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
CM(smull,s, 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
TCE(umull, 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
CM(umull,s, 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
TCE(smlal, 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
CM(smlal,s, 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
TCE(umlal, 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
CM(umlal,s, 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
#undef ARM_VARIANT
#define ARM_VARIANT &arm_ext_v4 /* ARM Architecture 4. */
#undef THUMB_VARIANT
#define THUMB_VARIANT &arm_ext_v4t
tC3(ldrh, 01000b0, ldrh, 2, (RR, ADDR), ldstv4, t_ldst),
tC3(strh, 00000b0, strh, 2, (RR, ADDR), ldstv4, t_ldst),
tC3(ldrsh, 01000f0, ldrsh, 2, (RR, ADDR), ldstv4, t_ldst),
tC3(ldrsb, 01000d0, ldrsb, 2, (RR, ADDR), ldstv4, t_ldst),
tCM(ld,sh, 01000f0, ldrsh, 2, (RR, ADDR), ldstv4, t_ldst),
tCM(ld,sb, 01000d0, ldrsb, 2, (RR, ADDR), ldstv4, t_ldst),
#undef ARM_VARIANT
#define ARM_VARIANT &arm_ext_v4t_5
/* ARM Architecture 4T. */
/* Note: bx (and blx) are required on V5, even if the processor does
not support Thumb. */
TCE(bx, 12fff10, 4700, 1, (RR), bx, t_bx),
#undef ARM_VARIANT
#define ARM_VARIANT &arm_ext_v5 /* ARM Architecture 5T. */
#undef THUMB_VARIANT
#define THUMB_VARIANT &arm_ext_v5t
/* Note: blx has 2 variants; the .value coded here is for
BLX(2). Only this variant has conditional execution. */
TCE(blx, 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
TUE(bkpt, 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
#undef THUMB_VARIANT
#define THUMB_VARIANT &arm_ext_v6t2
TCE(clz, 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
TUF(ldc2, c100000, fc100000, 3, (RCP, RCN, ADDR), lstc, lstc),
TUF(ldc2l, c500000, fc500000, 3, (RCP, RCN, ADDR), lstc, lstc),
TUF(stc2, c000000, fc000000, 3, (RCP, RCN, ADDR), lstc, lstc),
TUF(stc2l, c400000, fc400000, 3, (RCP, RCN, ADDR), lstc, lstc),
TUF(cdp2, e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
TUF(mcr2, e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
TUF(mrc2, e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
#undef ARM_VARIANT
#define ARM_VARIANT &arm_ext_v5exp /* ARM Architecture 5TExP. */
TCE(smlabb, 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
TCE(smlatb, 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
TCE(smlabt, 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
TCE(smlatt, 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
TCE(smlawb, 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
TCE(smlawt, 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
TCE(smlalbb, 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
TCE(smlaltb, 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
TCE(smlalbt, 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
TCE(smlaltt, 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
TCE(smulbb, 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
TCE(smultb, 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
TCE(smulbt, 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
TCE(smultt, 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
TCE(smulwb, 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
TCE(smulwt, 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
TCE(qadd, 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
TCE(qdadd, 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
TCE(qsub, 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
TCE(qdsub, 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
#undef ARM_VARIANT
#define ARM_VARIANT &arm_ext_v5e /* ARM Architecture 5TE. */
TUF(pld, 450f000, f810f000, 1, (ADDR), pld, t_pld),
TC3(ldrd, 00000d0, e9500000, 3, (RRnpc, oRRnpc, ADDR), ldrd, t_ldstd),
TC3(strd, 00000f0, e9400000, 3, (RRnpc, oRRnpc, ADDR), ldrd, t_ldstd),
TCE(mcrr, c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
TCE(mrrc, c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
#undef ARM_VARIANT
#define ARM_VARIANT &arm_ext_v5j /* ARM Architecture 5TEJ. */
TCE(bxj, 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
#undef ARM_VARIANT
#define ARM_VARIANT &arm_ext_v6 /* ARM V6. */
#undef THUMB_VARIANT
#define THUMB_VARIANT &arm_ext_v6
TUF(cpsie, 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
TUF(cpsid, 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
tCE(rev, 6bf0f30, rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
tCE(rev16, 6bf0fb0, rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
tCE(revsh, 6ff0fb0, revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
tCE(sxth, 6bf0070, sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
tCE(uxth, 6ff0070, uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
tCE(sxtb, 6af0070, sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
tCE(uxtb, 6ef0070, uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
TUF(setend, 1010000, b650, 1, (ENDI), setend, t_setend),
#undef THUMB_VARIANT
#define THUMB_VARIANT &arm_ext_v6t2
TCE(ldrex, 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
TUF(mcrr2, c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
TUF(mrrc2, c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
TCE(ssat, 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
TCE(usat, 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
/* ARM V6 not included in V7M (eg. integer SIMD). */
#undef THUMB_VARIANT
#define THUMB_VARIANT &arm_ext_v6_notm
TUF(cps, 1020000, f3af8100, 1, (I31b), imm0, t_cps),
TCE(pkhbt, 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
TCE(pkhtb, 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
TCE(qadd16, 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(qadd8, 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(qaddsubx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(qsub16, 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(qsub8, 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(qsubaddx, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(sadd16, 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(sadd8, 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(saddsubx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(shadd16, 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(shadd8, 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(shaddsubx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(shsub16, 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(shsub8, 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(shsubaddx, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(ssub16, 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(ssub8, 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(ssubaddx, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(uadd16, 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(uadd8, 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(uaddsubx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(uhadd16, 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(uhadd8, 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(uhaddsubx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(uhsub16, 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(uhsub8, 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(uhsubaddx, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(uqadd16, 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(uqadd8, 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(uqaddsubx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(uqsub16, 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(uqsub8, 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(uqsubaddx, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(usub16, 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(usub8, 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(usubaddx, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TUF(rfeia, 8900a00, e990c000, 1, (RRw), rfe, rfe),
UF(rfeib, 9900a00, 1, (RRw), rfe),
UF(rfeda, 8100a00, 1, (RRw), rfe),
TUF(rfedb, 9100a00, e810c000, 1, (RRw), rfe, rfe),
TUF(rfefd, 8900a00, e990c000, 1, (RRw), rfe, rfe),
UF(rfefa, 9900a00, 1, (RRw), rfe),
UF(rfeea, 8100a00, 1, (RRw), rfe),
TUF(rfeed, 9100a00, e810c000, 1, (RRw), rfe, rfe),
TCE(sxtah, 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
TCE(sxtab16, 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
TCE(sxtab, 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
TCE(sxtb16, 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
TCE(uxtah, 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
TCE(uxtab16, 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
TCE(uxtab, 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
TCE(uxtb16, 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
TCE(sel, 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
TCE(smlad, 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
TCE(smladx, 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
TCE(smlald, 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
TCE(smlaldx, 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
TCE(smlsd, 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
TCE(smlsdx, 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
TCE(smlsld, 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
TCE(smlsldx, 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
TCE(smmla, 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
TCE(smmlar, 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
TCE(smmls, 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
TCE(smmlsr, 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
TCE(smmul, 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
TCE(smmulr, 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
TCE(smuad, 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
TCE(smuadx, 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
TCE(smusd, 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
TCE(smusdx, 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
TUF(srsia, 8cd0500, e980c000, 1, (I31w), srs, srs),
UF(srsib, 9cd0500, 1, (I31w), srs),
UF(srsda, 84d0500, 1, (I31w), srs),
TUF(srsdb, 94d0500, e800c000, 1, (I31w), srs, srs),
TCE(ssat16, 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
TCE(strex, 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
TCE(umaal, 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
TCE(usad8, 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
TCE(usada8, 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
TCE(usat16, 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
#undef ARM_VARIANT
#define ARM_VARIANT &arm_ext_v6k
#undef THUMB_VARIANT
#define THUMB_VARIANT &arm_ext_v6k
tCE(yield, 320f001, yield, 0, (), noargs, t_hint),
tCE(wfe, 320f002, wfe, 0, (), noargs, t_hint),
tCE(wfi, 320f003, wfi, 0, (), noargs, t_hint),
tCE(sev, 320f004, sev, 0, (), noargs, t_hint),
#undef THUMB_VARIANT
#define THUMB_VARIANT &arm_ext_v6_notm
TCE(ldrexd, 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
TCE(strexd, 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
#undef THUMB_VARIANT
#define THUMB_VARIANT &arm_ext_v6t2
TCE(ldrexb, 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
TCE(ldrexh, 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
TCE(strexb, 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
TCE(strexh, 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
TUF(clrex, 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
#undef ARM_VARIANT
#define ARM_VARIANT &arm_ext_v6z
TCE(smc, 1600070, f7f08000, 1, (EXPi), smc, t_smc),
#undef ARM_VARIANT
#define ARM_VARIANT &arm_ext_v6t2
TCE(bfc, 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
TCE(bfi, 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
TCE(sbfx, 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
TCE(ubfx, 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
TCE(mls, 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
TCE(movw, 3000000, f2400000, 2, (RRnpc, Iffff), mov16, t_mov16),
TCE(movt, 3400000, f2c00000, 2, (RRnpc, Iffff), mov16, t_mov16),
TCE(rbit, 3ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
TC3(ldrht, 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
TC3(ldrsht, 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
TC3(ldrsbt, 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
TC3(strht, 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
UT(cbnz, b900, 2, (RR, EXP), t_czb),
UT(cbz, b100, 2, (RR, EXP), t_czb),
/* ARM does not really have an IT instruction. */
TUE(it, 0, bf08, 1, (COND), it, t_it),
TUE(itt, 0, bf0c, 1, (COND), it, t_it),
TUE(ite, 0, bf04, 1, (COND), it, t_it),
TUE(ittt, 0, bf0e, 1, (COND), it, t_it),
TUE(itet, 0, bf06, 1, (COND), it, t_it),
TUE(itte, 0, bf0a, 1, (COND), it, t_it),
TUE(itee, 0, bf02, 1, (COND), it, t_it),
TUE(itttt, 0, bf0f, 1, (COND), it, t_it),
TUE(itett, 0, bf07, 1, (COND), it, t_it),
TUE(ittet, 0, bf0b, 1, (COND), it, t_it),
TUE(iteet, 0, bf03, 1, (COND), it, t_it),
TUE(ittte, 0, bf0d, 1, (COND), it, t_it),
TUE(itete, 0, bf05, 1, (COND), it, t_it),
TUE(ittee, 0, bf09, 1, (COND), it, t_it),
TUE(iteee, 0, bf01, 1, (COND), it, t_it),
/* Thumb2 only instructions. */
#undef ARM_VARIANT
#define ARM_VARIANT NULL
TCE(addw, 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
TCE(subw, 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
TCE(tbb, 0, e8d0f000, 1, (TB), 0, t_tb),
TCE(tbh, 0, e8d0f010, 1, (TB), 0, t_tb),
/* Thumb-2 hardware division instructions (R and M profiles only). */
#undef THUMB_VARIANT
#define THUMB_VARIANT &arm_ext_div
TCE(sdiv, 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
TCE(udiv, 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
/* ARM V7 instructions. */
#undef ARM_VARIANT
#define ARM_VARIANT &arm_ext_v7
#undef THUMB_VARIANT
#define THUMB_VARIANT &arm_ext_v7
TUF(pli, 450f000, f910f000, 1, (ADDR), pli, t_pld),
TCE(dbg, 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
TUF(dmb, 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
TUF(dsb, 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
TUF(isb, 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
#undef ARM_VARIANT
#define ARM_VARIANT &fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
cCE(wfs, e200110, 1, (RR), rd),
cCE(rfs, e300110, 1, (RR), rd),
cCE(wfc, e400110, 1, (RR), rd),
cCE(rfc, e500110, 1, (RR), rd),
cCL(ldfs, c100100, 2, (RF, ADDR), rd_cpaddr),
cCL(ldfd, c108100, 2, (RF, ADDR), rd_cpaddr),
cCL(ldfe, c500100, 2, (RF, ADDR), rd_cpaddr),
cCL(ldfp, c508100, 2, (RF, ADDR), rd_cpaddr),
cCL(stfs, c000100, 2, (RF, ADDR), rd_cpaddr),
cCL(stfd, c008100, 2, (RF, ADDR), rd_cpaddr),
cCL(stfe, c400100, 2, (RF, ADDR), rd_cpaddr),
cCL(stfp, c408100, 2, (RF, ADDR), rd_cpaddr),
cCL(mvfs, e008100, 2, (RF, RF_IF), rd_rm),
cCL(mvfsp, e008120, 2, (RF, RF_IF), rd_rm),
cCL(mvfsm, e008140, 2, (RF, RF_IF), rd_rm),
cCL(mvfsz, e008160, 2, (RF, RF_IF), rd_rm),
cCL(mvfd, e008180, 2, (RF, RF_IF), rd_rm),
cCL(mvfdp, e0081a0, 2, (RF, RF_IF), rd_rm),
cCL(mvfdm, e0081c0, 2, (RF, RF_IF), rd_rm),
cCL(mvfdz, e0081e0, 2, (RF, RF_IF), rd_rm),
cCL(mvfe, e088100, 2, (RF, RF_IF), rd_rm),
cCL(mvfep, e088120, 2, (RF, RF_IF), rd_rm),
cCL(mvfem, e088140, 2, (RF, RF_IF), rd_rm),
cCL(mvfez, e088160, 2, (RF, RF_IF), rd_rm),
cCL(mnfs, e108100, 2, (RF, RF_IF), rd_rm),
cCL(mnfsp, e108120, 2, (RF, RF_IF), rd_rm),
cCL(mnfsm, e108140, 2, (RF, RF_IF), rd_rm),
cCL(mnfsz, e108160, 2, (RF, RF_IF), rd_rm),
cCL(mnfd, e108180, 2, (RF, RF_IF), rd_rm),
cCL(mnfdp, e1081a0, 2, (RF, RF_IF), rd_rm),
cCL(mnfdm, e1081c0, 2, (RF, RF_IF), rd_rm),
cCL(mnfdz, e1081e0, 2, (RF, RF_IF), rd_rm),
cCL(mnfe, e188100, 2, (RF, RF_IF), rd_rm),
cCL(mnfep, e188120, 2, (RF, RF_IF), rd_rm),
cCL(mnfem, e188140, 2, (RF, RF_IF), rd_rm),
cCL(mnfez, e188160, 2, (RF, RF_IF), rd_rm),
cCL(abss, e208100, 2, (RF, RF_IF), rd_rm),
cCL(abssp, e208120, 2, (RF, RF_IF), rd_rm),
cCL(abssm, e208140, 2, (RF, RF_IF), rd_rm),
cCL(abssz, e208160, 2, (RF, RF_IF), rd_rm),
cCL(absd, e208180, 2, (RF, RF_IF), rd_rm),
cCL(absdp, e2081a0, 2, (RF, RF_IF), rd_rm),
cCL(absdm, e2081c0, 2, (RF, RF_IF), rd_rm),
cCL(absdz, e2081e0, 2, (RF, RF_IF), rd_rm),
cCL(abse, e288100, 2, (RF, RF_IF), rd_rm),
cCL(absep, e288120, 2, (RF, RF_IF), rd_rm),
cCL(absem, e288140, 2, (RF, RF_IF), rd_rm),
cCL(absez, e288160, 2, (RF, RF_IF), rd_rm),
cCL(rnds, e308100, 2, (RF, RF_IF), rd_rm),
cCL(rndsp, e308120, 2, (RF, RF_IF), rd_rm),
cCL(rndsm, e308140, 2, (RF, RF_IF), rd_rm),
cCL(rndsz, e308160, 2, (RF, RF_IF), rd_rm),
cCL(rndd, e308180, 2, (RF, RF_IF), rd_rm),
cCL(rnddp, e3081a0, 2, (RF, RF_IF), rd_rm),
cCL(rnddm, e3081c0, 2, (RF, RF_IF), rd_rm),
cCL(rnddz, e3081e0, 2, (RF, RF_IF), rd_rm),
cCL(rnde, e388100, 2, (RF, RF_IF), rd_rm),
cCL(rndep, e388120, 2, (RF, RF_IF), rd_rm),
cCL(rndem, e388140, 2, (RF, RF_IF), rd_rm),
cCL(rndez, e388160, 2, (RF, RF_IF), rd_rm),
