blob: b826b5565fc119f2c22bfea3d140bd5aa167d6d1 [file] [log] [blame]
// xImaDsp.cpp : DSP functions
/* 07/08/2001 v1.00 - Davide Pizzolato - www.xdp.it
* CxImage version 5.99c 17/Oct/2004
*/
#include "ximage.h"
#include "ximaiter.h"
#if CXIMAGE_SUPPORT_DSP
////////////////////////////////////////////////////////////////////////////////
/**
* Converts the image to B&W.
* The Mean() function can be used for calculating the optimal threshold.
* \param level: the lightness threshold.
* \return true if everything is ok
*/
bool CxImage::Threshold(BYTE level)
{
if (!pDib) return false;
if (head.biBitCount == 1) return true;
GrayScale();
CxImage tmp(head.biWidth,head.biHeight,1);
if (!tmp.IsValid()) return false;
for (long y=0;y<head.biHeight;y++){
info.nProgress = (long)(100*y/head.biHeight);
if (info.nEscape) break;
for (long x=0;x<head.biWidth;x++){
if (GetPixelIndex(x,y)>level)
tmp.SetPixelIndex(x,y,1);
else
tmp.SetPixelIndex(x,y,0);
}
}
tmp.SetPaletteColor(0,0,0,0);
tmp.SetPaletteColor(1,255,255,255);
Transfer(tmp);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Extract RGB channels from the image. Each channel is an 8 bit grayscale image.
* \param r,g,b: pointers to CxImage objects, to store the splited channels
* \return true if everything is ok
*/
bool CxImage::SplitRGB(CxImage* r,CxImage* g,CxImage* b)
{
if (!pDib) return false;
if (r==NULL && g==NULL && b==NULL) return false;
CxImage tmpr(head.biWidth,head.biHeight,8);
CxImage tmpg(head.biWidth,head.biHeight,8);
CxImage tmpb(head.biWidth,head.biHeight,8);
RGBQUAD color;
for(long y=0; y<head.biHeight; y++){
for(long x=0; x<head.biWidth; x++){
color = GetPixelColor(x,y);
if (r) tmpr.SetPixelIndex(x,y,color.rgbRed);
if (g) tmpg.SetPixelIndex(x,y,color.rgbGreen);
if (b) tmpb.SetPixelIndex(x,y,color.rgbBlue);
}
}
if (r) tmpr.SetGrayPalette();
if (g) tmpg.SetGrayPalette();
if (b) tmpb.SetGrayPalette();
/*for(long j=0; j<256; j++){
BYTE i=(BYTE)j;
if (r) tmpr.SetPaletteColor(i,i,0,0);
if (g) tmpg.SetPaletteColor(i,0,i,0);
if (b) tmpb.SetPaletteColor(i,0,0,i);
}*/
if (r) r->Transfer(tmpr);
if (g) g->Transfer(tmpg);
if (b) b->Transfer(tmpb);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Extract CMYK channels from the image. Each channel is an 8 bit grayscale image.
* \param c,m,y,k: pointers to CxImage objects, to store the splited channels
* \return true if everything is ok
*/
bool CxImage::SplitCMYK(CxImage* c,CxImage* m,CxImage* y,CxImage* k)
{
if (!pDib) return false;
if (c==NULL && m==NULL && y==NULL && k==NULL) return false;
CxImage tmpc(head.biWidth,head.biHeight,8);
CxImage tmpm(head.biWidth,head.biHeight,8);
CxImage tmpy(head.biWidth,head.biHeight,8);
CxImage tmpk(head.biWidth,head.biHeight,8);
RGBQUAD color;
for(long yy=0; yy<head.biHeight; yy++){
for(long xx=0; xx<head.biWidth; xx++){
color = GetPixelColor(xx,yy);
if (c) tmpc.SetPixelIndex(xx,yy,(BYTE)(255-color.rgbRed));
if (m) tmpm.SetPixelIndex(xx,yy,(BYTE)(255-color.rgbGreen));
if (y) tmpy.SetPixelIndex(xx,yy,(BYTE)(255-color.rgbBlue));
if (k) tmpk.SetPixelIndex(xx,yy,(BYTE)RGB2GRAY(color.rgbRed,color.rgbGreen,color.rgbBlue));
}
}
if (c) tmpc.SetGrayPalette();
if (m) tmpm.SetGrayPalette();
if (y) tmpy.SetGrayPalette();
if (k) tmpk.SetGrayPalette();
if (c) c->Transfer(tmpc);
if (m) m->Transfer(tmpm);
if (y) y->Transfer(tmpy);
if (k) k->Transfer(tmpk);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Extract YUV channels from the image. Each channel is an 8 bit grayscale image.
* \param y,u,v: pointers to CxImage objects, to store the splited channels
* \return true if everything is ok
*/
bool CxImage::SplitYUV(CxImage* y,CxImage* u,CxImage* v)
{
if (!pDib) return false;
if (y==NULL && u==NULL && v==NULL) return false;
CxImage tmpy(head.biWidth,head.biHeight,8);
CxImage tmpu(head.biWidth,head.biHeight,8);
CxImage tmpv(head.biWidth,head.biHeight,8);
RGBQUAD color;
for(long yy=0; yy<head.biHeight; yy++){
for(long x=0; x<head.biWidth; x++){
color = RGBtoYUV(GetPixelColor(x,yy));
if (y) tmpy.SetPixelIndex(x,yy,color.rgbRed);
if (u) tmpu.SetPixelIndex(x,yy,color.rgbGreen);
if (v) tmpv.SetPixelIndex(x,yy,color.rgbBlue);
}
}
if (y) tmpy.SetGrayPalette();
if (u) tmpu.SetGrayPalette();
if (v) tmpv.SetGrayPalette();
if (y) y->Transfer(tmpy);
if (u) u->Transfer(tmpu);
if (v) v->Transfer(tmpv);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Extract YIQ channels from the image. Each channel is an 8 bit grayscale image.