cCL(sqts, e408100, 2, (RF, RF_IF), rd_rm),
cCL(sqtsp, e408120, 2, (RF, RF_IF), rd_rm),
cCL(sqtsm, e408140, 2, (RF, RF_IF), rd_rm),
cCL(sqtsz, e408160, 2, (RF, RF_IF), rd_rm),
cCL(sqtd, e408180, 2, (RF, RF_IF), rd_rm),
cCL(sqtdp, e4081a0, 2, (RF, RF_IF), rd_rm),
cCL(sqtdm, e4081c0, 2, (RF, RF_IF), rd_rm),
cCL(sqtdz, e4081e0, 2, (RF, RF_IF), rd_rm),
cCL(sqte, e488100, 2, (RF, RF_IF), rd_rm),
cCL(sqtep, e488120, 2, (RF, RF_IF), rd_rm),
cCL(sqtem, e488140, 2, (RF, RF_IF), rd_rm),
cCL(sqtez, e488160, 2, (RF, RF_IF), rd_rm),
cCL(logs, e508100, 2, (RF, RF_IF), rd_rm),
cCL(logsp, e508120, 2, (RF, RF_IF), rd_rm),
cCL(logsm, e508140, 2, (RF, RF_IF), rd_rm),
cCL(logsz, e508160, 2, (RF, RF_IF), rd_rm),
cCL(logd, e508180, 2, (RF, RF_IF), rd_rm),
cCL(logdp, e5081a0, 2, (RF, RF_IF), rd_rm),
cCL(logdm, e5081c0, 2, (RF, RF_IF), rd_rm),
cCL(logdz, e5081e0, 2, (RF, RF_IF), rd_rm),
cCL(loge, e588100, 2, (RF, RF_IF), rd_rm),
cCL(logep, e588120, 2, (RF, RF_IF), rd_rm),
cCL(logem, e588140, 2, (RF, RF_IF), rd_rm),
cCL(logez, e588160, 2, (RF, RF_IF), rd_rm),
cCL(lgns, e608100, 2, (RF, RF_IF), rd_rm),
cCL(lgnsp, e608120, 2, (RF, RF_IF), rd_rm),
cCL(lgnsm, e608140, 2, (RF, RF_IF), rd_rm),
cCL(lgnsz, e608160, 2, (RF, RF_IF), rd_rm),
cCL(lgnd, e608180, 2, (RF, RF_IF), rd_rm),
cCL(lgndp, e6081a0, 2, (RF, RF_IF), rd_rm),
cCL(lgndm, e6081c0, 2, (RF, RF_IF), rd_rm),
cCL(lgndz, e6081e0, 2, (RF, RF_IF), rd_rm),
cCL(lgne, e688100, 2, (RF, RF_IF), rd_rm),
cCL(lgnep, e688120, 2, (RF, RF_IF), rd_rm),
cCL(lgnem, e688140, 2, (RF, RF_IF), rd_rm),
cCL(lgnez, e688160, 2, (RF, RF_IF), rd_rm),
cCL(exps, e708100, 2, (RF, RF_IF), rd_rm),
cCL(expsp, e708120, 2, (RF, RF_IF), rd_rm),
cCL(expsm, e708140, 2, (RF, RF_IF), rd_rm),
cCL(expsz, e708160, 2, (RF, RF_IF), rd_rm),
cCL(expd, e708180, 2, (RF, RF_IF), rd_rm),
cCL(expdp, e7081a0, 2, (RF, RF_IF), rd_rm),
cCL(expdm, e7081c0, 2, (RF, RF_IF), rd_rm),
cCL(expdz, e7081e0, 2, (RF, RF_IF), rd_rm),
cCL(expe, e788100, 2, (RF, RF_IF), rd_rm),
cCL(expep, e788120, 2, (RF, RF_IF), rd_rm),
cCL(expem, e788140, 2, (RF, RF_IF), rd_rm),
cCL(expdz, e788160, 2, (RF, RF_IF), rd_rm),
cCL(sins, e808100, 2, (RF, RF_IF), rd_rm),
cCL(sinsp, e808120, 2, (RF, RF_IF), rd_rm),
cCL(sinsm, e808140, 2, (RF, RF_IF), rd_rm),
cCL(sinsz, e808160, 2, (RF, RF_IF), rd_rm),
cCL(sind, e808180, 2, (RF, RF_IF), rd_rm),
cCL(sindp, e8081a0, 2, (RF, RF_IF), rd_rm),
cCL(sindm, e8081c0, 2, (RF, RF_IF), rd_rm),
cCL(sindz, e8081e0, 2, (RF, RF_IF), rd_rm),
cCL(sine, e888100, 2, (RF, RF_IF), rd_rm),
cCL(sinep, e888120, 2, (RF, RF_IF), rd_rm),
cCL(sinem, e888140, 2, (RF, RF_IF), rd_rm),
cCL(sinez, e888160, 2, (RF, RF_IF), rd_rm),
cCL(coss, e908100, 2, (RF, RF_IF), rd_rm),
cCL(cossp, e908120, 2, (RF, RF_IF), rd_rm),
cCL(cossm, e908140, 2, (RF, RF_IF), rd_rm),
cCL(cossz, e908160, 2, (RF, RF_IF), rd_rm),
cCL(cosd, e908180, 2, (RF, RF_IF), rd_rm),
cCL(cosdp, e9081a0, 2, (RF, RF_IF), rd_rm),
cCL(cosdm, e9081c0, 2, (RF, RF_IF), rd_rm),
cCL(cosdz, e9081e0, 2, (RF, RF_IF), rd_rm),
cCL(cose, e988100, 2, (RF, RF_IF), rd_rm),
cCL(cosep, e988120, 2, (RF, RF_IF), rd_rm),
cCL(cosem, e988140, 2, (RF, RF_IF), rd_rm),
cCL(cosez, e988160, 2, (RF, RF_IF), rd_rm),
cCL(tans, ea08100, 2, (RF, RF_IF), rd_rm),
cCL(tansp, ea08120, 2, (RF, RF_IF), rd_rm),
cCL(tansm, ea08140, 2, (RF, RF_IF), rd_rm),
cCL(tansz, ea08160, 2, (RF, RF_IF), rd_rm),
cCL(tand, ea08180, 2, (RF, RF_IF), rd_rm),
cCL(tandp, ea081a0, 2, (RF, RF_IF), rd_rm),
cCL(tandm, ea081c0, 2, (RF, RF_IF), rd_rm),
cCL(tandz, ea081e0, 2, (RF, RF_IF), rd_rm),
cCL(tane, ea88100, 2, (RF, RF_IF), rd_rm),
cCL(tanep, ea88120, 2, (RF, RF_IF), rd_rm),
cCL(tanem, ea88140, 2, (RF, RF_IF), rd_rm),
cCL(tanez, ea88160, 2, (RF, RF_IF), rd_rm),
cCL(asns, eb08100, 2, (RF, RF_IF), rd_rm),
cCL(asnsp, eb08120, 2, (RF, RF_IF), rd_rm),
cCL(asnsm, eb08140, 2, (RF, RF_IF), rd_rm),
cCL(asnsz, eb08160, 2, (RF, RF_IF), rd_rm),
cCL(asnd, eb08180, 2, (RF, RF_IF), rd_rm),
cCL(asndp, eb081a0, 2, (RF, RF_IF), rd_rm),
cCL(asndm, eb081c0, 2, (RF, RF_IF), rd_rm),
cCL(asndz, eb081e0, 2, (RF, RF_IF), rd_rm),
cCL(asne, eb88100, 2, (RF, RF_IF), rd_rm),
cCL(asnep, eb88120, 2, (RF, RF_IF), rd_rm),
cCL(asnem, eb88140, 2, (RF, RF_IF), rd_rm),
cCL(asnez, eb88160, 2, (RF, RF_IF), rd_rm),
cCL(acss, ec08100, 2, (RF, RF_IF), rd_rm),
cCL(acssp, ec08120, 2, (RF, RF_IF), rd_rm),
cCL(acssm, ec08140, 2, (RF, RF_IF), rd_rm),
cCL(acssz, ec08160, 2, (RF, RF_IF), rd_rm),
cCL(acsd, ec08180, 2, (RF, RF_IF), rd_rm),
cCL(acsdp, ec081a0, 2, (RF, RF_IF), rd_rm),
cCL(acsdm, ec081c0, 2, (RF, RF_IF), rd_rm),
cCL(acsdz, ec081e0, 2, (RF, RF_IF), rd_rm),
cCL(acse, ec88100, 2, (RF, RF_IF), rd_rm),
cCL(acsep, ec88120, 2, (RF, RF_IF), rd_rm),
cCL(acsem, ec88140, 2, (RF, RF_IF), rd_rm),
cCL(acsez, ec88160, 2, (RF, RF_IF), rd_rm),
cCL(atns, ed08100, 2, (RF, RF_IF), rd_rm),
cCL(atnsp, ed08120, 2, (RF, RF_IF), rd_rm),
cCL(atnsm, ed08140, 2, (RF, RF_IF), rd_rm),
cCL(atnsz, ed08160, 2, (RF, RF_IF), rd_rm),
cCL(atnd, ed08180, 2, (RF, RF_IF), rd_rm),
cCL(atndp, ed081a0, 2, (RF, RF_IF), rd_rm),
cCL(atndm, ed081c0, 2, (RF, RF_IF), rd_rm),
cCL(atndz, ed081e0, 2, (RF, RF_IF), rd_rm),
cCL(atne, ed88100, 2, (RF, RF_IF), rd_rm),
cCL(atnep, ed88120, 2, (RF, RF_IF), rd_rm),
cCL(atnem, ed88140, 2, (RF, RF_IF), rd_rm),
cCL(atnez, ed88160, 2, (RF, RF_IF), rd_rm),
cCL(urds, ee08100, 2, (RF, RF_IF), rd_rm),
cCL(urdsp, ee08120, 2, (RF, RF_IF), rd_rm),
cCL(urdsm, ee08140, 2, (RF, RF_IF), rd_rm),
cCL(urdsz, ee08160, 2, (RF, RF_IF), rd_rm),
cCL(urdd, ee08180, 2, (RF, RF_IF), rd_rm),
cCL(urddp, ee081a0, 2, (RF, RF_IF), rd_rm),
cCL(urddm, ee081c0, 2, (RF, RF_IF), rd_rm),
cCL(urddz, ee081e0, 2, (RF, RF_IF), rd_rm),
cCL(urde, ee88100, 2, (RF, RF_IF), rd_rm),
cCL(urdep, ee88120, 2, (RF, RF_IF), rd_rm),
cCL(urdem, ee88140, 2, (RF, RF_IF), rd_rm),
cCL(urdez, ee88160, 2, (RF, RF_IF), rd_rm),
cCL(nrms, ef08100, 2, (RF, RF_IF), rd_rm),
cCL(nrmsp, ef08120, 2, (RF, RF_IF), rd_rm),
cCL(nrmsm, ef08140, 2, (RF, RF_IF), rd_rm),
cCL(nrmsz, ef08160, 2, (RF, RF_IF), rd_rm),
cCL(nrmd, ef08180, 2, (RF, RF_IF), rd_rm),
cCL(nrmdp, ef081a0, 2, (RF, RF_IF), rd_rm),
cCL(nrmdm, ef081c0, 2, (RF, RF_IF), rd_rm),
cCL(nrmdz, ef081e0, 2, (RF, RF_IF), rd_rm),
cCL(nrme, ef88100, 2, (RF, RF_IF), rd_rm),
cCL(nrmep, ef88120, 2, (RF, RF_IF), rd_rm),
cCL(nrmem, ef88140, 2, (RF, RF_IF), rd_rm),
cCL(nrmez, ef88160, 2, (RF, RF_IF), rd_rm),
cCL(adfs, e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(adfsp, e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(adfsm, e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(adfsz, e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(adfd, e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(adfdp, e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(adfdm, e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(adfdz, e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(adfe, e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(adfep, e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(adfem, e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(adfez, e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(sufs, e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(sufsp, e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(sufsm, e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(sufsz, e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(sufd, e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(sufdp, e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(sufdm, e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(sufdz, e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(sufe, e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(sufep, e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(sufem, e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(sufez, e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rsfs, e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rsfsp, e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rsfsm, e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rsfsz, e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rsfd, e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rsfdp, e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rsfdm, e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rsfdz, e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rsfe, e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rsfep, e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rsfem, e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rsfez, e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(mufs, e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(mufsp, e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(mufsm, e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(mufsz, e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(mufd, e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(mufdp, e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(mufdm, e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(mufdz, e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(mufe, e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(mufep, e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(mufem, e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(mufez, e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(dvfs, e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(dvfsp, e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(dvfsm, e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(dvfsz, e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(dvfd, e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(dvfdp, e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(dvfdm, e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(dvfdz, e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(dvfe, e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(dvfep, e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(dvfem, e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(dvfez, e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rdfs, e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rdfsp, e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rdfsm, e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rdfsz, e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rdfd, e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rdfdp, e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rdfdm, e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rdfdz, e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rdfe, e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rdfep, e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rdfem, e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rdfez, e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(pows, e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(powsp, e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(powsm, e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(powsz, e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(powd, e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(powdp, e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(powdm, e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(powdz, e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(powe, e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(powep, e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(powem, e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(powez, e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rpws, e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rpwsp, e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rpwsm, e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rpwsz, e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rpwd, e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rpwdp, e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rpwdm, e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rpwdz, e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rpwe, e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rpwep, e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rpwem, e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rpwez, e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rmfs, e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rmfsp, e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rmfsm, e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rmfsz, e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rmfd, e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rmfdp, e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rmfdm, e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rmfdz, e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rmfe, e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rmfep, e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rmfem, e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(rmfez, e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(fmls, e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(fmlsp, e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(fmlsm, e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(fmlsz, e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(fmld, e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(fmldp, e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(fmldm, e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(fmldz, e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(fmle, e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(fmlep, e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(fmlem, e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(fmlez, e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(fdvs, ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(fdvsp, ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(fdvsm, ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(fdvsz, ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(fdvd, ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(fdvdp, ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(fdvdm, ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(fdvdz, ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(fdve, ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(fdvep, ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(fdvem, ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(fdvez, ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(frds, eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(frdsp, eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(frdsm, eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(frdsz, eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(frdd, eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(frddp, eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(frddm, eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(frddz, eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(frde, eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(frdep, eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(frdem, eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(frdez, eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(pols, ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(polsp, ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(polsm, ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(polsz, ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(pold, ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(poldp, ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(poldm, ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(poldz, ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(pole, ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(polep, ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(polem, ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
cCL(polez, ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
cCE(cmf, e90f110, 2, (RF, RF_IF), fpa_cmp),
C3E(cmfe, ed0f110, 2, (RF, RF_IF), fpa_cmp),
cCE(cnf, eb0f110, 2, (RF, RF_IF), fpa_cmp),
C3E(cnfe, ef0f110, 2, (RF, RF_IF), fpa_cmp),
cCL(flts, e000110, 2, (RF, RR), rn_rd),
cCL(fltsp, e000130, 2, (RF, RR), rn_rd),
cCL(fltsm, e000150, 2, (RF, RR), rn_rd),
cCL(fltsz, e000170, 2, (RF, RR), rn_rd),
cCL(fltd, e000190, 2, (RF, RR), rn_rd),
cCL(fltdp, e0001b0, 2, (RF, RR), rn_rd),
cCL(fltdm, e0001d0, 2, (RF, RR), rn_rd),
cCL(fltdz, e0001f0, 2, (RF, RR), rn_rd),
cCL(flte, e080110, 2, (RF, RR), rn_rd),
cCL(fltep, e080130, 2, (RF, RR), rn_rd),
cCL(fltem, e080150, 2, (RF, RR), rn_rd),
cCL(fltez, e080170, 2, (RF, RR), rn_rd),
/* The implementation of the FIX instruction is broken on some
assemblers, in that it accepts a precision specifier as well as a
rounding specifier, despite the fact that this is meaningless.
To be more compatible, we accept it as well, though of course it
does not set any bits. */
cCE(fix, e100110, 2, (RR, RF), rd_rm),
cCL(fixp, e100130, 2, (RR, RF), rd_rm),
cCL(fixm, e100150, 2, (RR, RF), rd_rm),
cCL(fixz, e100170, 2, (RR, RF), rd_rm),
cCL(fixsp, e100130, 2, (RR, RF), rd_rm),
cCL(fixsm, e100150, 2, (RR, RF), rd_rm),
cCL(fixsz, e100170, 2, (RR, RF), rd_rm),
cCL(fixdp, e100130, 2, (RR, RF), rd_rm),
cCL(fixdm, e100150, 2, (RR, RF), rd_rm),
cCL(fixdz, e100170, 2, (RR, RF), rd_rm),
cCL(fixep, e100130, 2, (RR, RF), rd_rm),
cCL(fixem, e100150, 2, (RR, RF), rd_rm),
cCL(fixez, e100170, 2, (RR, RF), rd_rm),
/* Instructions that were new with the real FPA, call them V2. */
#undef ARM_VARIANT
#define ARM_VARIANT &fpu_fpa_ext_v2
cCE(lfm, c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
cCL(lfmfd, c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
cCL(lfmea, d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
cCE(sfm, c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
cCL(sfmfd, d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
cCL(sfmea, c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
#undef ARM_VARIANT
#define ARM_VARIANT &fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
/* Moves and type conversions. */
cCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
cCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
cCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
cCE(fmstat, ef1fa10, 0, (), noargs),
cCE(fsitos, eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
cCE(fuitos, eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
cCE(ftosis, ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
cCE(ftosizs, ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
cCE(ftouis, ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
cCE(ftouizs, ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
cCE(fmrx, ef00a10, 2, (RR, RVC), rd_rn),
cCE(fmxr, ee00a10, 2, (RVC, RR), rn_rd),
/* Memory operations. */
cCE(flds, d100a00, 2, (RVS, ADDR), vfp_sp_ldst),
cCE(fsts, d000a00, 2, (RVS, ADDR), vfp_sp_ldst),
cCE(fldmias, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
cCE(fldmfds, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
cCE(fldmdbs, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
cCE(fldmeas, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
cCE(fldmiax, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
cCE(fldmfdx, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
cCE(fldmdbx, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
cCE(fldmeax, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
cCE(fstmias, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
cCE(fstmeas, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
cCE(fstmdbs, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
cCE(fstmfds, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
cCE(fstmiax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
cCE(fstmeax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
cCE(fstmdbx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
cCE(fstmfdx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
/* Monadic operations. */
cCE(fabss, eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
cCE(fnegs, eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
cCE(fsqrts, eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
/* Dyadic operations. */
cCE(fadds, e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
cCE(fsubs, e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
cCE(fmuls, e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
cCE(fdivs, e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
cCE(fmacs, e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
cCE(fmscs, e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
cCE(fnmuls, e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
cCE(fnmacs, e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
cCE(fnmscs, e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
/* Comparisons. */
cCE(fcmps, eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
cCE(fcmpzs, eb50a40, 1, (RVS), vfp_sp_compare_z),
cCE(fcmpes, eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
cCE(fcmpezs, eb50ac0, 1, (RVS), vfp_sp_compare_z),
#undef ARM_VARIANT
#define ARM_VARIANT &fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
/* Moves and type conversions. */
cCE(fcpyd, eb00b40, 2, (RVD, RVD), rd_rm),
cCE(fcvtds, eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
cCE(fcvtsd, eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
cCE(fmdhr, e200b10, 2, (RVD, RR), rn_rd),
cCE(fmdlr, e000b10, 2, (RVD, RR), rn_rd),
cCE(fmrdh, e300b10, 2, (RR, RVD), rd_rn),
cCE(fmrdl, e100b10, 2, (RR, RVD), rd_rn),
cCE(fsitod, eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
cCE(fuitod, eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
cCE(ftosid, ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
cCE(ftosizd, ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
cCE(ftouid, ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
cCE(ftouizd, ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
/* Memory operations. */
cCE(fldd, d100b00, 2, (RVD, ADDR), vfp_dp_ldst),
cCE(fstd, d000b00, 2, (RVD, ADDR), vfp_dp_ldst),
cCE(fldmiad, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
cCE(fldmfdd, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
cCE(fldmdbd, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
cCE(fldmead, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
cCE(fstmiad, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
cCE(fstmead, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
cCE(fstmdbd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
cCE(fstmfdd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
/* Monadic operations. */
cCE(fabsd, eb00bc0, 2, (RVD, RVD), rd_rm),
cCE(fnegd, eb10b40, 2, (RVD, RVD), rd_rm),
cCE(fsqrtd, eb10bc0, 2, (RVD, RVD), rd_rm),
/* Dyadic operations. */
cCE(faddd, e300b00, 3, (RVD, RVD, RVD), rd_rn_rm),
cCE(fsubd, e300b40, 3, (RVD, RVD, RVD), rd_rn_rm),
cCE(fmuld, e200b00, 3, (RVD, RVD, RVD), rd_rn_rm),
cCE(fdivd, e800b00, 3, (RVD, RVD, RVD), rd_rn_rm),
cCE(fmacd, e000b00, 3, (RVD, RVD, RVD), rd_rn_rm),
cCE(fmscd, e100b00, 3, (RVD, RVD, RVD), rd_rn_rm),
cCE(fnmuld, e200b40, 3, (RVD, RVD, RVD), rd_rn_rm),
cCE(fnmacd, e000b40, 3, (RVD, RVD, RVD), rd_rn_rm),
cCE(fnmscd, e100b40, 3, (RVD, RVD, RVD), rd_rn_rm),
/* Comparisons. */
cCE(fcmpd, eb40b40, 2, (RVD, RVD), rd_rm),
cCE(fcmpzd, eb50b40, 1, (RVD), rd),
cCE(fcmped, eb40bc0, 2, (RVD, RVD), rd_rm),
cCE(fcmpezd, eb50bc0, 1, (RVD), rd),
#undef ARM_VARIANT
#define ARM_VARIANT &fpu_vfp_ext_v2
cCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
cCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
cCE(fmdrr, c400b10, 3, (RVD, RR, RR), rm_rd_rn),
cCE(fmrrd, c500b10, 3, (RR, RR, RVD), rd_rn_rm),
#undef ARM_VARIANT
#define ARM_VARIANT &arm_cext_xscale /* Intel XScale extensions. */
cCE(mia, e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
cCE(miaph, e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
cCE(miabb, e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
cCE(miabt, e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
cCE(miatb, e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
cCE(miatt, e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
cCE(mar, c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
cCE(mra, c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
#undef ARM_VARIANT
#define ARM_VARIANT &arm_cext_iwmmxt /* Intel Wireless MMX technology. */
cCE(tandcb, e13f130, 1, (RR), iwmmxt_tandorc),
cCE(tandch, e53f130, 1, (RR), iwmmxt_tandorc),
cCE(tandcw, e93f130, 1, (RR), iwmmxt_tandorc),
cCE(tbcstb, e400010, 2, (RIWR, RR), rn_rd),
cCE(tbcsth, e400050, 2, (RIWR, RR), rn_rd),
cCE(tbcstw, e400090, 2, (RIWR, RR), rn_rd),
cCE(textrcb, e130170, 2, (RR, I7), iwmmxt_textrc),
cCE(textrch, e530170, 2, (RR, I7), iwmmxt_textrc),
cCE(textrcw, e930170, 2, (RR, I7), iwmmxt_textrc),
cCE(textrmub, e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
cCE(textrmuh, e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
cCE(textrmuw, e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
cCE(textrmsb, e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
cCE(textrmsh, e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
cCE(textrmsw, e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
cCE(tinsrb, e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
cCE(tinsrh, e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
cCE(tinsrw, e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
cCE(tmcr, e000110, 2, (RIWC, RR), rn_rd),
cCE(tmcrr, c400000, 3, (RIWR, RR, RR), rm_rd_rn),
cCE(tmia, e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
cCE(tmiaph, e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
cCE(tmiabb, e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
cCE(tmiabt, e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
cCE(tmiatb, e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
cCE(tmiatt, e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
cCE(tmovmskb, e100030, 2, (RR, RIWR), rd_rn),
cCE(tmovmskh, e500030, 2, (RR, RIWR), rd_rn),
cCE(tmovmskw, e900030, 2, (RR, RIWR), rd_rn),
cCE(tmrc, e100110, 2, (RR, RIWC), rd_rn),
cCE(tmrrc, c500000, 3, (RR, RR, RIWR), rd_rn_rm),
cCE(torcb, e13f150, 1, (RR), iwmmxt_tandorc),
cCE(torch, e53f150, 1, (RR), iwmmxt_tandorc),
cCE(torcw, e93f150, 1, (RR), iwmmxt_tandorc),
cCE(waccb, e0001c0, 2, (RIWR, RIWR), rd_rn),
cCE(wacch, e4001c0, 2, (RIWR, RIWR), rd_rn),
cCE(waccw, e8001c0, 2, (RIWR, RIWR), rd_rn),
cCE(waddbss, e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(waddb, e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(waddbus, e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(waddhss, e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(waddh, e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(waddhus, e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(waddwss, eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(waddw, e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(waddwus, e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(waligni, e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
cCE(walignr0, e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(walignr1, e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(walignr2, ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(walignr3, eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wand, e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wandn, e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wavg2b, e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wavg2br, e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wavg2h, ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wavg2hr, ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wcmpeqb, e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wcmpeqh, e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wcmpeqw, e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wcmpgtub, e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wcmpgtuh, e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wcmpgtuw, e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wcmpgtsb, e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wcmpgtsh, e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wcmpgtsw, eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wldrb, c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
cCE(wldrh, c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
cCE(wldrw, c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
cCE(wldrd, c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
cCE(wmacs, e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wmacsz, e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wmacu, e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wmacuz, e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wmadds, ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wmaddu, e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wmaxsb, e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wmaxsh, e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wmaxsw, ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wmaxub, e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wmaxuh, e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wmaxuw, e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wminsb, e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wminsh, e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wminsw, eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wminub, e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wminuh, e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wminuw, e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wmov, e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
cCE(wmulsm, e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wmulsl, e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wmulum, e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wmulul, e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wor, e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wpackhss, e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wpackhus, e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wpackwss, eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wpackwus, e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wpackdss, ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wpackdus, ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wrorh, e700040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wrorhg, e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
cCE(wrorw, eb00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wrorwg, eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
cCE(wrord, ef00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wrordg, ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
cCE(wsadb, e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wsadbz, e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wsadh, e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wsadhz, e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wshufh, e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
cCE(wsllh, e500040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wsllhg, e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
cCE(wsllw, e900040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wsllwg, e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
cCE(wslld, ed00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wslldg, ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
cCE(wsrah, e400040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wsrahg, e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
cCE(wsraw, e800040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wsrawg, e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
cCE(wsrad, ec00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wsradg, ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
cCE(wsrlh, e600040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wsrlhg, e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
cCE(wsrlw, ea00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wsrlwg, ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
cCE(wsrld, ee00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wsrldg, ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
cCE(wstrb, c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
cCE(wstrh, c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
cCE(wstrw, c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
cCE(wstrd, c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
cCE(wsubbss, e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wsubb, e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wsubbus, e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wsubhss, e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wsubh, e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wsubhus, e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wsubwss, eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wsubw, e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wsubwus, e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wunpckehub,e0000c0, 2, (RIWR, RIWR), rd_rn),
cCE(wunpckehuh,e4000c0, 2, (RIWR, RIWR), rd_rn),
cCE(wunpckehuw,e8000c0, 2, (RIWR, RIWR), rd_rn),
cCE(wunpckehsb,e2000c0, 2, (RIWR, RIWR), rd_rn),
cCE(wunpckehsh,e6000c0, 2, (RIWR, RIWR), rd_rn),
cCE(wunpckehsw,ea000c0, 2, (RIWR, RIWR), rd_rn),
cCE(wunpckihb, e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wunpckihh, e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wunpckihw, e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wunpckelub,e0000e0, 2, (RIWR, RIWR), rd_rn),
cCE(wunpckeluh,e4000e0, 2, (RIWR, RIWR), rd_rn),
cCE(wunpckeluw,e8000e0, 2, (RIWR, RIWR), rd_rn),
cCE(wunpckelsb,e2000e0, 2, (RIWR, RIWR), rd_rn),
cCE(wunpckelsh,e6000e0, 2, (RIWR, RIWR), rd_rn),
cCE(wunpckelsw,ea000e0, 2, (RIWR, RIWR), rd_rn),
cCE(wunpckilb, e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wunpckilh, e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wunpckilw, e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wxor, e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
cCE(wzero, e300000, 1, (RIWR), iwmmxt_wzero),
#undef ARM_VARIANT
#define ARM_VARIANT &arm_cext_maverick /* Cirrus Maverick instructions. */
cCE(cfldrs, c100400, 2, (RMF, ADDR), rd_cpaddr),
cCE(cfldrd, c500400, 2, (RMD, ADDR), rd_cpaddr),
cCE(cfldr32, c100500, 2, (RMFX, ADDR), rd_cpaddr),
cCE(cfldr64, c500500, 2, (RMDX, ADDR), rd_cpaddr),
cCE(cfstrs, c000400, 2, (RMF, ADDR), rd_cpaddr),
cCE(cfstrd, c400400, 2, (RMD, ADDR), rd_cpaddr),
cCE(cfstr32, c000500, 2, (RMFX, ADDR), rd_cpaddr),
cCE(cfstr64, c400500, 2, (RMDX, ADDR), rd_cpaddr),
cCE(cfmvsr, e000450, 2, (RMF, RR), rn_rd),
cCE(cfmvrs, e100450, 2, (RR, RMF), rd_rn),
cCE(cfmvdlr, e000410, 2, (RMD, RR), rn_rd),
cCE(cfmvrdl, e100410, 2, (RR, RMD), rd_rn),
cCE(cfmvdhr, e000430, 2, (RMD, RR), rn_rd),
cCE(cfmvrdh, e100430, 2, (RR, RMD), rd_rn),
cCE(cfmv64lr, e000510, 2, (RMDX, RR), rn_rd),
cCE(cfmvr64l, e100510, 2, (RR, RMDX), rd_rn),
cCE(cfmv64hr, e000530, 2, (RMDX, RR), rn_rd),
cCE(cfmvr64h, e100530, 2, (RR, RMDX), rd_rn),
cCE(cfmval32, e200440, 2, (RMAX, RMFX), rd_rn),
cCE(cfmv32al, e100440, 2, (RMFX, RMAX), rd_rn),
cCE(cfmvam32, e200460, 2, (RMAX, RMFX), rd_rn),
cCE(cfmv32am, e100460, 2, (RMFX, RMAX), rd_rn),
cCE(cfmvah32, e200480, 2, (RMAX, RMFX), rd_rn),
cCE(cfmv32ah, e100480, 2, (RMFX, RMAX), rd_rn),
cCE(cfmva32, e2004a0, 2, (RMAX, RMFX), rd_rn),
cCE(cfmv32a, e1004a0, 2, (RMFX, RMAX), rd_rn),
cCE(cfmva64, e2004c0, 2, (RMAX, RMDX), rd_rn),
cCE(cfmv64a, e1004c0, 2, (RMDX, RMAX), rd_rn),
cCE(cfmvsc32, e2004e0, 2, (RMDS, RMDX), mav_dspsc),
cCE(cfmv32sc, e1004e0, 2, (RMDX, RMDS), rd),
cCE(cfcpys, e000400, 2, (RMF, RMF), rd_rn),
cCE(cfcpyd, e000420, 2, (RMD, RMD), rd_rn),
cCE(cfcvtsd, e000460, 2, (RMD, RMF), rd_rn),
cCE(cfcvtds, e000440, 2, (RMF, RMD), rd_rn),
cCE(cfcvt32s, e000480, 2, (RMF, RMFX), rd_rn),
cCE(cfcvt32d, e0004a0, 2, (RMD, RMFX), rd_rn),
cCE(cfcvt64s, e0004c0, 2, (RMF, RMDX), rd_rn),
cCE(cfcvt64d, e0004e0, 2, (RMD, RMDX), rd_rn),
cCE(cfcvts32, e100580, 2, (RMFX, RMF), rd_rn),
cCE(cfcvtd32, e1005a0, 2, (RMFX, RMD), rd_rn),
cCE(cftruncs32,e1005c0, 2, (RMFX, RMF), rd_rn),
cCE(cftruncd32,e1005e0, 2, (RMFX, RMD), rd_rn),
cCE(cfrshl32, e000550, 3, (RMFX, RMFX, RR), mav_triple),
cCE(cfrshl64, e000570, 3, (RMDX, RMDX, RR), mav_triple),
cCE(cfsh32, e000500, 3, (RMFX, RMFX, I63s), mav_shift),
cCE(cfsh64, e200500, 3, (RMDX, RMDX, I63s), mav_shift),
cCE(cfcmps, e100490, 3, (RR, RMF, RMF), rd_rn_rm),
cCE(cfcmpd, e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
cCE(cfcmp32, e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
cCE(cfcmp64, e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
cCE(cfabss, e300400, 2, (RMF, RMF), rd_rn),
cCE(cfabsd, e300420, 2, (RMD, RMD), rd_rn),
cCE(cfnegs, e300440, 2, (RMF, RMF), rd_rn),
cCE(cfnegd, e300460, 2, (RMD, RMD), rd_rn),
cCE(cfadds, e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
cCE(cfaddd, e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
cCE(cfsubs, e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
cCE(cfsubd, e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
cCE(cfmuls, e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
cCE(cfmuld, e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
cCE(cfabs32, e300500, 2, (RMFX, RMFX), rd_rn),
cCE(cfabs64, e300520, 2, (RMDX, RMDX), rd_rn),
cCE(cfneg32, e300540, 2, (RMFX, RMFX), rd_rn),
cCE(cfneg64, e300560, 2, (RMDX, RMDX), rd_rn),
cCE(cfadd32, e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
cCE(cfadd64, e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
cCE(cfsub32, e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
cCE(cfsub64, e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
cCE(cfmul32, e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
cCE(cfmul64, e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
cCE(cfmac32, e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
cCE(cfmsc32, e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
cCE(cfmadd32, e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
cCE(cfmsub32, e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
cCE(cfmadda32, e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
cCE(cfmsuba32, e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
};
#undef ARM_VARIANT
#undef THUMB_VARIANT
#undef TCE
#undef TCM
#undef TUE
#undef TUF
#undef TCC
#undef cCE
#undef cCL
#undef C3E
#undef CE
#undef CM
#undef UE
#undef UF
#undef UT
#undef OPS0
#undef OPS1
#undef OPS2
#undef OPS3
#undef OPS4
#undef OPS5
#undef OPS6
#undef do_0
/* MD interface: bits in the object file. */
/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
for use in the a.out file, and stores them in the array pointed to by buf.
This knows about the endian-ness of the target machine and does
THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
2 (short) and 4 (long) Floating numbers are put out as a series of
LITTLENUMS (shorts, here at least). */
void
md_number_to_chars (char * buf, valueT val, int n)
{
if (target_big_endian)
number_to_chars_bigendian (buf, val, n);
else
number_to_chars_littleendian (buf, val, n);
}
static valueT
md_chars_to_number (char * buf, int n)
{
valueT result = 0;
unsigned char * where = (unsigned char *) buf;
if (target_big_endian)
{
while (n--)
{
result <<= 8;
result |= (*where++ & 255);
}
}
else
{
while (n--)
{
result <<= 8;
result |= (where[n] & 255);
}
}
return result;
}
/* MD interface: Sections. */
/* Estimate the size of a frag before relaxing. Assume everything fits in
2 bytes. */
int
md_estimate_size_before_relax (fragS * fragp,
segT segtype ATTRIBUTE_UNUSED)
{
fragp->fr_var = 2;
return 2;
}
/* Convert a machine dependent frag. */
void
md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
{
unsigned long insn;
unsigned long old_op;
char *buf;
expressionS exp;
fixS *fixp;
int reloc_type;
int pc_rel;
int opcode;
buf = fragp->fr_literal + fragp->fr_fix;
old_op = bfd_get_16(abfd, buf);
if (fragp->fr_symbol) {
exp.X_op = O_symbol;
exp.X_add_symbol = fragp->fr_symbol;
} else {
exp.X_op = O_constant;
}
exp.X_add_number = fragp->fr_offset;
opcode = fragp->fr_subtype;
switch (opcode)
{
case T_MNEM_ldr_pc:
case T_MNEM_ldr_pc2:
case T_MNEM_ldr_sp:
case T_MNEM_str_sp:
case T_MNEM_ldr:
case T_MNEM_ldrb:
case T_MNEM_ldrh:
case T_MNEM_str:
case T_MNEM_strb:
case T_MNEM_strh:
if (fragp->fr_var == 4)
{
insn = THUMB_OP32(opcode);
if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
{
insn |= (old_op & 0x700) << 4;
}
else
{
insn |= (old_op & 7) << 12;
insn |= (old_op & 0x38) << 13;
}
insn |= 0x00000c00;
put_thumb32_insn (buf, insn);
reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
}
else
{
reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
}
pc_rel = (opcode == T_MNEM_ldr_pc2);
break;
case T_MNEM_adr:
if (fragp->fr_var == 4)
{
insn = THUMB_OP32 (opcode);
insn |= (old_op & 0xf0) << 4;
put_thumb32_insn (buf, insn);
reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
}
else
{
reloc_type = BFD_RELOC_ARM_THUMB_ADD;
exp.X_add_number -= 4;
}
pc_rel = 1;
break;
case T_MNEM_mov:
case T_MNEM_movs:
case T_MNEM_cmp:
case T_MNEM_cmn:
if (fragp->fr_var == 4)
{
int r0off = (opcode == T_MNEM_mov
|| opcode == T_MNEM_movs) ? 0 : 8;
insn = THUMB_OP32 (opcode);
insn = (insn & 0xe1ffffff) | 0x10000000;
insn |= (old_op & 0x700) << r0off;
put_thumb32_insn (buf, insn);
reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
}
else
{
reloc_type = BFD_RELOC_ARM_THUMB_IMM;
}
pc_rel = 0;
break;
case T_MNEM_b:
if (fragp->fr_var == 4)
{
insn = THUMB_OP32(opcode);
put_thumb32_insn (buf, insn);
reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
}
else
reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
pc_rel = 1;
break;
case T_MNEM_bcond:
if (fragp->fr_var == 4)
{
insn = THUMB_OP32(opcode);
insn |= (old_op & 0xf00) << 14;
put_thumb32_insn (buf, insn);
reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
}
else
reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
pc_rel = 1;
break;
case T_MNEM_add_sp:
case T_MNEM_add_pc:
case T_MNEM_inc_sp:
case T_MNEM_dec_sp:
if (fragp->fr_var == 4)
{
/* ??? Choose between add and addw. */
insn = THUMB_OP32 (opcode);
insn |= (old_op & 0xf0) << 4;
put_thumb32_insn (buf, insn);
reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
}
else
reloc_type = BFD_RELOC_ARM_THUMB_ADD;
pc_rel = 0;
break;
case T_MNEM_addi:
case T_MNEM_addis:
case T_MNEM_subi:
case T_MNEM_subis:
if (fragp->fr_var == 4)
{
insn = THUMB_OP32 (opcode);
insn |= (old_op & 0xf0) << 4;
insn |= (old_op & 0xf) << 16;
put_thumb32_insn (buf, insn);
reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
}
else
reloc_type = BFD_RELOC_ARM_THUMB_ADD;
pc_rel = 0;
break;
default:
abort();
}
fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
reloc_type);
fixp->fx_file = fragp->fr_file;
fixp->fx_line = fragp->fr_line;
fragp->fr_fix += fragp->fr_var;
}
/* Return the size of a relaxable immediate operand instruction.