* \param y,i,q: pointers to CxImage objects, to store the splited channels
* \return true if everything is ok
*/
bool CxImage::SplitYIQ(CxImage* y,CxImage* i,CxImage* q)
{
if (!pDib) return false;
if (y==NULL && i==NULL && q==NULL) return false;
CxImage tmpy(head.biWidth,head.biHeight,8);
CxImage tmpi(head.biWidth,head.biHeight,8);
CxImage tmpq(head.biWidth,head.biHeight,8);
RGBQUAD color;
for(long yy=0; yy<head.biHeight; yy++){
for(long x=0; x<head.biWidth; x++){
color = RGBtoYIQ(GetPixelColor(x,yy));
if (y) tmpy.SetPixelIndex(x,yy,color.rgbRed);
if (i) tmpi.SetPixelIndex(x,yy,color.rgbGreen);
if (q) tmpq.SetPixelIndex(x,yy,color.rgbBlue);
}
}
if (y) tmpy.SetGrayPalette();
if (i) tmpi.SetGrayPalette();
if (q) tmpq.SetGrayPalette();
if (y) y->Transfer(tmpy);
if (i) i->Transfer(tmpi);
if (q) q->Transfer(tmpq);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Extract XYZ channels from the image. Each channel is an 8 bit grayscale image.
* \param x,y,z: pointers to CxImage objects, to store the splited channels
* \return true if everything is ok
*/
bool CxImage::SplitXYZ(CxImage* x,CxImage* y,CxImage* z)
{
if (!pDib) return false;
if (x==NULL && y==NULL && z==NULL) return false;
CxImage tmpx(head.biWidth,head.biHeight,8);
CxImage tmpy(head.biWidth,head.biHeight,8);
CxImage tmpz(head.biWidth,head.biHeight,8);
RGBQUAD color;
for(long yy=0; yy<head.biHeight; yy++){
for(long xx=0; xx<head.biWidth; xx++){
color = RGBtoXYZ(GetPixelColor(xx,yy));
if (x) tmpx.SetPixelIndex(xx,yy,color.rgbRed);
if (y) tmpy.SetPixelIndex(xx,yy,color.rgbGreen);
if (z) tmpz.SetPixelIndex(xx,yy,color.rgbBlue);
}
}
if (x) tmpx.SetGrayPalette();
if (y) tmpy.SetGrayPalette();
if (z) tmpz.SetGrayPalette();
if (x) x->Transfer(tmpx);
if (y) y->Transfer(tmpy);
if (z) z->Transfer(tmpz);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Extract HSL channels from the image. Each channel is an 8 bit grayscale image.
* \param h,s,l: pointers to CxImage objects, to store the splited channels
* \return true if everything is ok
*/
bool CxImage::SplitHSL(CxImage* h,CxImage* s,CxImage* l)
{
if (!pDib) return false;
if (h==NULL && s==NULL && l==NULL) return false;
CxImage tmph(head.biWidth,head.biHeight,8);
CxImage tmps(head.biWidth,head.biHeight,8);
CxImage tmpl(head.biWidth,head.biHeight,8);
RGBQUAD color;
for(long y=0; y<head.biHeight; y++){
for(long x=0; x<head.biWidth; x++){
color = RGBtoHSL(GetPixelColor(x,y));
if (h) tmph.SetPixelIndex(x,y,color.rgbRed);
if (s) tmps.SetPixelIndex(x,y,color.rgbGreen);
if (l) tmpl.SetPixelIndex(x,y,color.rgbBlue);
}
}
if (h) tmph.SetGrayPalette();
if (s) tmps.SetGrayPalette();
if (l) tmpl.SetGrayPalette();
/* pseudo-color generator for hue channel (visual debug)
if (h) for(long j=0; j<256; j++){
BYTE i=(BYTE)j;
RGBQUAD hsl={120,240,i,0};
tmph.SetPaletteColor(i,HSLtoRGB(hsl));
}*/
if (h) h->Transfer(tmph);
if (s) s->Transfer(tmps);
if (l) l->Transfer(tmpl);
return true;
}
////////////////////////////////////////////////////////////////////////////////
#define HSLMAX 255 /* H,L, and S vary over 0-HSLMAX */
#define RGBMAX 255 /* R,G, and B vary over 0-RGBMAX */
/* HSLMAX BEST IF DIVISIBLE BY 6 */
/* RGBMAX, HSLMAX must each fit in a BYTE. */
/* Hue is undefined if Saturation is 0 (grey-scale) */
/* This value determines where the Hue scrollbar is */
/* initially set for achromatic colors */
#define HSLUNDEFINED (HSLMAX*2/3)
////////////////////////////////////////////////////////////////////////////////
RGBQUAD CxImage::RGBtoHSL(RGBQUAD lRGBColor)
{
BYTE R,G,B; /* input RGB values */
BYTE H,L,S; /* output HSL values */
BYTE cMax,cMin; /* max and min RGB values */
WORD Rdelta,Gdelta,Bdelta; /* intermediate value: % of spread from max*/
R = lRGBColor.rgbRed; /* get R, G, and B out of DWORD */
G = lRGBColor.rgbGreen;
B = lRGBColor.rgbBlue;
cMax = max( max(R,G), B); /* calculate lightness */
cMin = min( min(R,G), B);
L = (BYTE)((((cMax+cMin)*HSLMAX)+RGBMAX)/(2*RGBMAX));
if (cMax==cMin){ /* r=g=b --> achromatic case */