SHIFT and SIZE specify the form of the allowable immediate. */
static int
relax_immediate (fragS *fragp, int size, int shift)
{
offsetT offset;
offsetT mask;
offsetT low;
/* ??? Should be able to do better than this. */
if (fragp->fr_symbol)
return 4;
low = (1 << shift) - 1;
mask = (1 << (shift + size)) - (1 << shift);
offset = fragp->fr_offset;
/* Force misaligned offsets to 32-bit variant. */
if (offset & low)
return -4;
if (offset & ~mask)
return 4;
return 2;
}
/* Return the size of a relaxable adr pseudo-instruction or PC-relative
load. */
static int
relax_adr (fragS *fragp, asection *sec)
{
addressT addr;
offsetT val;
/* Assume worst case for symbols not known to be in the same section. */
if (!S_IS_DEFINED(fragp->fr_symbol)
|| sec != S_GET_SEGMENT (fragp->fr_symbol))
return 4;
val = S_GET_VALUE(fragp->fr_symbol) + fragp->fr_offset;
addr = fragp->fr_address + fragp->fr_fix;
addr = (addr + 4) & ~3;
/* Fix the insn as the 4-byte version if the target address is not
sufficiently aligned. This is prevents an infinite loop when two
instructions have contradictory range/alignment requirements. */
if (val & 3)
return -4;
val -= addr;
if (val < 0 || val > 1020)
return 4;
return 2;
}
/* Return the size of a relaxable add/sub immediate instruction. */
static int
relax_addsub (fragS *fragp, asection *sec)
{
char *buf;
int op;
buf = fragp->fr_literal + fragp->fr_fix;
op = bfd_get_16(sec->owner, buf);
if ((op & 0xf) == ((op >> 4) & 0xf))
return relax_immediate (fragp, 8, 0);
else
return relax_immediate (fragp, 3, 0);
}
/* Return the size of a relaxable branch instruction. BITS is the
size of the offset field in the narrow instruction. */
static int
relax_branch (fragS *fragp, asection *sec, int bits)
{
addressT addr;
offsetT val;
offsetT limit;
/* Assume worst case for symbols not known to be in the same section. */
if (!S_IS_DEFINED(fragp->fr_symbol)
|| sec != S_GET_SEGMENT (fragp->fr_symbol))
return 4;
val = S_GET_VALUE(fragp->fr_symbol) + fragp->fr_offset;
addr = fragp->fr_address + fragp->fr_fix + 4;
val -= addr;
/* Offset is a signed value *2 */
limit = 1 << bits;
if (val >= limit || val < -limit)
return 4;
return 2;
}
/* Relax a machine dependent frag. This returns the amount by which
the current size of the frag should change. */
int
arm_relax_frag (asection *sec, fragS *fragp, long stretch ATTRIBUTE_UNUSED)
{
int oldsize;
int newsize;
oldsize = fragp->fr_var;
switch (fragp->fr_subtype)
{
case T_MNEM_ldr_pc2:
newsize = relax_adr(fragp, sec);
break;
case T_MNEM_ldr_pc:
case T_MNEM_ldr_sp:
case T_MNEM_str_sp:
newsize = relax_immediate(fragp, 8, 2);
break;
case T_MNEM_ldr:
case T_MNEM_str:
newsize = relax_immediate(fragp, 5, 2);
break;
case T_MNEM_ldrh:
case T_MNEM_strh:
newsize = relax_immediate(fragp, 5, 1);
break;
case T_MNEM_ldrb:
case T_MNEM_strb:
newsize = relax_immediate(fragp, 5, 0);
break;
case T_MNEM_adr:
newsize = relax_adr(fragp, sec);
break;
case T_MNEM_mov:
case T_MNEM_movs:
case T_MNEM_cmp:
case T_MNEM_cmn:
newsize = relax_immediate(fragp, 8, 0);
break;
case T_MNEM_b:
newsize = relax_branch(fragp, sec, 11);
break;
case T_MNEM_bcond:
newsize = relax_branch(fragp, sec, 8);
break;
case T_MNEM_add_sp:
case T_MNEM_add_pc:
newsize = relax_immediate (fragp, 8, 2);
break;
case T_MNEM_inc_sp:
case T_MNEM_dec_sp:
newsize = relax_immediate (fragp, 7, 2);
break;
case T_MNEM_addi:
case T_MNEM_addis:
case T_MNEM_subi:
case T_MNEM_subis:
newsize = relax_addsub (fragp, sec);
break;
default:
abort();
}
if (newsize < 0)
{
fragp->fr_var = -newsize;
md_convert_frag (sec->owner, sec, fragp);
frag_wane(fragp);
return -(newsize + oldsize);
}
fragp->fr_var = newsize;
return newsize - oldsize;
}
/* Round up a section size to the appropriate boundary. */
valueT
md_section_align (segT segment ATTRIBUTE_UNUSED,
valueT size)
{
#ifdef OBJ_ELF
return size;
#else
/* Round all sects to multiple of 4. */
return (size + 3) & ~3;
#endif
}
/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
of an rs_align_code fragment. */
void
arm_handle_align (fragS * fragP)
{
static char const arm_noop[4] = { 0x00, 0x00, 0xa0, 0xe1 };
static char const thumb_noop[2] = { 0xc0, 0x46 };
static char const arm_bigend_noop[4] = { 0xe1, 0xa0, 0x00, 0x00 };
static char const thumb_bigend_noop[2] = { 0x46, 0xc0 };
int bytes, fix, noop_size;
char * p;
const char * noop;
if (fragP->fr_type != rs_align_code)
return;
bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
p = fragP->fr_literal + fragP->fr_fix;
fix = 0;
if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
if (fragP->tc_frag_data)
{
if (target_big_endian)
noop = thumb_bigend_noop;
else
noop = thumb_noop;
noop_size = sizeof (thumb_noop);
}
else
{
if (target_big_endian)
noop = arm_bigend_noop;
else
noop = arm_noop;
noop_size = sizeof (arm_noop);
}
if (bytes & (noop_size - 1))
{
fix = bytes & (noop_size - 1);
memset (p, 0, fix);
p += fix;
bytes -= fix;
}
while (bytes >= noop_size)
{
memcpy (p, noop, noop_size);
p += noop_size;
bytes -= noop_size;
fix += noop_size;
}
fragP->fr_fix += fix;
fragP->fr_var = noop_size;
}
/* Called from md_do_align. Used to create an alignment
frag in a code section. */
void
arm_frag_align_code (int n, int max)
{
char * p;
/* We assume that there will never be a requirement
to support alignments greater than 32 bytes. */
if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
as_fatal (_("alignments greater than 32 bytes not supported in .text sections."));
p = frag_var (rs_align_code,
MAX_MEM_FOR_RS_ALIGN_CODE,
1,
(relax_substateT) max,
(symbolS *) NULL,
(offsetT) n,
(char *) NULL);
*p = 0;
}
/* Perform target specific initialisation of a frag. */
void
arm_init_frag (fragS * fragP)
{
/* Record whether this frag is in an ARM or a THUMB area. */
fragP->tc_frag_data = thumb_mode;
}
#ifdef OBJ_ELF
/* When we change sections we need to issue a new mapping symbol. */
void
arm_elf_change_section (void)
{
flagword flags;
segment_info_type *seginfo;
/* Link an unlinked unwind index table section to the .text section. */
if (elf_section_type (now_seg) == SHT_ARM_EXIDX
&& elf_linked_to_section (now_seg) == NULL)
elf_linked_to_section (now_seg) = text_section;
if (!SEG_NORMAL (now_seg))
return;
flags = bfd_get_section_flags (stdoutput, now_seg);
/* We can ignore sections that only contain debug info. */
if ((flags & SEC_ALLOC) == 0)
return;
seginfo = seg_info (now_seg);
mapstate = seginfo->tc_segment_info_data.mapstate;
marked_pr_dependency = seginfo->tc_segment_info_data.marked_pr_dependency;
}
int
arm_elf_section_type (const char * str, size_t len)
{
if (len == 5 && strncmp (str, "exidx", 5) == 0)
return SHT_ARM_EXIDX;
return -1;
}
/* Code to deal with unwinding tables. */
static void add_unwind_adjustsp (offsetT);
/* Cenerate and deferred unwind frame offset. */
static void
flush_pending_unwind (void)
{
offsetT offset;
offset = unwind.pending_offset;
unwind.pending_offset = 0;
if (offset != 0)
add_unwind_adjustsp (offset);
}
/* Add an opcode to this list for this function. Two-byte opcodes should
be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
order. */
static void
add_unwind_opcode (valueT op, int length)
{
/* Add any deferred stack adjustment. */
if (unwind.pending_offset)
flush_pending_unwind ();
unwind.sp_restored = 0;
if (unwind.opcode_count + length > unwind.opcode_alloc)
{
unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
if (unwind.opcodes)
unwind.opcodes = xrealloc (unwind.opcodes,
unwind.opcode_alloc);
else
unwind.opcodes = xmalloc (unwind.opcode_alloc);
}
while (length > 0)
{
length--;
unwind.opcodes[unwind.opcode_count] = op & 0xff;
op >>= 8;
unwind.opcode_count++;
}
}
/* Add unwind opcodes to adjust the stack pointer. */
static void
add_unwind_adjustsp (offsetT offset)
{
valueT op;
if (offset > 0x200)
{
/* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
char bytes[5];
int n;
valueT o;
/* Long form: 0xb2, uleb128. */
/* This might not fit in a word so add the individual bytes,
remembering the list is built in reverse order. */
o = (valueT) ((offset - 0x204) >> 2);
if (o == 0)
add_unwind_opcode (0, 1);
/* Calculate the uleb128 encoding of the offset. */
n = 0;
while (o)
{
bytes[n] = o & 0x7f;
o >>= 7;
if (o)
bytes[n] |= 0x80;
n++;
}
/* Add the insn. */
for (; n; n--)
add_unwind_opcode (bytes[n - 1], 1);
add_unwind_opcode (0xb2, 1);
}
else if (offset > 0x100)
{
/* Two short opcodes. */
add_unwind_opcode (0x3f, 1);
op = (offset - 0x104) >> 2;
add_unwind_opcode (op, 1);
}
else if (offset > 0)
{
/* Short opcode. */
op = (offset - 4) >> 2;
add_unwind_opcode (op, 1);
}
else if (offset < 0)
{
offset = -offset;
while (offset > 0x100)
{
add_unwind_opcode (0x7f, 1);
offset -= 0x100;
}
op = ((offset - 4) >> 2) | 0x40;
add_unwind_opcode (op, 1);
}
}
/* Finish the list of unwind opcodes for this function. */
static void
finish_unwind_opcodes (void)
{
valueT op;
if (unwind.fp_used)
{
/* Adjust sp as neccessary. */
unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
flush_pending_unwind ();
/* After restoring sp from the frame pointer. */
op = 0x90 | unwind.fp_reg;
add_unwind_opcode (op, 1);
}
else
flush_pending_unwind ();
}
/* Start an exception table entry. If idx is nonzero this is an index table
entry. */
static void
start_unwind_section (const segT text_seg, int idx)
{
const char * text_name;
const char * prefix;
const char * prefix_once;
const char * group_name;
size_t prefix_len;
size_t text_len;
char * sec_name;
size_t sec_name_len;
int type;
int flags;
int linkonce;
if (idx)
{
prefix = ELF_STRING_ARM_unwind;
prefix_once = ELF_STRING_ARM_unwind_once;
type = SHT_ARM_EXIDX;
}
else
{
prefix = ELF_STRING_ARM_unwind_info;
prefix_once = ELF_STRING_ARM_unwind_info_once;
type = SHT_PROGBITS;
}
text_name = segment_name (text_seg);
if (streq (text_name, ".text"))
text_name = "";
if (strncmp (text_name, ".gnu.linkonce.t.",
strlen (".gnu.linkonce.t.")) == 0)
{
prefix = prefix_once;
text_name += strlen (".gnu.linkonce.t.");
}
prefix_len = strlen (prefix);
text_len = strlen (text_name);
sec_name_len = prefix_len + text_len;
sec_name = xmalloc (sec_name_len + 1);
memcpy (sec_name, prefix, prefix_len);
memcpy (sec_name + prefix_len, text_name, text_len);
sec_name[prefix_len + text_len] = '\0';
flags = SHF_ALLOC;
linkonce = 0;
group_name = 0;
/* Handle COMDAT group. */
if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
{
group_name = elf_group_name (text_seg);
if (group_name == NULL)
{
as_bad ("Group section `%s' has no group signature",
segment_name (text_seg));
ignore_rest_of_line ();
return;
}
flags |= SHF_GROUP;
linkonce = 1;
}
obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
/* Set the setion link for index tables. */
if (idx)
elf_linked_to_section (now_seg) = text_seg;
}
/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
personality routine data. Returns zero, or the index table value for
and inline entry. */
static valueT
create_unwind_entry (int have_data)
{
int size;
addressT where;
char *ptr;
/* The current word of data. */
valueT data;
/* The number of bytes left in this word. */
int n;
finish_unwind_opcodes ();
/* Remember the current text section. */
unwind.saved_seg = now_seg;
unwind.saved_subseg = now_subseg;
start_unwind_section (now_seg, 0);
if (unwind.personality_routine == NULL)
{
if (unwind.personality_index == -2)
{
if (have_data)
as_bad (_("handerdata in cantunwind frame"));
return 1; /* EXIDX_CANTUNWIND. */
}
/* Use a default personality routine if none is specified. */
if (unwind.personality_index == -1)
{
if (unwind.opcode_count > 3)
unwind.personality_index = 1;
else
unwind.personality_index = 0;
}
/* Space for the personality routine entry. */
if (unwind.personality_index == 0)
{
if (unwind.opcode_count > 3)
as_bad (_("too many unwind opcodes for personality routine 0"));
if (!have_data)
{
/* All the data is inline in the index table. */
data = 0x80;
n = 3;
while (unwind.opcode_count > 0)
{
unwind.opcode_count--;
data = (data << 8) | unwind.opcodes[unwind.opcode_count];
n--;
}
/* Pad with "finish" opcodes. */
while (n--)
data = (data << 8) | 0xb0;
return data;
}
size = 0;
}
else
/* We get two opcodes "free" in the first word. */
size = unwind.opcode_count - 2;
}
else
/* An extra byte is required for the opcode count. */
size = unwind.opcode_count + 1;
size = (size + 3) >> 2;
if (size > 0xff)
as_bad (_("too many unwind opcodes"));
frag_align (2, 0, 0);
record_alignment (now_seg, 2);
unwind.table_entry = expr_build_dot ();
/* Allocate the table entry. */
ptr = frag_more ((size << 2) + 4);
where = frag_now_fix () - ((size << 2) + 4);
switch (unwind.personality_index)
{
case -1:
/* ??? Should this be a PLT generating relocation? */
/* Custom personality routine. */
fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
BFD_RELOC_ARM_PREL31);
where += 4;
ptr += 4;
/* Set the first byte to the number of additional words. */
data = size - 1;
n = 3;
break;
/* ABI defined personality routines. */
case 0:
/* Three opcodes bytes are packed into the first word. */
data = 0x80;
n = 3;
break;
case 1:
case 2:
/* The size and first two opcode bytes go in the first word. */
data = ((0x80 + unwind.personality_index) << 8) | size;
n = 2;
break;
default:
/* Should never happen. */
abort ();
}
/* Pack the opcodes into words (MSB first), reversing the list at the same
time. */
while (unwind.opcode_count > 0)
{
if (n == 0)
{
md_number_to_chars (ptr, data, 4);
ptr += 4;
n = 4;
data = 0;
}
unwind.opcode_count--;
n--;
data = (data << 8) | unwind.opcodes[unwind.opcode_count];
}
/* Finish off the last word. */
if (n < 4)
{
/* Pad with "finish" opcodes. */
while (n--)
data = (data << 8) | 0xb0;
md_number_to_chars (ptr, data, 4);
}
if (!have_data)
{
/* Add an empty descriptor if there is no user-specified data. */
ptr = frag_more (4);
md_number_to_chars (ptr, 0, 4);
}
return 0;
}
/* Convert REGNAME to a DWARF-2 register number. */
int
tc_arm_regname_to_dw2regnum (const char *regname)
{
int reg = arm_reg_parse ((char **) &regname, REG_TYPE_RN);
if (reg == FAIL)
return -1;
return reg;
}
/* Initialize the DWARF-2 unwind information for this procedure. */
void
tc_arm_frame_initial_instructions (void)
{
cfi_add_CFA_def_cfa (REG_SP, 0);
}
#endif /* OBJ_ELF */
/* MD interface: Symbol and relocation handling. */
/* Return the address within the segment that a PC-relative fixup is
relative to. For ARM, PC-relative fixups applied to instructions
are generally relative to the location of the fixup plus 8 bytes.
Thumb branches are offset by 4, and Thumb loads relative to PC
require special handling. */
long
md_pcrel_from_section (fixS * fixP, segT seg)
{
offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
/* If this is pc-relative and we are going to emit a relocation
then we just want to put out any pipeline compensation that the linker
will need. Otherwise we want to use the calculated base. */
if (fixP->fx_pcrel
&& ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
|| arm_force_relocation (fixP)))
base = 0;
switch (fixP->fx_r_type)
{
/* PC relative addressing on the Thumb is slightly odd as the
bottom two bits of the PC are forced to zero for the
calculation. This happens *after* application of the
pipeline offset. However, Thumb adrl already adjusts for
this, so we need not do it again. */
case BFD_RELOC_ARM_THUMB_ADD:
return base & ~3;
case BFD_RELOC_ARM_THUMB_OFFSET:
case BFD_RELOC_ARM_T32_OFFSET_IMM:
case BFD_RELOC_ARM_T32_ADD_PC12:
case BFD_RELOC_ARM_T32_CP_OFF_IMM:
return (base + 4) & ~3;
/* Thumb branches are simply offset by +4. */
case BFD_RELOC_THUMB_PCREL_BRANCH7:
case BFD_RELOC_THUMB_PCREL_BRANCH9:
case BFD_RELOC_THUMB_PCREL_BRANCH12:
case BFD_RELOC_THUMB_PCREL_BRANCH20:
case BFD_RELOC_THUMB_PCREL_BRANCH23:
case BFD_RELOC_THUMB_PCREL_BRANCH25:
case BFD_RELOC_THUMB_PCREL_BLX:
return base + 4;
/* ARM mode branches are offset by +8. However, the Windows CE
loader expects the relocation not to take this into account. */
case BFD_RELOC_ARM_PCREL_BRANCH:
case BFD_RELOC_ARM_PCREL_CALL:
case BFD_RELOC_ARM_PCREL_JUMP:
case BFD_RELOC_ARM_PCREL_BLX:
case BFD_RELOC_ARM_PLT32:
#ifdef TE_WINCE
return base;
#else
return base + 8;
#endif
/* ARM mode loads relative to PC are also offset by +8. Unlike
branches, the Windows CE loader *does* expect the relocation
to take this into account. */
case BFD_RELOC_ARM_OFFSET_IMM:
case BFD_RELOC_ARM_OFFSET_IMM8:
case BFD_RELOC_ARM_HWLITERAL:
case BFD_RELOC_ARM_LITERAL:
case BFD_RELOC_ARM_CP_OFF_IMM:
return base + 8;
/* Other PC-relative relocations are un-offset. */
default:
return base;
}
}
/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
Otherwise we have no need to default values of symbols. */
symbolS *
md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
{
#ifdef OBJ_ELF
if (name[0] == '_' && name[1] == 'G'
&& streq (name, GLOBAL_OFFSET_TABLE_NAME))
{
if (!GOT_symbol)
{
if (symbol_find (name))
as_bad ("GOT already in the symbol table");
GOT_symbol = symbol_new (name, undefined_section,
(valueT) 0, & zero_address_frag);
}
return GOT_symbol;
}
#endif
return 0;
}
/* Subroutine of md_apply_fix. Check to see if an immediate can be
computed as two separate immediate values, added together. We
already know that this value cannot be computed by just one ARM
instruction. */
static unsigned int
validate_immediate_twopart (unsigned int val,
unsigned int * highpart)
{
unsigned int a;
unsigned int i;
for (i = 0; i < 32; i += 2)
if (((a = rotate_left (val, i)) & 0xff) != 0)
{
if (a & 0xff00)
{
if (a & ~ 0xffff)
continue;
* highpart = (a >> 8) | ((i + 24) << 7);
}
else if (a & 0xff0000)
{
if (a & 0xff000000)
continue;
* highpart = (a >> 16) | ((i + 16) << 7);
}
else
{
assert (a & 0xff000000);
* highpart = (a >> 24) | ((i + 8) << 7);
}
return (a & 0xff) | (i << 7);
}
return FAIL;
}
static int
validate_offset_imm (unsigned int val, int hwse)
{
if ((hwse && val > 255) || val > 4095)
return FAIL;
return val;
}
/* Subroutine of md_apply_fix. Do those data_ops which can take a
negative immediate constant by altering the instruction. A bit of
a hack really.
MOV <-> MVN
AND <-> BIC
ADC <-> SBC
by inverting the second operand, and
ADD <-> SUB
CMP <-> CMN
by negating the second operand. */
static int
negate_data_op (unsigned long * instruction,
unsigned long value)
{
int op, new_inst;
unsigned long negated, inverted;
negated = encode_arm_immediate (-value);
inverted = encode_arm_immediate (~value);
op = (*instruction >> DATA_OP_SHIFT) & 0xf;
switch (op)
{
/* First negates. */
case OPCODE_SUB: /* ADD <-> SUB */
new_inst = OPCODE_ADD;
value = negated;
break;
case OPCODE_ADD:
new_inst = OPCODE_SUB;
value = negated;
break;
case OPCODE_CMP: /* CMP <-> CMN */
new_inst = OPCODE_CMN;
value = negated;
break;
case OPCODE_CMN:
new_inst = OPCODE_CMP;
value = negated;
break;
/* Now Inverted ops. */
case OPCODE_MOV: /* MOV <-> MVN */
new_inst = OPCODE_MVN;
value = inverted;
break;
case OPCODE_MVN:
new_inst = OPCODE_MOV;
value = inverted;
break;
case OPCODE_AND: /* AND <-> BIC */
new_inst = OPCODE_BIC;
value = inverted;
break;
case OPCODE_BIC:
new_inst = OPCODE_AND;
value = inverted;
break;
case OPCODE_ADC: /* ADC <-> SBC */
new_inst = OPCODE_SBC;
value = inverted;
break;
case OPCODE_SBC:
new_inst = OPCODE_ADC;
value = inverted;
break;
/* We cannot do anything. */
default:
return FAIL;
}
if (value == (unsigned) FAIL)
return FAIL;
*instruction &= OPCODE_MASK;
*instruction |= new_inst << DATA_OP_SHIFT;
return value;
}
/* Like negate_data_op, but for Thumb-2. */
static unsigned int
thumb32_negate_data_op (offsetT *instruction, offsetT value)
{
int op, new_inst;
int rd;
offsetT negated, inverted;
negated = encode_thumb32_immediate (-value);
inverted = encode_thumb32_immediate (~value);
rd = (*instruction >> 8) & 0xf;
op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
switch (op)
{
/* ADD <-> SUB. Includes CMP <-> CMN. */
case T2_OPCODE_SUB:
new_inst = T2_OPCODE_ADD;
value = negated;
break;
case T2_OPCODE_ADD:
new_inst = T2_OPCODE_SUB;
value = negated;
break;
/* ORR <-> ORN. Includes MOV <-> MVN. */
case T2_OPCODE_ORR:
new_inst = T2_OPCODE_ORN;
value = inverted;
break;
case T2_OPCODE_ORN:
new_inst = T2_OPCODE_ORR;
value = inverted;
break;
/* AND <-> BIC. TST has no inverted equivalent. */
case T2_OPCODE_AND:
new_inst = T2_OPCODE_BIC;
if (rd == 15)
value = FAIL;
else
value = inverted;
break;
case T2_OPCODE_BIC:
new_inst = T2_OPCODE_AND;
value = inverted;
break;
/* ADC <-> SBC */
case T2_OPCODE_ADC:
new_inst = T2_OPCODE_SBC;
value = inverted;
break;
case T2_OPCODE_SBC:
new_inst = T2_OPCODE_ADC;
value = inverted;
break;
/* We cannot do anything. */
default:
return FAIL;
}
if (value == FAIL)
return FAIL;
*instruction &= T2_OPCODE_MASK;
*instruction |= new_inst << T2_DATA_OP_SHIFT;
return value;
}
/* Read a 32-bit thumb instruction from buf. */
static unsigned long
get_thumb32_insn (char * buf)
{
unsigned long insn;
insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
return insn;
}
/* We usually want to set the low bit on the address of thumb function
symbols. In particular .word foo - . should have the low bit set.
Generic code tries to fold the difference of two symbols to
a constant. Prevent this and force a relocation when the first symbols
is a thumb function. */
int
arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
{
if (op == O_subtract
&& l->X_op == O_symbol
&& r->X_op == O_symbol
&& THUMB_IS_FUNC (l->X_add_symbol))
{
l->X_op = O_subtract;
l->X_op_symbol = r->X_add_symbol;
l->X_add_number -= r->X_add_number;
return 1;
}
/* Process as normal. */
return 0;
}
void
md_apply_fix (fixS * fixP,
valueT * valP,
segT seg)
{
offsetT value = * valP;
offsetT newval;
unsigned int newimm;
unsigned long temp;
int sign;
char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
/* Note whether this will delete the relocation. */
if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
fixP->fx_done = 1;
/* On a 64-bit host, silently truncate 'value' to 32 bits for
consistency with the behavior on 32-bit hosts. Remember value
for emit_reloc. */
value &= 0xffffffff;
value ^= 0x80000000;
value -= 0x80000000;
*valP = value;
fixP->fx_addnumber = value;
/* Same treatment for fixP->fx_offset. */
fixP->fx_offset &= 0xffffffff;
fixP->fx_offset ^= 0x80000000;
fixP->fx_offset -= 0x80000000;
switch (fixP->fx_r_type)
{
case BFD_RELOC_NONE:
/* This will need to go in the object file. */
fixP->fx_done = 0;
break;
case BFD_RELOC_ARM_IMMEDIATE:
/* We claim that this fixup has been processed here,
even if in fact we generate an error because we do
not have a reloc for it, so tc_gen_reloc will reject it. */
fixP->fx_done = 1;
if (fixP->fx_addsy
&& ! S_IS_DEFINED (fixP->fx_addsy))
{
as_bad_where (fixP->fx_file, fixP->fx_line,
_("undefined symbol %s used as an immediate value"),
S_GET_NAME (fixP->fx_addsy));
break;
}
newimm = encode_arm_immediate (value);
temp = md_chars_to_number (buf, INSN_SIZE);
/* If the instruction will fail, see if we can fix things up by
changing the opcode. */
if (newimm == (unsigned int) FAIL
&& (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
{
as_bad_where (fixP->fx_file, fixP->fx_line,
_("invalid constant (%lx) after fixup"),
(unsigned long) value);
break;
}
newimm |= (temp & 0xfffff000);
md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
break;
case BFD_RELOC_ARM_ADRL_IMMEDIATE:
{
unsigned int highpart = 0;
unsigned int newinsn = 0xe1a00000; /* nop. */
newimm = encode_arm_immediate (value);
temp = md_chars_to_number (buf, INSN_SIZE);
/* If the instruction will fail, see if we can fix things up by
changing the opcode. */
if (newimm == (unsigned int) FAIL
&& (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
{
/* No ? OK - try using two ADD instructions to generate
the value. */
newimm = validate_immediate_twopart (value, & highpart);
/* Yes - then make sure that the second instruction is
also an add. */
if (newimm != (unsigned int) FAIL)
newinsn = temp;
/* Still No ? Try using a negated value. */
else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
/* Otherwise - give up. */
else
{
as_bad_where (fixP->fx_file, fixP->fx_line,
_("unable to compute ADRL instructions for PC offset of 0x%lx"),
(long) value);
break;
}
/* Replace the first operand in the 2nd instruction (which
is the PC) with the destination register. We have
already added in the PC in the first instruction and we
do not want to do it again. */
newinsn &= ~ 0xf0000;
newinsn |= ((newinsn & 0x0f000) << 4);
}
newimm |= (temp & 0xfffff000);
md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
highpart |= (newinsn & 0xfffff000);
md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
}
break;
case BFD_RELOC_ARM_OFFSET_IMM:
if (!fixP->fx_done && seg->use_rela_p)
value = 0;
case BFD_RELOC_ARM_LITERAL:
sign = value >= 0;
if (value < 0)
value = - value;
if (validate_offset_imm (value, 0) == FAIL)
{
if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("invalid literal constant: pool needs to be closer"));
else
as_bad_where (fixP->fx_file, fixP->fx_line,
_("bad immediate value for offset (%ld)"),
(long) value);
break;
}
newval = md_chars_to_number (buf, INSN_SIZE);
newval &= 0xff7ff000;
newval |= value | (sign ? INDEX_UP : 0);
md_number_to_chars (buf, newval, INSN_SIZE);
break;
case BFD_RELOC_ARM_OFFSET_IMM8:
case BFD_RELOC_ARM_HWLITERAL:
sign = value >= 0;
if (value < 0)
value = - value;
if (validate_offset_imm (value, 1) == FAIL)
{
if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("invalid literal constant: pool needs to be closer"));
else
as_bad (_("bad immediate value for half-word offset (%ld)"),
(long) value);
break;
}
newval = md_chars_to_number (buf, INSN_SIZE);
newval &= 0xff7ff0f0;
newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
md_number_to_chars (buf, newval, INSN_SIZE);
break;
case BFD_RELOC_ARM_T32_OFFSET_U8:
if (value < 0 || value > 1020 || value % 4 != 0)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("bad immediate value for offset (%ld)"), (long) value);
value /= 4;
newval = md_chars_to_number (buf+2, THUMB_SIZE);
newval |= value;
md_number_to_chars (buf+2, newval, THUMB_SIZE);
break;
case BFD_RELOC_ARM_T32_OFFSET_IMM:
/* This is a complicated relocation used for all varieties of Thumb32
load/store instruction with immediate offset:
1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
*4, optional writeback(W)
(doubleword load/store)
1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
Uppercase letters indicate bits that are already encoded at
this point. Lowercase letters are our problem. For the
second block of instructions, the secondary opcode nybble
(bits 8..11) is present, and bit 23 is zero, even if this is
a PC-relative operation. */
newval = md_chars_to_number (buf, THUMB_SIZE);
newval <<= 16;
newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
if ((newval & 0xf0000000) == 0xe0000000)
{
/* Doubleword load/store: 8-bit offset, scaled by 4. */
if (value >= 0)
newval |= (1 << 23);
else
value = -value;
if (value % 4 != 0)
{
as_bad_where (fixP->fx_file, fixP->fx_line,
_("offset not a multiple of 4"));
break;
}
value /= 4;
if (value > 0xff)
{
as_bad_where (fixP->fx_file, fixP->fx_line,
_("offset out of range"));
break;
}
newval &= ~0xff;
}
else if ((newval & 0x000f0000) == 0x000f0000)
{
/* PC-relative, 12-bit offset. */
if (value >= 0)
newval |= (1 << 23);
else
value = -value;
if (value > 0xfff)
{
as_bad_where (fixP->fx_file, fixP->fx_line,
_("offset out of range"));
break;
}
newval &= ~0xfff;
}
else if ((newval & 0x00000100) == 0x00000100)
{
/* Writeback: 8-bit, +/- offset. */
if (value >= 0)
newval |= (1 << 9);
else
value = -value;
if (value > 0xff)
{
as_bad_where (fixP->fx_file, fixP->fx_line,
_("offset out of range"));
break;
}
newval &= ~0xff;
}
else if ((newval & 0x00000f00) == 0x00000e00)
{
/* T-instruction: positive 8-bit offset. */
if (value < 0 || value > 0xff)
{
as_bad_where (fixP->fx_file, fixP->fx_line,
_("offset out of range"));
break;
}
newval &= ~0xff;
newval |= value;
}
else
{
/* Positive 12-bit or negative 8-bit offset. */
int limit;
if (value >= 0)
{
newval |= (1 << 23);
limit = 0xfff;
}
else
{
value = -value;
limit = 0xff;
}
if (value > limit)
{
as_bad_where (fixP->fx_file, fixP->fx_line,
_("offset out of range"));
break;
}
newval &= ~limit;
}
newval |= value;
md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
break;
case BFD_RELOC_ARM_SHIFT_IMM:
newval = md_chars_to_number (buf, INSN_SIZE);
if (((unsigned long) value) > 32
|| (value == 32
&& (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
{
as_bad_where (fixP->fx_file, fixP->fx_line,
_("shift expression is too large"));
break;
}
if (value == 0)
/* Shifts of zero must be done as lsl. */
newval &= ~0x60;
else if (value == 32)
value = 0;
newval &= 0xfffff07f;
newval |= (value & 0x1f) << 7;
md_number_to_chars (buf, newval, INSN_SIZE);
break;
case BFD_RELOC_ARM_T32_IMMEDIATE:
case BFD_RELOC_ARM_T32_IMM12:
case BFD_RELOC_ARM_T32_ADD_PC12:
/* We claim that this fixup has been processed here,
even if in fact we generate an error because we do
not have a reloc for it, so tc_gen_reloc will reject it. */
fixP->fx_done = 1;
if (fixP->fx_addsy
&& ! S_IS_DEFINED (fixP->fx_addsy))
{
as_bad_where (fixP->fx_file, fixP->fx_line,
_("undefined symbol %s used as an immediate value"),
S_GET_NAME (fixP->fx_addsy));
break;
}
newval = md_chars_to_number (buf, THUMB_SIZE);
newval <<= 16;
newval |= md_chars_to_number (buf+2, THUMB_SIZE);
/* FUTURE: Implement analogue of negate_data_op for T32. */
if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE)
{
newimm = encode_thumb32_immediate (value);
if (newimm == (unsigned int) FAIL)
newimm = thumb32_negate_data_op (&newval, value);