S = 0; /* saturation */
H = HSLUNDEFINED; /* hue */
} else { /* chromatic case */
if (L <= (HSLMAX/2)) /* saturation */
S = (BYTE)((((cMax-cMin)*HSLMAX)+((cMax+cMin)/2))/(cMax+cMin));
else
S = (BYTE)((((cMax-cMin)*HSLMAX)+((2*RGBMAX-cMax-cMin)/2))/(2*RGBMAX-cMax-cMin));
/* hue */
Rdelta = (WORD)((((cMax-R)*(HSLMAX/6)) + ((cMax-cMin)/2) ) / (cMax-cMin));
Gdelta = (WORD)((((cMax-G)*(HSLMAX/6)) + ((cMax-cMin)/2) ) / (cMax-cMin));
Bdelta = (WORD)((((cMax-B)*(HSLMAX/6)) + ((cMax-cMin)/2) ) / (cMax-cMin));
if (R == cMax)
H = (BYTE)(Bdelta - Gdelta);
else if (G == cMax)
H = (BYTE)((HSLMAX/3) + Rdelta - Bdelta);
else /* B == cMax */
H = (BYTE)(((2*HSLMAX)/3) + Gdelta - Rdelta);
// if (H < 0) H += HSLMAX; //always false
if (H > HSLMAX) H -= HSLMAX;
}
RGBQUAD hsl={L,S,H,0};
return hsl;
}
////////////////////////////////////////////////////////////////////////////////
float CxImage::HueToRGB(float n1,float n2, float hue)
{
//<F. Livraghi> fixed implementation for HSL2RGB routine
float rValue;
if (hue > 360)
hue = hue - 360;
else if (hue < 0)
hue = hue + 360;
if (hue < 60)
rValue = n1 + (n2-n1)*hue/60.0f;
else if (hue < 180)
rValue = n2;
else if (hue < 240)
rValue = n1+(n2-n1)*(240-hue)/60;
else
rValue = n1;
return rValue;
}
////////////////////////////////////////////////////////////////////////////////
RGBQUAD CxImage::HSLtoRGB(COLORREF cHSLColor)
{
return HSLtoRGB(RGBtoRGBQUAD(cHSLColor));
}
////////////////////////////////////////////////////////////////////////////////
RGBQUAD CxImage::HSLtoRGB(RGBQUAD lHSLColor)
{
//<F. Livraghi> fixed implementation for HSL2RGB routine
float h,s,l;
float m1,m2;
BYTE r,g,b;
h = (float)lHSLColor.rgbRed * 360.0f/255.0f;
s = (float)lHSLColor.rgbGreen/255.0f;
l = (float)lHSLColor.rgbBlue/255.0f;
if (l <= 0.5) m2 = l * (1+s);
else m2 = l + s - l*s;
m1 = 2 * l - m2;
if (s == 0) {
r=g=b=(BYTE)(l*255.0f);
} else {
r = (BYTE)(HueToRGB(m1,m2,h+120) * 255.0f);
g = (BYTE)(HueToRGB(m1,m2,h) * 255.0f);
b = (BYTE)(HueToRGB(m1,m2,h-120) * 255.0f);
}
RGBQUAD rgb = {b,g,r,0};
return rgb;
}
////////////////////////////////////////////////////////////////////////////////
RGBQUAD CxImage::YUVtoRGB(RGBQUAD lYUVColor)
{
int U,V,R,G,B;
float Y = lYUVColor.rgbRed;
U = lYUVColor.rgbGreen - 128;
V = lYUVColor.rgbBlue - 128;
// R = (int)(1.164 * Y + 2.018 * U);
// G = (int)(1.164 * Y - 0.813 * V - 0.391 * U);
// B = (int)(1.164 * Y + 1.596 * V);
R = (int)( Y + 1.403f * V);
G = (int)( Y - 0.344f * U - 0.714f * V);
B = (int)( Y + 1.770f * U);
R= min(255,max(0,R));
G= min(255,max(0,G));
B= min(255,max(0,B));
RGBQUAD rgb={(BYTE)B,(BYTE)G,(BYTE)R,0};
return rgb;
}
////////////////////////////////////////////////////////////////////////////////
RGBQUAD CxImage::RGBtoYUV(RGBQUAD lRGBColor)
{
int Y,U,V,R,G,B;
R = lRGBColor.rgbRed;
G = lRGBColor.rgbGreen;
B = lRGBColor.rgbBlue;
// Y = (int)( 0.257 * R + 0.504 * G + 0.098 * B);
// U = (int)( 0.439 * R - 0.368 * G - 0.071 * B + 128);
// V = (int)(-0.148 * R - 0.291 * G + 0.439 * B + 128);
Y = (int)(0.299f * R + 0.587f * G + 0.114f * B);
U = (int)((B-Y) * 0.565f + 128);
V = (int)((R-Y) * 0.713f + 128);
Y= min(255,max(0,Y));
U= min(255,max(0,U));
V= min(255,max(0,V));
RGBQUAD yuv={(BYTE)V,(BYTE)U,(BYTE)Y,0};
return yuv;
}
////////////////////////////////////////////////////////////////////////////////
RGBQUAD CxImage::YIQtoRGB(RGBQUAD lYIQColor)
{
int I,Q,R,G,B;
float Y = lYIQColor.rgbRed;
I = lYIQColor.rgbGreen - 128;
Q = lYIQColor.rgbBlue - 128;
R = (int)( Y + 0.956f * I + 0.621f * Q);
G = (int)( Y - 0.273f * I - 0.647f * Q);
B = (int)( Y - 1.104f * I + 1.701f * Q);
R= min(255,max(0,R));
G= min(255,max(0,G));
B= min(255,max(0,B));
RGBQUAD rgb={(BYTE)B,(BYTE)G,(BYTE)R,0};
return rgb;
}
////////////////////////////////////////////////////////////////////////////////
RGBQUAD CxImage::RGBtoYIQ(RGBQUAD lRGBColor)
{
int Y,I,Q,R,G,B;
R = lRGBColor.rgbRed;
G = lRGBColor.rgbGreen;
B = lRGBColor.rgbBlue;
Y = (int)( 0.2992f * R + 0.5868f * G + 0.1140f * B);