}
else
{
/* 12 bit immediate for addw/subw. */
if (value < 0)
{
value = -value;
newval ^= 0x00a00000;
}
if (value > 0xfff)
newimm = (unsigned int) FAIL;
else
newimm = value;
}
if (newimm == (unsigned int)FAIL)
{
as_bad_where (fixP->fx_file, fixP->fx_line,
_("invalid constant (%lx) after fixup"),
(unsigned long) value);
break;
}
newval |= (newimm & 0x800) << 15;
newval |= (newimm & 0x700) << 4;
newval |= (newimm & 0x0ff);
md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
break;
case BFD_RELOC_ARM_SMC:
if (((unsigned long) value) > 0xffff)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("invalid smc expression"));
newval = md_chars_to_number (buf, INSN_SIZE);
newval |= (value & 0xf) | ((value & 0xfff0) << 4);
md_number_to_chars (buf, newval, INSN_SIZE);
break;
case BFD_RELOC_ARM_SWI:
if (fixP->tc_fix_data != 0)
{
if (((unsigned long) value) > 0xff)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("invalid swi expression"));
newval = md_chars_to_number (buf, THUMB_SIZE);
newval |= value;
md_number_to_chars (buf, newval, THUMB_SIZE);
}
else
{
if (((unsigned long) value) > 0x00ffffff)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("invalid swi expression"));
newval = md_chars_to_number (buf, INSN_SIZE);
newval |= value;
md_number_to_chars (buf, newval, INSN_SIZE);
}
break;
case BFD_RELOC_ARM_MULTI:
if (((unsigned long) value) > 0xffff)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("invalid expression in load/store multiple"));
newval = value | md_chars_to_number (buf, INSN_SIZE);
md_number_to_chars (buf, newval, INSN_SIZE);
break;
#ifdef OBJ_ELF
case BFD_RELOC_ARM_PCREL_CALL:
newval = md_chars_to_number (buf, INSN_SIZE);
if ((newval & 0xf0000000) == 0xf0000000)
temp = 1;
else
temp = 3;
goto arm_branch_common;
case BFD_RELOC_ARM_PCREL_JUMP:
case BFD_RELOC_ARM_PLT32:
#endif
case BFD_RELOC_ARM_PCREL_BRANCH:
temp = 3;
goto arm_branch_common;
case BFD_RELOC_ARM_PCREL_BLX:
temp = 1;
arm_branch_common:
/* We are going to store value (shifted right by two) in the
instruction, in a 24 bit, signed field. Bits 26 through 32 either
all clear or all set and bit 0 must be clear. For B/BL bit 1 must
also be be clear. */
if (value & temp)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("misaligned branch destination"));
if ((value & (offsetT)0xfe000000) != (offsetT)0
&& (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("branch out of range"));
if (fixP->fx_done || !seg->use_rela_p)
{
newval = md_chars_to_number (buf, INSN_SIZE);
newval |= (value >> 2) & 0x00ffffff;
/* Set the H bit on BLX instructions. */
if (temp == 1)
{
if (value & 2)
newval |= 0x01000000;
else
newval &= ~0x01000000;
}
md_number_to_chars (buf, newval, INSN_SIZE);
}
break;
case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CZB */
/* CZB can only branch forward. */
if (value & ~0x7e)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("branch out of range"));
if (fixP->fx_done || !seg->use_rela_p)
{
newval = md_chars_to_number (buf, THUMB_SIZE);
newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
md_number_to_chars (buf, newval, THUMB_SIZE);
}
break;
case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
as_bad_where (fixP->fx_file, fixP->fx_line,
_("branch out of range"));
if (fixP->fx_done || !seg->use_rela_p)
{
newval = md_chars_to_number (buf, THUMB_SIZE);
newval |= (value & 0x1ff) >> 1;
md_number_to_chars (buf, newval, THUMB_SIZE);
}
break;
case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
as_bad_where (fixP->fx_file, fixP->fx_line,
_("branch out of range"));
if (fixP->fx_done || !seg->use_rela_p)
{
newval = md_chars_to_number (buf, THUMB_SIZE);
newval |= (value & 0xfff) >> 1;
md_number_to_chars (buf, newval, THUMB_SIZE);
}
break;
case BFD_RELOC_THUMB_PCREL_BRANCH20:
if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
as_bad_where (fixP->fx_file, fixP->fx_line,
_("conditional branch out of range"));
if (fixP->fx_done || !seg->use_rela_p)
{
offsetT newval2;
addressT S, J1, J2, lo, hi;
S = (value & 0x00100000) >> 20;
J2 = (value & 0x00080000) >> 19;
J1 = (value & 0x00040000) >> 18;
hi = (value & 0x0003f000) >> 12;
lo = (value & 0x00000ffe) >> 1;
newval = md_chars_to_number (buf, THUMB_SIZE);
newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
newval |= (S << 10) | hi;
newval2 |= (J1 << 13) | (J2 << 11) | lo;
md_number_to_chars (buf, newval, THUMB_SIZE);
md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
}
break;
case BFD_RELOC_THUMB_PCREL_BLX:
case BFD_RELOC_THUMB_PCREL_BRANCH23:
if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
as_bad_where (fixP->fx_file, fixP->fx_line,
_("branch out of range"));
if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
/* For a BLX instruction, make sure that the relocation is rounded up
to a word boundary. This follows the semantics of the instruction
which specifies that bit 1 of the target address will come from bit
1 of the base address. */
value = (value + 1) & ~ 1;
if (fixP->fx_done || !seg->use_rela_p)
{
offsetT newval2;
newval = md_chars_to_number (buf, THUMB_SIZE);
newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
newval |= (value & 0x7fffff) >> 12;
newval2 |= (value & 0xfff) >> 1;
md_number_to_chars (buf, newval, THUMB_SIZE);
md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
}
break;
case BFD_RELOC_THUMB_PCREL_BRANCH25:
if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
as_bad_where (fixP->fx_file, fixP->fx_line,
_("branch out of range"));
if (fixP->fx_done || !seg->use_rela_p)
{
offsetT newval2;
addressT S, I1, I2, lo, hi;
S = (value & 0x01000000) >> 24;
I1 = (value & 0x00800000) >> 23;
I2 = (value & 0x00400000) >> 22;
hi = (value & 0x003ff000) >> 12;
lo = (value & 0x00000ffe) >> 1;
I1 = !(I1 ^ S);
I2 = !(I2 ^ S);
newval = md_chars_to_number (buf, THUMB_SIZE);
newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
newval |= (S << 10) | hi;
newval2 |= (I1 << 13) | (I2 << 11) | lo;
md_number_to_chars (buf, newval, THUMB_SIZE);
md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
}
break;
case BFD_RELOC_8:
if (fixP->fx_done || !seg->use_rela_p)
md_number_to_chars (buf, value, 1);
break;
case BFD_RELOC_16:
if (fixP->fx_done || !seg->use_rela_p)
md_number_to_chars (buf, value, 2);
break;
#ifdef OBJ_ELF
case BFD_RELOC_ARM_TLS_GD32:
case BFD_RELOC_ARM_TLS_LE32:
case BFD_RELOC_ARM_TLS_IE32:
case BFD_RELOC_ARM_TLS_LDM32:
case BFD_RELOC_ARM_TLS_LDO32:
S_SET_THREAD_LOCAL (fixP->fx_addsy);
/* fall through */
case BFD_RELOC_ARM_GOT32:
case BFD_RELOC_ARM_GOTOFF:
case BFD_RELOC_ARM_TARGET2:
if (fixP->fx_done || !seg->use_rela_p)
md_number_to_chars (buf, 0, 4);
break;
#endif
case BFD_RELOC_RVA:
case BFD_RELOC_32:
case BFD_RELOC_ARM_TARGET1:
case BFD_RELOC_ARM_ROSEGREL32:
case BFD_RELOC_ARM_SBREL32:
case BFD_RELOC_32_PCREL:
if (fixP->fx_done || !seg->use_rela_p)
md_number_to_chars (buf, value, 4);
break;
#ifdef OBJ_ELF
case BFD_RELOC_ARM_PREL31:
if (fixP->fx_done || !seg->use_rela_p)
{
newval = md_chars_to_number (buf, 4) & 0x80000000;
if ((value ^ (value >> 1)) & 0x40000000)
{
as_bad_where (fixP->fx_file, fixP->fx_line,
_("rel31 relocation overflow"));
}
newval |= value & 0x7fffffff;
md_number_to_chars (buf, newval, 4);
}
break;
#endif
case BFD_RELOC_ARM_CP_OFF_IMM:
case BFD_RELOC_ARM_T32_CP_OFF_IMM:
if (value < -1023 || value > 1023 || (value & 3))
as_bad_where (fixP->fx_file, fixP->fx_line,
_("co-processor offset out of range"));
cp_off_common:
sign = value >= 0;
if (value < 0)
value = -value;
if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
|| fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
newval = md_chars_to_number (buf, INSN_SIZE);
else
newval = get_thumb32_insn (buf);
newval &= 0xff7fff00;
newval |= (value >> 2) | (sign ? INDEX_UP : 0);
if (value == 0)
newval &= ~WRITE_BACK;
if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
|| fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
md_number_to_chars (buf, newval, INSN_SIZE);
else
put_thumb32_insn (buf, newval);
break;
case BFD_RELOC_ARM_CP_OFF_IMM_S2:
case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
if (value < -255 || value > 255)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("co-processor offset out of range"));
value *= 4;
goto cp_off_common;
case BFD_RELOC_ARM_THUMB_OFFSET:
newval = md_chars_to_number (buf, THUMB_SIZE);
/* Exactly what ranges, and where the offset is inserted depends
on the type of instruction, we can establish this from the
top 4 bits. */
switch (newval >> 12)
{
case 4: /* PC load. */
/* Thumb PC loads are somewhat odd, bit 1 of the PC is
forced to zero for these loads; md_pcrel_from has already
compensated for this. */
if (value & 3)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("invalid offset, target not word aligned (0x%08lX)"),
(((unsigned long) fixP->fx_frag->fr_address
+ (unsigned long) fixP->fx_where) & ~3)
+ (unsigned long) value);
if (value & ~0x3fc)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("invalid offset, value too big (0x%08lX)"),
(long) value);
newval |= value >> 2;
break;
case 9: /* SP load/store. */
if (value & ~0x3fc)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("invalid offset, value too big (0x%08lX)"),
(long) value);
newval |= value >> 2;
break;
case 6: /* Word load/store. */
if (value & ~0x7c)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("invalid offset, value too big (0x%08lX)"),
(long) value);
newval |= value << 4; /* 6 - 2. */
break;
case 7: /* Byte load/store. */
if (value & ~0x1f)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("invalid offset, value too big (0x%08lX)"),
(long) value);
newval |= value << 6;
break;
case 8: /* Halfword load/store. */
if (value & ~0x3e)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("invalid offset, value too big (0x%08lX)"),
(long) value);
newval |= value << 5; /* 6 - 1. */
break;
default:
as_bad_where (fixP->fx_file, fixP->fx_line,
"Unable to process relocation for thumb opcode: %lx",
(unsigned long) newval);
break;
}
md_number_to_chars (buf, newval, THUMB_SIZE);
break;
case BFD_RELOC_ARM_THUMB_ADD:
/* This is a complicated relocation, since we use it for all of
the following immediate relocations:
3bit ADD/SUB
8bit ADD/SUB
9bit ADD/SUB SP word-aligned
10bit ADD PC/SP word-aligned
The type of instruction being processed is encoded in the
instruction field:
0x8000 SUB
0x00F0 Rd
0x000F Rs
*/
newval = md_chars_to_number (buf, THUMB_SIZE);
{
int rd = (newval >> 4) & 0xf;
int rs = newval & 0xf;
int subtract = !!(newval & 0x8000);
/* Check for HI regs, only very restricted cases allowed:
Adjusting SP, and using PC or SP to get an address. */
if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
|| (rs > 7 && rs != REG_SP && rs != REG_PC))
as_bad_where (fixP->fx_file, fixP->fx_line,
_("invalid Hi register with immediate"));
/* If value is negative, choose the opposite instruction. */
if (value < 0)
{
value = -value;
subtract = !subtract;
if (value < 0)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("immediate value out of range"));
}
if (rd == REG_SP)
{
if (value & ~0x1fc)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("invalid immediate for stack address calculation"));
newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
newval |= value >> 2;
}
else if (rs == REG_PC || rs == REG_SP)
{
if (subtract || value & ~0x3fc)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("invalid immediate for address calculation (value = 0x%08lX)"),
(unsigned long) value);
newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
newval |= rd << 8;
newval |= value >> 2;
}
else if (rs == rd)
{
if (value & ~0xff)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("immediate value out of range"));
newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
newval |= (rd << 8) | value;
}
else
{
if (value & ~0x7)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("immediate value out of range"));
newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
newval |= rd | (rs << 3) | (value << 6);
}
}
md_number_to_chars (buf, newval, THUMB_SIZE);
break;
case BFD_RELOC_ARM_THUMB_IMM:
newval = md_chars_to_number (buf, THUMB_SIZE);
if (value < 0 || value > 255)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("invalid immediate: %ld is too large"),
(long) value);
newval |= value;
md_number_to_chars (buf, newval, THUMB_SIZE);
break;
case BFD_RELOC_ARM_THUMB_SHIFT:
/* 5bit shift value (0..32). LSL cannot take 32. */
newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
temp = newval & 0xf800;
if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
as_bad_where (fixP->fx_file, fixP->fx_line,
_("invalid shift value: %ld"), (long) value);
/* Shifts of zero must be encoded as LSL. */
if (value == 0)
newval = (newval & 0x003f) | T_OPCODE_LSL_I;
/* Shifts of 32 are encoded as zero. */
else if (value == 32)
value = 0;
newval |= value << 6;
md_number_to_chars (buf, newval, THUMB_SIZE);
break;
case BFD_RELOC_VTABLE_INHERIT:
case BFD_RELOC_VTABLE_ENTRY:
fixP->fx_done = 0;
return;
case BFD_RELOC_UNUSED:
default:
as_bad_where (fixP->fx_file, fixP->fx_line,
_("bad relocation fixup type (%d)"), fixP->fx_r_type);
}
}
/* Translate internal representation of relocation info to BFD target
format. */
arelent *
tc_gen_reloc (asection *section, fixS *fixp)
{
arelent * reloc;
bfd_reloc_code_real_type code;
reloc = xmalloc (sizeof (arelent));
reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
*reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
if (fixp->fx_pcrel)
{
if (section->use_rela_p)
fixp->fx_offset -= md_pcrel_from_section (fixp, section);
else
fixp->fx_offset = reloc->address;
}
reloc->addend = fixp->fx_offset;
switch (fixp->fx_r_type)
{
case BFD_RELOC_8:
if (fixp->fx_pcrel)
{
code = BFD_RELOC_8_PCREL;
break;
}
case BFD_RELOC_16:
if (fixp->fx_pcrel)
{
code = BFD_RELOC_16_PCREL;
break;
}
case BFD_RELOC_32:
if (fixp->fx_pcrel)
{
code = BFD_RELOC_32_PCREL;
break;
}
case BFD_RELOC_NONE:
case BFD_RELOC_ARM_PCREL_BRANCH:
case BFD_RELOC_ARM_PCREL_BLX:
case BFD_RELOC_RVA:
case BFD_RELOC_THUMB_PCREL_BRANCH7:
case BFD_RELOC_THUMB_PCREL_BRANCH9:
case BFD_RELOC_THUMB_PCREL_BRANCH12:
case BFD_RELOC_THUMB_PCREL_BRANCH20:
case BFD_RELOC_THUMB_PCREL_BRANCH23:
case BFD_RELOC_THUMB_PCREL_BRANCH25:
case BFD_RELOC_THUMB_PCREL_BLX:
case BFD_RELOC_VTABLE_ENTRY:
case BFD_RELOC_VTABLE_INHERIT:
code = fixp->fx_r_type;
break;
case BFD_RELOC_ARM_LITERAL:
case BFD_RELOC_ARM_HWLITERAL:
/* If this is called then the a literal has
been referenced across a section boundary. */
as_bad_where (fixp->fx_file, fixp->fx_line,
_("literal referenced across section boundary"));
return NULL;
#ifdef OBJ_ELF
case BFD_RELOC_ARM_GOT32:
case BFD_RELOC_ARM_GOTOFF:
case BFD_RELOC_ARM_PLT32:
case BFD_RELOC_ARM_TARGET1:
case BFD_RELOC_ARM_ROSEGREL32:
case BFD_RELOC_ARM_SBREL32:
case BFD_RELOC_ARM_PREL31:
case BFD_RELOC_ARM_TARGET2:
case BFD_RELOC_ARM_TLS_LE32:
case BFD_RELOC_ARM_TLS_LDO32:
case BFD_RELOC_ARM_PCREL_CALL:
case BFD_RELOC_ARM_PCREL_JUMP:
code = fixp->fx_r_type;
break;
case BFD_RELOC_ARM_TLS_GD32:
case BFD_RELOC_ARM_TLS_IE32:
case BFD_RELOC_ARM_TLS_LDM32:
/* BFD will include the symbol's address in the addend.
But we don't want that, so subtract it out again here. */
if (!S_IS_COMMON (fixp->fx_addsy))
reloc->addend -= (*reloc->sym_ptr_ptr)->value;
code = fixp->fx_r_type;
break;
#endif
case BFD_RELOC_ARM_IMMEDIATE:
as_bad_where (fixp->fx_file, fixp->fx_line,
_("internal relocation (type: IMMEDIATE) not fixed up"));
return NULL;
case BFD_RELOC_ARM_ADRL_IMMEDIATE:
as_bad_where (fixp->fx_file, fixp->fx_line,
_("ADRL used for a symbol not defined in the same file"));
return NULL;
case BFD_RELOC_ARM_OFFSET_IMM:
if (section->use_rela_p)
{
code = fixp->fx_r_type;
break;
}
if (fixp->fx_addsy != NULL
&& !S_IS_DEFINED (fixp->fx_addsy)
&& S_IS_LOCAL (fixp->fx_addsy))
{
as_bad_where (fixp->fx_file, fixp->fx_line,
_("undefined local label `%s'"),
S_GET_NAME (fixp->fx_addsy));
return NULL;
}
as_bad_where (fixp->fx_file, fixp->fx_line,
_("internal_relocation (type: OFFSET_IMM) not fixed up"));
return NULL;
default:
{
char * type;
switch (fixp->fx_r_type)
{
case BFD_RELOC_NONE: type = "NONE"; break;
case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
case BFD_RELOC_ARM_SMC: type = "SMC"; break;
case BFD_RELOC_ARM_SWI: type = "SWI"; break;
case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
default: type = _("<unknown>"); break;
}
as_bad_where (fixp->fx_file, fixp->fx_line,
_("cannot represent %s relocation in this object file format"),
type);
return NULL;
}
}
#ifdef OBJ_ELF
if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
&& GOT_symbol
&& fixp->fx_addsy == GOT_symbol)
{
code = BFD_RELOC_ARM_GOTPC;
reloc->addend = fixp->fx_offset = reloc->address;
}
#endif
reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
if (reloc->howto == NULL)
{
as_bad_where (fixp->fx_file, fixp->fx_line,
_("cannot represent %s relocation in this object file format"),
bfd_get_reloc_code_name (code));
return NULL;
}
/* HACK: Since arm ELF uses Rel instead of Rela, encode the
vtable entry to be used in the relocation's section offset. */
if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
reloc->address = fixp->fx_offset;
return reloc;
}
/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
void
cons_fix_new_arm (fragS * frag,
int where,
int size,
expressionS * exp)
{
bfd_reloc_code_real_type type;
int pcrel = 0;
/* Pick a reloc.
FIXME: @@ Should look at CPU word size. */
switch (size)
{
case 1:
type = BFD_RELOC_8;
break;
case 2:
type = BFD_RELOC_16;
break;
case 4:
default:
type = BFD_RELOC_32;
break;
case 8:
type = BFD_RELOC_64;
break;
}
fix_new_exp (frag, where, (int) size, exp, pcrel, type);
}
#if defined OBJ_COFF || defined OBJ_ELF
void
arm_validate_fix (fixS * fixP)
{
/* If the destination of the branch is a defined symbol which does not have
the THUMB_FUNC attribute, then we must be calling a function which has
the (interfacearm) attribute. We look for the Thumb entry point to that
function and change the branch to refer to that function instead. */
if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
&& fixP->fx_addsy != NULL
&& S_IS_DEFINED (fixP->fx_addsy)
&& ! THUMB_IS_FUNC (fixP->fx_addsy))
{
fixP->fx_addsy = find_real_start (fixP->fx_addsy);
}
}
#endif
int
arm_force_relocation (struct fix * fixp)
{
#if defined (OBJ_COFF) && defined (TE_PE)
if (fixp->fx_r_type == BFD_RELOC_RVA)
return 1;
#endif
/* Resolve these relocations even if the symbol is extern or weak. */
if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
|| fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
|| fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
|| fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
|| fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
|| fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
return 0;
return generic_force_reloc (fixp);
}
#ifdef OBJ_COFF
/* This is a little hack to help the gas/arm/adrl.s test. It prevents
local labels from being added to the output symbol table when they
are used with the ADRL pseudo op. The ADRL relocation should always
be resolved before the binbary is emitted, so it is safe to say that
it is adjustable. */
bfd_boolean
arm_fix_adjustable (fixS * fixP)
{
if (fixP->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE)
return 1;
return 0;
}
#endif
#ifdef OBJ_ELF
/* Relocations against Thumb function names must be left unadjusted,
so that the linker can use this information to correctly set the
bottom bit of their addresses. The MIPS version of this function
also prevents relocations that are mips-16 specific, but I do not
know why it does this.
FIXME:
There is one other problem that ought to be addressed here, but
which currently is not: Taking the address of a label (rather
than a function) and then later jumping to that address. Such
addresses also ought to have their bottom bit set (assuming that
they reside in Thumb code), but at the moment they will not. */
bfd_boolean
arm_fix_adjustable (fixS * fixP)
{
if (fixP->fx_addsy == NULL)
return 1;
if (THUMB_IS_FUNC (fixP->fx_addsy)
&& fixP->fx_subsy == NULL)
return 0;
/* We need the symbol name for the VTABLE entries. */
if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
|| fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
return 0;
/* Don't allow symbols to be discarded on GOT related relocs. */
if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
|| fixP->fx_r_type == BFD_RELOC_ARM_GOT32
|| fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
|| fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
|| fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
|| fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
|| fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
|| fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
|| fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
return 0;
return 1;
}
const char *
elf32_arm_target_format (void)
{
#ifdef TE_SYMBIAN
return (target_big_endian
? "elf32-bigarm-symbian"
: "elf32-littlearm-symbian");
#elif defined (TE_VXWORKS)
return (target_big_endian
? "elf32-bigarm-vxworks"
: "elf32-littlearm-vxworks");
#else
if (target_big_endian)
return "elf32-bigarm";
else
return "elf32-littlearm";
#endif
}
void
armelf_frob_symbol (symbolS * symp,
int * puntp)
{
elf_frob_symbol (symp, puntp);
}
#endif
/* MD interface: Finalization. */
/* A good place to do this, although this was probably not intended
for this kind of use. We need to dump the literal pool before
references are made to a null symbol pointer. */
void
arm_cleanup (void)
{
literal_pool * pool;
for (pool = list_of_pools; pool; pool = pool->next)
{
/* Put it at the end of the relevent section. */
subseg_set (pool->section, pool->sub_section);
#ifdef OBJ_ELF
arm_elf_change_section ();
#endif
s_ltorg (0);
}
}
/* Adjust the symbol table. This marks Thumb symbols as distinct from
ARM ones. */
void
arm_adjust_symtab (void)
{
#ifdef OBJ_COFF
symbolS * sym;
for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
{
if (ARM_IS_THUMB (sym))
{
if (THUMB_IS_FUNC (sym))
{
/* Mark the symbol as a Thumb function. */
if ( S_GET_STORAGE_CLASS (sym) == C_STAT
|| S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
else
as_bad (_("%s: unexpected function type: %d"),
S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
}
else switch (S_GET_STORAGE_CLASS (sym))
{
case C_EXT:
S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
break;
case C_STAT:
S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
break;
case C_LABEL:
S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
break;
default:
/* Do nothing. */
break;
}
}
if (ARM_IS_INTERWORK (sym))
coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
}
#endif
#ifdef OBJ_ELF
symbolS * sym;
char bind;
for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
{
if (ARM_IS_THUMB (sym))
{
elf_symbol_type * elf_sym;
elf_sym = elf_symbol (symbol_get_bfdsym (sym));
bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
if (! bfd_is_arm_mapping_symbol_name (elf_sym->symbol.name))
{
/* If it's a .thumb_func, declare it as so,
otherwise tag label as .code 16. */
if (THUMB_IS_FUNC (sym))
elf_sym->internal_elf_sym.st_info =
ELF_ST_INFO (bind, STT_ARM_TFUNC);
else
elf_sym->internal_elf_sym.st_info =
ELF_ST_INFO (bind, STT_ARM_16BIT);
}
}
}
#endif
}
/* MD interface: Initialization. */
static void
set_constant_flonums (void)
{
int i;
for (i = 0; i < NUM_FLOAT_VALS; i++)
if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
abort ();
}
void
md_begin (void)
{
unsigned mach;
unsigned int i;
if ( (arm_ops_hsh = hash_new ()) == NULL
|| (arm_cond_hsh = hash_new ()) == NULL
|| (arm_shift_hsh = hash_new ()) == NULL
|| (arm_psr_hsh = hash_new ()) == NULL
|| (arm_v7m_psr_hsh = hash_new ()) == NULL
|| (arm_reg_hsh = hash_new ()) == NULL
|| (arm_reloc_hsh = hash_new ()) == NULL
|| (arm_barrier_opt_hsh = hash_new ()) == NULL)
as_fatal (_("virtual memory exhausted"));
for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
hash_insert (arm_ops_hsh, insns[i].template, (PTR) (insns + i));
for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
hash_insert (arm_cond_hsh, conds[i].template, (PTR) (conds + i));
for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
hash_insert (arm_shift_hsh, shift_names[i].name, (PTR) (shift_names + i));
for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
hash_insert (arm_psr_hsh, psrs[i].template, (PTR) (psrs + i));
for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template, (PTR) (v7m_psrs + i));
for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
hash_insert (arm_reg_hsh, reg_names[i].name, (PTR) (reg_names + i));
for (i = 0;
i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
i++)
hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template,
(PTR) (barrier_opt_names + i));
#ifdef OBJ_ELF
for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
hash_insert (arm_reloc_hsh, reloc_names[i].name, (PTR) (reloc_names + i));
#endif
set_constant_flonums ();
/* Set the cpu variant based on the command-line options. We prefer
-mcpu= over -march= if both are set (as for GCC); and we prefer
-mfpu= over any other way of setting the floating point unit.
Use of legacy options with new options are faulted. */
if (legacy_cpu)
{
if (mcpu_cpu_opt || march_cpu_opt)
as_bad (_("use of old and new-style options to set CPU type"));
mcpu_cpu_opt = legacy_cpu;
}
else if (!mcpu_cpu_opt)
mcpu_cpu_opt = march_cpu_opt;
if (legacy_fpu)
{
if (mfpu_opt)
as_bad (_("use of old and new-style options to set FPU type"));
mfpu_opt = legacy_fpu;
}
else if (!mfpu_opt)
{
#if !(defined (TE_LINUX) || defined (TE_NetBSD) || defined (TE_VXWORKS))
/* Some environments specify a default FPU. If they don't, infer it
from the processor. */
if (mcpu_fpu_opt)
mfpu_opt = mcpu_fpu_opt;
else
mfpu_opt = march_fpu_opt;
#else
mfpu_opt = &fpu_default;
#endif
}
if (!mfpu_opt)
{
if (!mcpu_cpu_opt)
mfpu_opt = &fpu_default;
else if (ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
mfpu_opt = &fpu_arch_vfp_v2;
else
mfpu_opt = &fpu_arch_fpa;
}
#ifdef CPU_DEFAULT
if (!mcpu_cpu_opt)
{
mcpu_cpu_opt = &cpu_default;
selected_cpu = cpu_default;
}
#else
if (mcpu_cpu_opt)
selected_cpu = *mcpu_cpu_opt;
else
mcpu_cpu_opt = &arm_arch_any;
#endif
ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
arm_arch_used = thumb_arch_used = arm_arch_none;
#if defined OBJ_COFF || defined OBJ_ELF
{
unsigned int flags = 0;
#if defined OBJ_ELF
flags = meabi_flags;
switch (meabi_flags)
{
case EF_ARM_EABI_UNKNOWN:
#endif
/* Set the flags in the private structure. */
if (uses_apcs_26) flags |= F_APCS26;
if (support_interwork) flags |= F_INTERWORK;
if (uses_apcs_float) flags |= F_APCS_FLOAT;
if (pic_code) flags |= F_PIC;
if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
flags |= F_SOFT_FLOAT;
switch (mfloat_abi_opt)
{
case ARM_FLOAT_ABI_SOFT:
case ARM_FLOAT_ABI_SOFTFP:
flags |= F_SOFT_FLOAT;
break;
case ARM_FLOAT_ABI_HARD:
if (flags & F_SOFT_FLOAT)
as_bad (_("hard-float conflicts with specified fpu"));
break;
}
/* Using pure-endian doubles (even if soft-float). */
if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
flags |= F_VFP_FLOAT;
#if defined OBJ_ELF
if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
flags |= EF_ARM_MAVERICK_FLOAT;
break;
case EF_ARM_EABI_VER4:
case EF_ARM_EABI_VER5:
/* No additional flags to set. */
break;
default:
abort ();
}
#endif
bfd_set_private_flags (stdoutput, flags);
/* We have run out flags in the COFF header to encode the
status of ATPCS support, so instead we create a dummy,
empty, debug section called .arm.atpcs. */
if (atpcs)
{
asection * sec;
sec = bfd_make_section (stdoutput, ".arm.atpcs");
if (sec != NULL)
{
bfd_set_section_flags
(stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
bfd_set_section_size (stdoutput, sec, 0);
bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
}
}
}
#endif
/* Record the CPU type as well. */
if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
mach = bfd_mach_arm_iWMMXt;
else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
mach = bfd_mach_arm_XScale;
else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
mach = bfd_mach_arm_ep9312;
else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
mach = bfd_mach_arm_5TE;
else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
{
if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
mach = bfd_mach_arm_5T;
else
mach = bfd_mach_arm_5;
}
else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
{
if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
mach = bfd_mach_arm_4T;
else
mach = bfd_mach_arm_4;
}
else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
mach = bfd_mach_arm_3M;
else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
mach = bfd_mach_arm_3;
else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
mach = bfd_mach_arm_2a;
else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
mach = bfd_mach_arm_2;
else
mach = bfd_mach_arm_unknown;
bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
}
/* Command line processing. */
/* md_parse_option
Invocation line includes a switch not recognized by the base assembler.
See if it's a processor-specific option.
This routine is somewhat complicated by the need for backwards
compatibility (since older releases of gcc can't be changed).
The new options try to make the interface as compatible as
possible with GCC.
New options (supported) are:
-mcpu=<cpu name> Assemble for selected processor
-march=<architecture name> Assemble for selected architecture
-mfpu=<fpu architecture> Assemble for selected FPU.
-EB/-mbig-endian Big-endian
-EL/-mlittle-endian Little-endian
-k Generate PIC code
-mthumb Start in Thumb mode
-mthumb-interwork Code supports ARM/Thumb interworking
For now we will also provide support for:
-mapcs-32 32-bit Program counter
-mapcs-26 26-bit Program counter
-macps-float Floats passed in FP registers
-mapcs-reentrant Reentrant code
-matpcs
(sometime these will probably be replaced with -mapcs=<list of options>
and -matpcs=<list of options>)
The remaining options are only supported for back-wards compatibility.
Cpu variants, the arm part is optional:
-m[arm]1 Currently not supported.