I = (int)( 0.5960f * R - 0.2742f * G - 0.3219f * B + 128);
Q = (int)( 0.2109f * R - 0.5229f * G + 0.3120f * B + 128);
Y= min(255,max(0,Y));
I= min(255,max(0,I));
Q= min(255,max(0,Q));
RGBQUAD yiq={(BYTE)Q,(BYTE)I,(BYTE)Y,0};
return yiq;
}
////////////////////////////////////////////////////////////////////////////////
RGBQUAD CxImage::XYZtoRGB(RGBQUAD lXYZColor)
{
int X,Y,Z,R,G,B;
X = lXYZColor.rgbRed;
Y = lXYZColor.rgbGreen;
Z = lXYZColor.rgbBlue;
double k=1.088751;
R = (int)( 3.240479f * X - 1.537150f * Y - 0.498535f * Z * k);
G = (int)( -0.969256f * X + 1.875992f * Y + 0.041556f * Z * k);
B = (int)( 0.055648f * X - 0.204043f * Y + 1.057311f * Z * k);
R= min(255,max(0,R));
G= min(255,max(0,G));
B= min(255,max(0,B));
RGBQUAD rgb={(BYTE)B,(BYTE)G,(BYTE)R,0};
return rgb;
}
////////////////////////////////////////////////////////////////////////////////
RGBQUAD CxImage::RGBtoXYZ(RGBQUAD lRGBColor)
{
int X,Y,Z,R,G,B;
R = lRGBColor.rgbRed;
G = lRGBColor.rgbGreen;
B = lRGBColor.rgbBlue;
X = (int)( 0.412453f * R + 0.357580f * G + 0.180423f * B);
Y = (int)( 0.212671f * R + 0.715160f * G + 0.072169f * B);
Z = (int)((0.019334f * R + 0.119193f * G + 0.950227f * B)*0.918483657f);
//X= min(255,max(0,X));
//Y= min(255,max(0,Y));
//Z= min(255,max(0,Z));
RGBQUAD xyz={(BYTE)Z,(BYTE)Y,(BYTE)X,0};
return xyz;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Generates a "rainbow" palette with saturated colors
* \param correction: 1 generates a single hue spectrum. 0.75 is nice for scientific applications.
*/
void CxImage::HuePalette(float correction)
{
if (head.biClrUsed==0) return;
for(DWORD j=0; j<head.biClrUsed; j++){
BYTE i=(BYTE)(j*correction*(255/(head.biClrUsed-1)));
RGBQUAD hsl={120,240,i,0};
SetPaletteColor((BYTE)j,HSLtoRGB(hsl));
}
}
////////////////////////////////////////////////////////////////////////////////
/**
* Replaces the original hue and saturation values.
* \param hue: hue
* \param sat: saturation
* \param blend: can be from 0 (no effect) to 1 (full effect)
* \return true if everything is ok
*/
bool CxImage::Colorize(BYTE hue, BYTE sat, float blend)
{
if (!pDib) return false;
if (blend < 0.0f) blend = 0.0f;
if (blend > 1.0f) blend = 1.0f;
int a0 = (int)(256*blend);
int a1 = 256 - a0;
bool bFullBlend = false;
if (blend > 0.999f) bFullBlend = true;
RGBQUAD color,hsl;
if (head.biClrUsed==0){
long xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
for(long y=ymin; y<ymax; y++){
for(long x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (SelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
if (bFullBlend){
color = RGBtoHSL(GetPixelColor(x,y));
color.rgbRed=hue;
color.rgbGreen=sat;
SetPixelColor(x,y,HSLtoRGB(color));
} else {
color = GetPixelColor(x,y);
hsl = RGBtoHSL(color);
hsl.rgbRed=hue;
hsl.rgbGreen=sat;
hsl = HSLtoRGB(hsl);
//BlendPixelColor(x,y,hsl,blend);
//color.rgbRed = (BYTE)(hsl.rgbRed * blend + color.rgbRed * (1.0f - blend));
//color.rgbBlue = (BYTE)(hsl.rgbBlue * blend + color.rgbBlue * (1.0f - blend));
//color.rgbGreen = (BYTE)(hsl.rgbGreen * blend + color.rgbGreen * (1.0f - blend));
color.rgbRed = (BYTE)((hsl.rgbRed * a0 + color.rgbRed * a1)>>8);
color.rgbBlue = (BYTE)((hsl.rgbBlue * a0 + color.rgbBlue * a1)>>8);
color.rgbGreen = (BYTE)((hsl.rgbGreen * a0 + color.rgbGreen * a1)>>8);
SetPixelColor(x,y,color);
}
}
}
}
} else {
for(DWORD j=0; j<head.biClrUsed; j++){
if (bFullBlend){
color = RGBtoHSL(GetPaletteColor((BYTE)j));
color.rgbRed=hue;
color.rgbGreen=sat;
SetPaletteColor((BYTE)j,HSLtoRGB(color));
} else {
color = GetPaletteColor((BYTE)j);
hsl = RGBtoHSL(color);
hsl.rgbRed=hue;
hsl.rgbGreen=sat;
hsl = HSLtoRGB(hsl);
color.rgbRed = (BYTE)(hsl.rgbRed * blend + color.rgbRed * (1.0f - blend));
color.rgbBlue = (BYTE)(hsl.rgbBlue * blend + color.rgbBlue * (1.0f - blend));
color.rgbGreen = (BYTE)(hsl.rgbGreen * blend + color.rgbGreen * (1.0f - blend));
SetPaletteColor((BYTE)j,color);
}
}
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Changes the brightness and the contrast of the image.