-m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
-m[arm]3 Arm 3 processor
-m[arm]6[xx], Arm 6 processors
-m[arm]7[xx][t][[d]m] Arm 7 processors
-m[arm]8[10] Arm 8 processors
-m[arm]9[20][tdmi] Arm 9 processors
-mstrongarm[110[0]] StrongARM processors
-mxscale XScale processors
-m[arm]v[2345[t[e]]] Arm architectures
-mall All (except the ARM1)
FP variants:
-mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
-mfpe-old (No float load/store multiples)
-mvfpxd VFP Single precision
-mvfp All VFP
-mno-fpu Disable all floating point instructions
The following CPU names are recognized:
arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
arm10t arm10e, arm1020t, arm1020e, arm10200e,
strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
*/
const char * md_shortopts = "m:k";
#ifdef ARM_BI_ENDIAN
#define OPTION_EB (OPTION_MD_BASE + 0)
#define OPTION_EL (OPTION_MD_BASE + 1)
#else
#if TARGET_BYTES_BIG_ENDIAN
#define OPTION_EB (OPTION_MD_BASE + 0)
#else
#define OPTION_EL (OPTION_MD_BASE + 1)
#endif
#endif
struct option md_longopts[] =
{
#ifdef OPTION_EB
{"EB", no_argument, NULL, OPTION_EB},
#endif
#ifdef OPTION_EL
{"EL", no_argument, NULL, OPTION_EL},
#endif
{NULL, no_argument, NULL, 0}
};
size_t md_longopts_size = sizeof (md_longopts);
struct arm_option_table
{
char *option; /* Option name to match. */
char *help; /* Help information. */
int *var; /* Variable to change. */
int value; /* What to change it to. */
char *deprecated; /* If non-null, print this message. */
};
struct arm_option_table arm_opts[] =
{
{"k", N_("generate PIC code"), &pic_code, 1, NULL},
{"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
{"mthumb-interwork", N_("support ARM/Thumb interworking"),
&support_interwork, 1, NULL},
{"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
{"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
{"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
1, NULL},
{"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
{"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
{"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
{"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
NULL},
/* These are recognized by the assembler, but have no affect on code. */
{"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
{"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
{NULL, NULL, NULL, 0, NULL}
};
struct arm_legacy_option_table
{
char *option; /* Option name to match. */
const arm_feature_set **var; /* Variable to change. */
const arm_feature_set value; /* What to change it to. */
char *deprecated; /* If non-null, print this message. */
};
const struct arm_legacy_option_table arm_legacy_opts[] =
{
/* DON'T add any new processors to this list -- we want the whole list
to go away... Add them to the processors table instead. */
{"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
{"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
{"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
{"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
{"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
{"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
{"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
{"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
{"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
{"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
{"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
{"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
{"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
{"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
{"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
{"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
{"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
{"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
{"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
{"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
{"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
{"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
{"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
{"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
{"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
{"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
{"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
{"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
{"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
{"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
{"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
{"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
{"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
{"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
{"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
{"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
{"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
{"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
{"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
{"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
{"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
{"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
{"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
{"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
{"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
{"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
{"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
{"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
{"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
{"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
{"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
{"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
{"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
{"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
{"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
{"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
{"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
{"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
{"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
{"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
{"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
{"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
{"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
{"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
{"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
{"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
{"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
{"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
{"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
{"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
N_("use -mcpu=strongarm110")},
{"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
N_("use -mcpu=strongarm1100")},
{"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
N_("use -mcpu=strongarm1110")},
{"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
{"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
{"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
/* Architecture variants -- don't add any more to this list either. */
{"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
{"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
{"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
{"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
{"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
{"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
{"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
{"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
{"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
{"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
{"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
{"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
{"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
{"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
{"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
{"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
{"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
{"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
/* Floating point variants -- don't add any more to this list either. */
{"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
{"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
{"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
{"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
N_("use either -mfpu=softfpa or -mfpu=softvfp")},
{NULL, NULL, ARM_ARCH_NONE, NULL}
};
struct arm_cpu_option_table
{
char *name;
const arm_feature_set value;
/* For some CPUs we assume an FPU unless the user explicitly sets
-mfpu=... */
const arm_feature_set default_fpu;
/* The canonical name of the CPU, or NULL to use NAME converted to upper
case. */
const char *canonical_name;
};
/* This list should, at a minimum, contain all the cpu names
recognized by GCC. */
static const struct arm_cpu_option_table arm_cpus[] =
{
{"all", ARM_ANY, FPU_ARCH_FPA, NULL},
{"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
{"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
{"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
{"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
{"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
{"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
{"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
{"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
{"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
{"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
{"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
{"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
{"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
{"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
{"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
{"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
{"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
{"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
{"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
{"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
{"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
{"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
{"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
{"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
{"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
{"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
{"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
{"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
{"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
{"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
{"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
{"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
{"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
{"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
{"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
{"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
{"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
{"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
{"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
{"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
{"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
{"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
{"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
/* For V5 or later processors we default to using VFP; but the user
should really set the FPU type explicitly. */
{"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
{"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
{"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
{"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
{"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
{"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
{"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
{"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
{"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
{"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
{"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
{"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
{"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
{"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
{"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
{"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
{"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
{"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
{"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
{"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
{"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
{"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
{"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
{"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
{"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
{"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
{"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
{"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
{"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
{"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
{"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
{"cortex-a8", ARM_ARCH_V7A, FPU_ARCH_VFP_V2, NULL},
{"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
{"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
/* ??? XSCALE is really an architecture. */
{"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
/* ??? iwmmxt is not a processor. */
{"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
{"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
/* Maverick */
{"ep9312", ARM_FEATURE(ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
{NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
};
struct arm_arch_option_table
{
char *name;
const arm_feature_set value;
const arm_feature_set default_fpu;
};
/* This list should, at a minimum, contain all the architecture names
recognized by GCC. */
static const struct arm_arch_option_table arm_archs[] =
{
{"all", ARM_ANY, FPU_ARCH_FPA},
{"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
{"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
{"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
{"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
{"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
{"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
{"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
{"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
{"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
{"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
{"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
{"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
{"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
{"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
{"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
{"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
{"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
{"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
{"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
{"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
{"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
{"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
{"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
{"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
{"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
{"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
{"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
{"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
{"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
{"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
{"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
{NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
};
/* ISA extensions in the co-processor space. */
struct arm_option_cpu_value_table
{
char *name;
const arm_feature_set value;
};
static const struct arm_option_cpu_value_table arm_extensions[] =
{
{"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
{"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
{"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
{NULL, ARM_ARCH_NONE}
};
/* This list should, at a minimum, contain all the fpu names
recognized by GCC. */
static const struct arm_option_cpu_value_table arm_fpus[] =
{
{"softfpa", FPU_NONE},
{"fpe", FPU_ARCH_FPE},
{"fpe2", FPU_ARCH_FPE},
{"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
{"fpa", FPU_ARCH_FPA},
{"fpa10", FPU_ARCH_FPA},
{"fpa11", FPU_ARCH_FPA},
{"arm7500fe", FPU_ARCH_FPA},
{"softvfp", FPU_ARCH_VFP},
{"softvfp+vfp", FPU_ARCH_VFP_V2},
{"vfp", FPU_ARCH_VFP_V2},
{"vfp9", FPU_ARCH_VFP_V2},
{"vfp10", FPU_ARCH_VFP_V2},
{"vfp10-r0", FPU_ARCH_VFP_V1},
{"vfpxd", FPU_ARCH_VFP_V1xD},
{"arm1020t", FPU_ARCH_VFP_V1},
{"arm1020e", FPU_ARCH_VFP_V2},
{"arm1136jfs", FPU_ARCH_VFP_V2},
{"arm1136jf-s", FPU_ARCH_VFP_V2},
{"maverick", FPU_ARCH_MAVERICK},
{NULL, ARM_ARCH_NONE}
};
struct arm_option_value_table
{
char *name;
long value;
};
static const struct arm_option_value_table arm_float_abis[] =
{
{"hard", ARM_FLOAT_ABI_HARD},
{"softfp", ARM_FLOAT_ABI_SOFTFP},
{"soft", ARM_FLOAT_ABI_SOFT},
{NULL, 0}
};
#ifdef OBJ_ELF
/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
static const struct arm_option_value_table arm_eabis[] =
{
{"gnu", EF_ARM_EABI_UNKNOWN},
{"4", EF_ARM_EABI_VER4},
{"5", EF_ARM_EABI_VER5},
{NULL, 0}
};
#endif
struct arm_long_option_table
{
char * option; /* Substring to match. */
char * help; /* Help information. */
int (* func) (char * subopt); /* Function to decode sub-option. */
char * deprecated; /* If non-null, print this message. */
};
static int
arm_parse_extension (char * str, const arm_feature_set **opt_p)
{
arm_feature_set *ext_set = xmalloc (sizeof (arm_feature_set));
/* Copy the feature set, so that we can modify it. */
*ext_set = **opt_p;
*opt_p = ext_set;
while (str != NULL && *str != 0)
{
const struct arm_option_cpu_value_table * opt;
char * ext;
int optlen;
if (*str != '+')
{
as_bad (_("invalid architectural extension"));
return 0;
}
str++;
ext = strchr (str, '+');
if (ext != NULL)
optlen = ext - str;
else
optlen = strlen (str);
if (optlen == 0)
{
as_bad (_("missing architectural extension"));
return 0;
}
for (opt = arm_extensions; opt->name != NULL; opt++)
if (strncmp (opt->name, str, optlen) == 0)
{
ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
break;
}
if (opt->name == NULL)
{
as_bad (_("unknown architectural extnsion `%s'"), str);
return 0;
}
str = ext;
};
return 1;
}
static int
arm_parse_cpu (char * str)
{
const struct arm_cpu_option_table * opt;
char * ext = strchr (str, '+');
int optlen;
if (ext != NULL)
optlen = ext - str;
else
optlen = strlen (str);
if (optlen == 0)
{
as_bad (_("missing cpu name `%s'"), str);
return 0;
}
for (opt = arm_cpus; opt->name != NULL; opt++)
if (strncmp (opt->name, str, optlen) == 0)
{
mcpu_cpu_opt = &opt->value;
mcpu_fpu_opt = &opt->default_fpu;
if (opt->canonical_name)
strcpy(selected_cpu_name, opt->canonical_name);
else
{
int i;
for (i = 0; i < optlen; i++)
selected_cpu_name[i] = TOUPPER (opt->name[i]);
selected_cpu_name[i] = 0;
}
if (ext != NULL)
return arm_parse_extension (ext, &mcpu_cpu_opt);
return 1;
}
as_bad (_("unknown cpu `%s'"), str);
return 0;
}
static int
arm_parse_arch (char * str)
{
const struct arm_arch_option_table *opt;
char *ext = strchr (str, '+');
int optlen;
if (ext != NULL)
optlen = ext - str;
else
optlen = strlen (str);
if (optlen == 0)
{
as_bad (_("missing architecture name `%s'"), str);
return 0;
}
for (opt = arm_archs; opt->name != NULL; opt++)
if (streq (opt->name, str))
{
march_cpu_opt = &opt->value;
march_fpu_opt = &opt->default_fpu;
strcpy(selected_cpu_name, opt->name);
if (ext != NULL)
return arm_parse_extension (ext, &march_cpu_opt);
return 1;
}
as_bad (_("unknown architecture `%s'\n"), str);
return 0;
}
static int
arm_parse_fpu (char * str)
{
const struct arm_option_cpu_value_table * opt;
for (opt = arm_fpus; opt->name != NULL; opt++)
if (streq (opt->name, str))
{
mfpu_opt = &opt->value;
return 1;
}
as_bad (_("unknown floating point format `%s'\n"), str);
return 0;
}
static int
arm_parse_float_abi (char * str)
{
const struct arm_option_value_table * opt;
for (opt = arm_float_abis; opt->name != NULL; opt++)
if (streq (opt->name, str))
{
mfloat_abi_opt = opt->value;
return 1;
}
as_bad (_("unknown floating point abi `%s'\n"), str);
return 0;
}
#ifdef OBJ_ELF
static int
arm_parse_eabi (char * str)
{
const struct arm_option_value_table *opt;
for (opt = arm_eabis; opt->name != NULL; opt++)
if (streq (opt->name, str))
{
meabi_flags = opt->value;
return 1;
}
as_bad (_("unknown EABI `%s'\n"), str);
return 0;
}
#endif
struct arm_long_option_table arm_long_opts[] =
{
{"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
arm_parse_cpu, NULL},
{"march=", N_("<arch name>\t assemble for architecture <arch name>"),
arm_parse_arch, NULL},
{"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
arm_parse_fpu, NULL},
{"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
arm_parse_float_abi, NULL},
#ifdef OBJ_ELF
{"meabi=", N_("<ver>\t assemble for eabi version <ver>"),
arm_parse_eabi, NULL},
#endif
{NULL, NULL, 0, NULL}
};
int
md_parse_option (int c, char * arg)
{
struct arm_option_table *opt;
const struct arm_legacy_option_table *fopt;
struct arm_long_option_table *lopt;
switch (c)
{
#ifdef OPTION_EB
case OPTION_EB:
target_big_endian = 1;
break;
#endif
#ifdef OPTION_EL
case OPTION_EL:
target_big_endian = 0;
break;
#endif
case 'a':
/* Listing option. Just ignore these, we don't support additional
ones. */
return 0;
default:
for (opt = arm_opts; opt->option != NULL; opt++)
{
if (c == opt->option[0]
&& ((arg == NULL && opt->option[1] == 0)
|| streq (arg, opt->option + 1)))
{
#if WARN_DEPRECATED
/* If the option is deprecated, tell the user. */
if (opt->deprecated != NULL)
as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
arg ? arg : "", _(opt->deprecated));
#endif
if (opt->var != NULL)
*opt->var = opt->value;
return 1;
}
}
for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
{
if (c == fopt->option[0]
&& ((arg == NULL && fopt->option[1] == 0)
|| streq (arg, fopt->option + 1)))
{
#if WARN_DEPRECATED
/* If the option is deprecated, tell the user. */
if (fopt->deprecated != NULL)
as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
arg ? arg : "", _(fopt->deprecated));
#endif
if (fopt->var != NULL)
*fopt->var = &fopt->value;
return 1;
}
}
for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
{
/* These options are expected to have an argument. */
if (c == lopt->option[0]
&& arg != NULL
&& strncmp (arg, lopt->option + 1,
strlen (lopt->option + 1)) == 0)
{
#if WARN_DEPRECATED
/* If the option is deprecated, tell the user. */
if (lopt->deprecated != NULL)
as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
_(lopt->deprecated));
#endif
/* Call the sup-option parser. */
return lopt->func (arg + strlen (lopt->option) - 1);
}
}
return 0;
}
return 1;
}
void
md_show_usage (FILE * fp)
{
struct arm_option_table *opt;
struct arm_long_option_table *lopt;
fprintf (fp, _(" ARM-specific assembler options:\n"));
for (opt = arm_opts; opt->option != NULL; opt++)
if (opt->help != NULL)
fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
if (lopt->help != NULL)
fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
#ifdef OPTION_EB
fprintf (fp, _("\
-EB assemble code for a big-endian cpu\n"));
#endif
#ifdef OPTION_EL
fprintf (fp, _("\
-EL assemble code for a little-endian cpu\n"));
#endif
}
#ifdef OBJ_ELF
typedef struct
{
int val;
arm_feature_set flags;
} cpu_arch_ver_table;
/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
least features first. */
static const cpu_arch_ver_table cpu_arch_ver[] =
{
{1, ARM_ARCH_V4},
{2, ARM_ARCH_V4T},
{3, ARM_ARCH_V5},
{4, ARM_ARCH_V5TE},
{5, ARM_ARCH_V5TEJ},
{6, ARM_ARCH_V6},
{7, ARM_ARCH_V6Z},
{8, ARM_ARCH_V6K},
{9, ARM_ARCH_V6T2},
{10, ARM_ARCH_V7A},
{10, ARM_ARCH_V7R},
{10, ARM_ARCH_V7M},
{0, ARM_ARCH_NONE}
};
/* Set the public EABI object attributes. */
static void
aeabi_set_public_attributes (void)
{
int arch;
arm_feature_set flags;
arm_feature_set tmp;
const cpu_arch_ver_table *p;
/* Choose the architecture based on the capabilities of the requested cpu
(if any) and/or the instructions actually used. */
ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
tmp = flags;
arch = 0;
for (p = cpu_arch_ver; p->val; p++)
{
if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
{
arch = p->val;
ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
}
}
/* Tag_CPU_name. */
if (selected_cpu_name[0])
{
char *p;
p = selected_cpu_name;
if (strncmp(p, "armv", 4) == 0)
{
int i;
p += 4;
for (i = 0; p[i]; i++)
p[i] = TOUPPER (p[i]);
}
elf32_arm_add_eabi_attr_string (stdoutput, 5, p);
}
/* Tag_CPU_arch. */
elf32_arm_add_eabi_attr_int (stdoutput, 6, arch);
/* Tag_CPU_arch_profile. */
if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
elf32_arm_add_eabi_attr_int (stdoutput, 7, 'A');
else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
elf32_arm_add_eabi_attr_int (stdoutput, 7, 'R');
else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m))
elf32_arm_add_eabi_attr_int (stdoutput, 7, 'M');
/* Tag_ARM_ISA_use. */
if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_full))
elf32_arm_add_eabi_attr_int (stdoutput, 8, 1);
/* Tag_THUMB_ISA_use. */
if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_full))
elf32_arm_add_eabi_attr_int (stdoutput, 9,
ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2) ? 2 : 1);
/* Tag_VFP_arch. */
if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_arch_vfp_v2)
|| ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_arch_vfp_v2))
elf32_arm_add_eabi_attr_int (stdoutput, 10, 2);
else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_arch_vfp_v1)
|| ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_arch_vfp_v1))
elf32_arm_add_eabi_attr_int (stdoutput, 10, 1);
/* Tag_WMMX_arch. */
if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_cext_iwmmxt)
|| ARM_CPU_HAS_FEATURE (arm_arch_used, arm_cext_iwmmxt))
elf32_arm_add_eabi_attr_int (stdoutput, 11, 1);
}
/* Add the .ARM.attributes section. */
void
arm_md_end (void)
{
segT s;
char *p;
addressT addr;
offsetT size;
if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
return;
aeabi_set_public_attributes ();
size = elf32_arm_eabi_attr_size (stdoutput);
s = subseg_new (".ARM.attributes", 0);
bfd_set_section_flags (stdoutput, s, SEC_READONLY | SEC_DATA);
addr = frag_now_fix ();
p = frag_more (size);
elf32_arm_set_eabi_attr_contents (stdoutput, (bfd_byte *)p, size);
}
/* Parse a .cpu directive. */
static void
s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
{
const struct arm_cpu_option_table *opt;
char *name;
char saved_char;
name = input_line_pointer;
while (*input_line_pointer && !ISSPACE(*input_line_pointer))
input_line_pointer++;
saved_char = *input_line_pointer;
*input_line_pointer = 0;
/* Skip the first "all" entry. */
for (opt = arm_cpus + 1; opt->name != NULL; opt++)
if (streq (opt->name, name))
{
mcpu_cpu_opt = &opt->value;
selected_cpu = opt->value;
if (opt->canonical_name)
strcpy(selected_cpu_name, opt->canonical_name);
else
{
int i;
for (i = 0; opt->name[i]; i++)
selected_cpu_name[i] = TOUPPER (opt->name[i]);
selected_cpu_name[i] = 0;
}
ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
*input_line_pointer = saved_char;
demand_empty_rest_of_line ();
return;
}
as_bad (_("unknown cpu `%s'"), name);
*input_line_pointer = saved_char;
ignore_rest_of_line ();
}
/* Parse a .arch directive. */
static void
s_arm_arch (int ignored ATTRIBUTE_UNUSED)
{
const struct arm_arch_option_table *opt;
char saved_char;
char *name;
name = input_line_pointer;
while (*input_line_pointer && !ISSPACE(*input_line_pointer))
input_line_pointer++;
saved_char = *input_line_pointer;
*input_line_pointer = 0;
/* Skip the first "all" entry. */
for (opt = arm_archs + 1; opt->name != NULL; opt++)
if (streq (opt->name, name))
{
mcpu_cpu_opt = &opt->value;
selected_cpu = opt->value;
strcpy(selected_cpu_name, opt->name);
ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
*input_line_pointer = saved_char;
demand_empty_rest_of_line ();
return;
}
as_bad (_("unknown architecture `%s'\n"), name);
*input_line_pointer = saved_char;
ignore_rest_of_line ();
}
/* Parse a .fpu directive. */
static void
s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
{
const struct arm_option_cpu_value_table *opt;
char saved_char;
char *name;
name = input_line_pointer;
while (*input_line_pointer && !ISSPACE(*input_line_pointer))
input_line_pointer++;
saved_char = *input_line_pointer;
*input_line_pointer = 0;
for (opt = arm_fpus; opt->name != NULL; opt++)
if (streq (opt->name, name))
{
mfpu_opt = &opt->value;
ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
*input_line_pointer = saved_char;
demand_empty_rest_of_line ();
return;
}
as_bad (_("unknown floating point format `%s'\n"), name);
*input_line_pointer = saved_char;
ignore_rest_of_line ();
}
#endif /* OBJ_ELF */