* \param brightness: can be from -255 to 255, if brightness is negative, the image becomes dark.
* \param contrast: can be from -100 to 100, the neutral value is 0.
* \return true if everything is ok
*/
bool CxImage::Light(long brightness, long contrast)
{
if (!pDib) return false;
float c=(100 + contrast)/100.0f;
brightness+=128;
BYTE cTable[256]; //<nipper>
for (int i=0;i<256;i++) {
cTable[i] = (BYTE)max(0,min(255,(int)((i-128)*c + brightness)));
}
return Lut(cTable);
}
////////////////////////////////////////////////////////////////////////////////
/**
* \return mean lightness of the image. Useful with Threshold() and Light()
*/
float CxImage::Mean()
{
if (!pDib) return 0;
CxImage tmp(*this,true);
if (!tmp.IsValid()) return false;
tmp.GrayScale();
float sum=0;
long xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
if (xmin==xmax || ymin==ymax) return (float)0.0;
BYTE *iSrc=tmp.info.pImage;
iSrc += tmp.info.dwEffWidth*ymin; // necessary for selections <Admir Hodzic>
for(long y=ymin; y<ymax; y++){
info.nProgress = (long)(100*y/ymax); //<Anatoly Ivasyuk>
for(long x=xmin; x<xmax; x++){
sum+=iSrc[x];
}
iSrc+=tmp.info.dwEffWidth;
}
return sum/(xmax-xmin)/(ymax-ymin);
}
////////////////////////////////////////////////////////////////////////////////
/**
* 2D linear filter
* \param kernel: convolving matrix, in row format.
* \param Ksize: size of the kernel.
* \param Kfactor: normalization constant.
* \param Koffset: bias.
* \verbatim Example: the "soften" filter uses this kernel:
1 1 1
1 8 1
1 1 1
the function needs: kernel={1,1,1,1,8,1,1,1,1}; Ksize=3; Kfactor=16; Koffset=0; \endverbatim
* \return true if everything is ok
*/
bool CxImage::Filter(long* kernel, long Ksize, long Kfactor, long Koffset)
{
if (!pDib) return false;
long k2 = Ksize/2;
long kmax= Ksize-k2;
long r,g,b,i;
RGBQUAD c;
CxImage tmp(*this,pSelection!=0,true,true);
if (!tmp.IsValid()) return false;
long xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
if ((head.biBitCount==8) && IsGrayScale())
{
unsigned char* cPtr;
unsigned char* cPtr2;
int iCount;
int iY, iY2, iY1;
cPtr = info.pImage;
cPtr2 = (unsigned char *)tmp.info.pImage;
if (Kfactor==0) Kfactor = 1;
for(long y=ymin; y<ymax; y++){
info.nProgress = (long)(100*y/head.biHeight);
if (info.nEscape) break;
for(long x=xmin; x<xmax; x++){
iY1 = y*info.dwEffWidth+x;
#if CXIMAGE_SUPPORT_SELECTION
if (SelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
if (y-k2 > 0 && (y+kmax-1) < head.biHeight && x-k2 > 0 && (x+kmax-1) < head.biWidth)
{
b=0;
iCount = 0;
iY2 = ((y-k2)*info.dwEffWidth);
for(long j=-k2;j<kmax;j++)
{
iY = iY2+x;
for(long k=-k2;k<kmax;k++)
{
i=kernel[iCount];
b += cPtr[iY+k] * i;
iCount++;
}
iY2 += info.dwEffWidth;
}
cPtr2[iY1] = (BYTE)min(255, max(0,(int)(b/Kfactor + Koffset)));
}
else
cPtr2[iY1] = cPtr[iY1];
}
}
}
}
else
{
for(long y=ymin; y<ymax; y++){
info.nProgress = (long)(100*y/head.biHeight);
if (info.nEscape) break;
for(long x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (SelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
r=b=g=0;
for(long j=-k2;j<kmax;j++){
for(long k=-k2;k<kmax;k++){
c=GetPixelColor(x+j,y+k);
i=kernel[(j+k2)+Ksize*(k+k2)];
r += c.rgbRed * i;
g += c.rgbGreen * i;
b += c.rgbBlue * i;
}
}
if (Kfactor==0){
c.rgbRed = (BYTE)min(255, max(0,(int)(r + Koffset)));
c.rgbGreen = (BYTE)min(255, max(0,(int)(g + Koffset)));
c.rgbBlue = (BYTE)min(255, max(0,(int)(b + Koffset)));
} else {
c.rgbRed = (BYTE)min(255, max(0,(int)(r/Kfactor + Koffset)));
c.rgbGreen = (BYTE)min(255, max(0,(int)(g/Kfactor + Koffset)));
c.rgbBlue = (BYTE)min(255, max(0,(int)(b/Kfactor + Koffset)));
}
tmp.SetPixelColor(x,y,c);
}
}
}
}
Transfer(tmp);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Enhance the dark areas of the image
* \param Ksize: size of the kernel.
* \return true if everything is ok
*/
bool CxImage::Erode(long Ksize)
{
if (!pDib) return false;
long k2 = Ksize/2;
long kmax= Ksize-k2;
BYTE r,g,b;
RGBQUAD c;
CxImage tmp(*this,pSelection!=0,true,true);
if (!tmp.IsValid()) return false;
long xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
for(long y=ymin; y<ymax; y++){
info.nProgress = (long)(100*y/head.biHeight);
if (info.nEscape) break;
for(long x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (SelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
r=b=g=255;
for(long j=-k2;j<kmax;j++){
for(long k=-k2;k<kmax;k++){
c=GetPixelColor(x+j,y+k);
if (c.rgbRed < r) r=c.rgbRed;
if (c.rgbGreen < g) g=c.rgbGreen;
if (c.rgbBlue < b) b=c.rgbBlue;
}
}
c.rgbRed = r;
c.rgbGreen = g;
c.rgbBlue = b;
tmp.SetPixelColor(x,y,c);
}
}
}
Transfer(tmp);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Enhance the light areas of the image
* \param Ksize: size of the kernel.
* \return true if everything is ok
*/
bool CxImage::Dilate(long Ksize)
{
if (!pDib) return false;
long k2 = Ksize/2;
long kmax= Ksize-k2;
BYTE r,g,b;
RGBQUAD c;
CxImage tmp(*this,pSelection!=0,true,true);
if (!tmp.IsValid()) return false;
long xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
for(long y=ymin; y<ymax; y++){
info.nProgress = (long)(100*y/head.biHeight);
if (info.nEscape) break;
for(long x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (SelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
r=b=g=0;
for(long j=-k2;j<kmax;j++){
for(long k=-k2;k<kmax;k++){
c=GetPixelColor(x+j,y+k);
if (c.rgbRed > r) r=c.rgbRed;
if (c.rgbGreen > g) g=c.rgbGreen;
if (c.rgbBlue > b) b=c.rgbBlue;
}
}
c.rgbRed = r;
c.rgbGreen = g;
c.rgbBlue = b;
tmp.SetPixelColor(x,y,c);
}
}
}
Transfer(tmp);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Enhance the variations between adjacent pixels.
* Similar results can be achieved using Filter(),
* but the algorithms are different both in Edge() and in Contour().
* \param Ksize: size of the kernel.
* \return true if everything is ok
*/
bool CxImage::Edge(long Ksize)
{
if (!pDib) return false;
long k2 = Ksize/2;
long kmax= Ksize-k2;
BYTE r,g,b,rr,gg,bb;
RGBQUAD c;
CxImage tmp(*this,pSelection!=0,true,true);
if (!tmp.IsValid()) return false;
long xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
for(long y=ymin; y<ymax; y++){
info.nProgress = (long)(100*y/head.biHeight);
if (info.nEscape) break;
for(long x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (SelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
r=b=g=0;
rr=bb=gg=255;
for(long j=-k2;j<kmax;j++){
for(long k=-k2;k<kmax;k++){
c=GetPixelColor(x+j,y+k);
if (c.rgbRed > r) r=c.rgbRed;
if (c.rgbGreen > g) g=c.rgbGreen;
if (c.rgbBlue > b) b=c.rgbBlue;
if (c.rgbRed < rr) rr=c.rgbRed;
if (c.rgbGreen < gg) gg=c.rgbGreen;
if (c.rgbBlue < bb) bb=c.rgbBlue;
}
}
c.rgbRed = 255-abs(r-rr);
c.rgbGreen = 255-abs(g-gg);
c.rgbBlue = 255-abs(b-bb);
tmp.SetPixelColor(x,y,c);
}
}
}
Transfer(tmp);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Blends two images
* \param imgsrc2: image to be mixed with this
* \param op: blending method; see ImageOpType
* \param lXOffset, lYOffset: image displacement
* \param bMixAlpha: if true and imgsrc2 has a valid alpha layer, it will be mixed in the destination image.
* \return true if everything is ok
*
* thanks to Mwolski
*/
//
void CxImage::Mix(CxImage & imgsrc2, ImageOpType op, long lXOffset, long lYOffset, bool bMixAlpha)
{
long lWide = min(GetWidth(),imgsrc2.GetWidth()-lXOffset);
long lHeight = min(GetHeight(),imgsrc2.GetHeight()-lYOffset);
bool bEditAlpha = imgsrc2.AlphaIsValid() & bMixAlpha;
if (bEditAlpha && AlphaIsValid()==false){
AlphaCreate();
}
RGBQUAD rgbBackgrnd = GetTransColor();
RGBQUAD rgb1, rgb2, rgbDest;
for(long lY=0;lY<lHeight;lY++)
{
info.nProgress = (long)(100*lY/head.biHeight);
if (info.nEscape) break;
for(long lX=0;lX<lWide;lX++)
{
#if CXIMAGE_SUPPORT_SELECTION
if (SelectionIsInside(lX,lY) && imgsrc2.SelectionIsInside(lX+lXOffset,lY+lYOffset))
#endif //CXIMAGE_SUPPORT_SELECTION
{
rgb1 = GetPixelColor(lX,lY);
rgb2 = imgsrc2.GetPixelColor(lX+lXOffset,lY+lYOffset);
switch(op)
{
case OpAdd:
rgbDest.rgbBlue = (BYTE)max(0,min(255,rgb1.rgbBlue+rgb2.rgbBlue));
rgbDest.rgbGreen = (BYTE)max(0,min(255,rgb1.rgbGreen+rgb2.rgbGreen));
rgbDest.rgbRed = (BYTE)max(0,min(255,rgb1.rgbRed+rgb2.rgbRed));
if (bEditAlpha) rgbDest.rgbReserved = (BYTE)max(0,min(255,rgb1.rgbReserved+rgb2.rgbReserved));
break;
case OpSub:
rgbDest.rgbBlue = (BYTE)max(0,min(255,rgb1.rgbBlue-rgb2.rgbBlue));
rgbDest.rgbGreen = (BYTE)max(0,min(255,rgb1.rgbGreen-rgb2.rgbGreen));
rgbDest.rgbRed = (BYTE)max(0,min(255,rgb1.rgbRed-rgb2.rgbRed));
if (bEditAlpha) rgbDest.rgbReserved = (BYTE)max(0,min(255,rgb1.rgbReserved-rgb2.rgbReserved));
break;
case OpAnd:
rgbDest.rgbBlue = (BYTE)(rgb1.rgbBlue&rgb2.rgbBlue);
rgbDest.rgbGreen = (BYTE)(rgb1.rgbGreen&rgb2.rgbGreen);
rgbDest.rgbRed = (BYTE)(rgb1.rgbRed&rgb2.rgbRed);
if (bEditAlpha) rgbDest.rgbReserved = (BYTE)(rgb1.rgbReserved&rgb2.rgbReserved);
break;
case OpXor:
rgbDest.rgbBlue = (BYTE)(rgb1.rgbBlue^rgb2.rgbBlue);
rgbDest.rgbGreen = (BYTE)(rgb1.rgbGreen^rgb2.rgbGreen);
rgbDest.rgbRed = (BYTE)(rgb1.rgbRed^rgb2.rgbRed);
if (bEditAlpha) rgbDest.rgbReserved = (BYTE)(rgb1.rgbReserved^rgb2.rgbReserved);
break;
case OpOr:
rgbDest.rgbBlue = (BYTE)(rgb1.rgbBlue|rgb2.rgbBlue);
rgbDest.rgbGreen = (BYTE)(rgb1.rgbGreen|rgb2.rgbGreen);
rgbDest.rgbRed = (BYTE)(rgb1.rgbRed|rgb2.rgbRed);
if (bEditAlpha) rgbDest.rgbReserved = (BYTE)(rgb1.rgbReserved|rgb2.rgbReserved);
break;
case OpMask:
if(rgb2.rgbBlue==0 && rgb2.rgbGreen==0 && rgb2.rgbRed==0)
rgbDest = rgbBackgrnd;
else
rgbDest = rgb1;
break;
case OpSrcCopy:
if(memcmp(&rgb1,&rgbBackgrnd,sizeof(RGBQUAD))==0)
rgbDest = rgb2;
else // copy straight over
rgbDest = rgb1;
break;
case OpDstCopy:
if(memcmp(&rgb2,&rgbBackgrnd,sizeof(RGBQUAD))==0)
rgbDest = rgb1;
else // copy straight over
rgbDest = rgb2;
break;
case OpScreen:
{
BYTE a,a1;
if (imgsrc2.IsTransparent(lX+lXOffset,lY+lYOffset)){
a=0;
} else if (imgsrc2.AlphaIsValid()){
a=imgsrc2.AlphaGet(lX+lXOffset,lY+lYOffset);
a =(BYTE)((a*(1+imgsrc2.info.nAlphaMax))>>8);
} else {
a=255;
}
if (a==0){ //transparent
rgbDest = rgb1;
} else if (a==255){ //opaque
rgbDest = rgb2;
} else { //blend
a1 = (BYTE)~a;
rgbDest.rgbBlue = (BYTE)((rgb1.rgbBlue*a1+rgb2.rgbBlue*a)>>8);
rgbDest.rgbGreen = (BYTE)((rgb1.rgbGreen*a1+rgb2.rgbGreen*a)>>8);
rgbDest.rgbRed = (BYTE)((rgb1.rgbRed*a1+rgb2.rgbRed*a)>>8);
}
if (bEditAlpha) rgbDest.rgbReserved = (BYTE)(((1+rgb1.rgbReserved)*a)>>8);
}
break;
case OpSrcBlend:
if(memcmp(&rgb1,&rgbBackgrnd,sizeof(RGBQUAD))==0)
rgbDest = rgb2;
else
{
long lBDiff = abs(rgb1.rgbBlue - rgbBackgrnd.rgbBlue);
long lGDiff = abs(rgb1.rgbGreen - rgbBackgrnd.rgbGreen);
long lRDiff = abs(rgb1.rgbRed - rgbBackgrnd.rgbRed);
double lAverage = (lBDiff+lGDiff+lRDiff)/3;
double lThresh = 16;
double dLarge = lAverage/lThresh;
double dSmall = (lThresh-lAverage)/lThresh;
double dSmallAmt = dSmall*((double)rgb2.rgbBlue);
if( lAverage < lThresh+1){
rgbDest.rgbBlue = (BYTE)max(0,min(255,(int)(dLarge*((double)rgb1.rgbBlue) +
dSmallAmt)));
rgbDest.rgbGreen = (BYTE)max(0,min(255,(int)(dLarge*((double)rgb1.rgbGreen) +
dSmallAmt)));
rgbDest.rgbRed = (BYTE)max(0,min(255,(int)(dLarge*((double)rgb1.rgbRed) +
dSmallAmt)));
}
else
rgbDest = rgb1;
}
break;
default:
return;
}
SetPixelColor(lX,lY,rgbDest,bEditAlpha);
}
}
}
}
////////////////////////////////////////////////////////////////////////////////
// thanks to Kenneth Ballard
void CxImage::MixFrom(CxImage & imagesrc2, long lXOffset, long lYOffset)
{
RGBQUAD rgbBackgrnd = imagesrc2.GetTransColor();
RGBQUAD rgb1;
long width = imagesrc2.GetWidth();
long height = imagesrc2.GetHeight();
int x, y;
for(x = 0; x < width; x++)
{
for(y = 0; y < height; y++)
{
rgb1 = imagesrc2.GetPixelColor(x, y);
if(memcmp(&rgb1, &rgbBackgrnd, sizeof(RGBQUAD)) != 0)
SetPixelColor(x + lXOffset, y + lYOffset, rgb1);
}
}
}
void CxImage::MixFrom(CxImage& imgsrc, int src_alpha, int dst_x, int dst_y)
{
if (src_alpha < 0) src_alpha = 0;
if (src_alpha > 255) src_alpha = 255;
if (src_alpha == 0) return;
int dst_alpha = 255 - src_alpha;
if (dst_x < 0) dst_x = 0;
if (dst_y < 0) dst_y = 0;
int src_width = imgsrc.GetWidth();
int src_height = imgsrc.GetHeight();
int dst_width = GetWidth();
int dst_height = GetHeight();
if (dst_x + src_width > dst_width)
src_width = dst_width - dst_x;
if (dst_y + src_height > dst_height)
src_height = dst_height - dst_y;
for (int y = 0; y < src_height; y++)
for (int x = 0; x < src_width; x++)
{
RGBQUAD rgb1 = GetPixelColor(x+dst_x, y+dst_y);
RGBQUAD rgb2 = imgsrc.GetPixelColor(x, y);
rgb1.rgbRed = (rgb1.rgbRed * dst_alpha + rgb2.rgbRed * src_alpha) / 255;
rgb1.rgbGreen = (rgb1.rgbGreen * dst_alpha + rgb2.rgbGreen * src_alpha) / 255;
rgb1.rgbBlue = (rgb1.rgbBlue * dst_alpha + rgb2.rgbBlue * src_alpha) / 255;
SetPixelColor(x+dst_x, y+dst_y, rgb1);
}
}
////////////////////////////////////////////////////////////////////////////////
/**
* Adjusts separately the red, green, and blue values in the image.
* \param r, g, b: can be from -255 to +255.
* \return true if everything is ok
*/
bool CxImage::ShiftRGB(long r, long g, long b)
{
if (!pDib) return false;
RGBQUAD color;
if (head.biClrUsed==0){
long xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
for(long y=ymin; y<ymax; y++){
for(long x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (SelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
color = GetPixelColor(x,y);
color.rgbRed = (BYTE)max(0,min(255,(int)(color.rgbRed + r)));
color.rgbGreen = (BYTE)max(0,min(255,(int)(color.rgbGreen + g)));
color.rgbBlue = (BYTE)max(0,min(255,(int)(color.rgbBlue + b)));
SetPixelColor(x,y,color);
}
}
}
} else {
for(DWORD j=0; j<head.biClrUsed; j++){
color = GetPaletteColor((BYTE)j);
color.rgbRed = (BYTE)max(0,min(255,(int)(color.rgbRed + r)));
color.rgbGreen = (BYTE)max(0,min(255,(int)(color.rgbGreen + g)));
color.rgbBlue = (BYTE)max(0,min(255,(int)(color.rgbBlue + b)));
SetPaletteColor((BYTE)j,color);
}
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Adjusts the color balance of the image
* \param gamma can be from 0.1 to 5.
* \return true if everything is ok
*/
bool CxImage::Gamma(float gamma)
{
if (!pDib) return false;
double dinvgamma = 1/gamma;
double dMax = pow(255.0, dinvgamma) / 255.0;
BYTE cTable[256]; //<nipper>
for (int i=0;i<256;i++) {
cTable[i] = (BYTE)max(0,min(255,(int)( pow((double)i, dinvgamma) / dMax)));
}
return Lut(cTable);
}
////////////////////////////////////////////////////////////////////////////////
#if CXIMAGE_SUPPORT_WINCE == 0
/**
* Adjusts the intensity of each pixel to the median intensity of its surrounding pixels.
* \param Ksize: size of the kernel.
* \return true if everything is ok
*/
bool CxImage::Median(long Ksize)
{
if (!pDib) return false;
long k2 = Ksize/2;
long kmax= Ksize-k2;
long i,j,k;
RGBQUAD* kernel = (RGBQUAD*)malloc(Ksize*Ksize*sizeof(RGBQUAD));
CxImage tmp(*this,pSelection!=0,true,true);
if (!tmp.IsValid()) return false;
long xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
for(long y=ymin; y<ymax; y++){
info.nProgress = (long)(100*y/head.biHeight);
if (info.nEscape) break;
for(long x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (SelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
for(j=-k2, i=0;j<kmax;j++)
for(k=-k2;k<kmax;k++, i++)
kernel[i]=GetPixelColor(x+j,y+k);
qsort(kernel, i, sizeof(RGBQUAD), CompareColors);
tmp.SetPixelColor(x,y,kernel[i/2]);
}
}
}
free(kernel);
Transfer(tmp);
return true;
}
#endif //CXIMAGE_SUPPORT_WINCE
////////////////////////////////////////////////////////////////////////////////
/**
* Adds an uniform noise to the image
* \param level: can be from 0 (no noise) to 255 (lot of noise).
* \return true if everything is ok
*/
bool CxImage::Noise(long level)
{
if (!pDib) return false;
RGBQUAD color;
long xmin,xmax,ymin,ymax,n;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
for(long y=ymin; y<ymax; y++){
info.nProgress = (long)(100*y/ymax); //<Anatoly Ivasyuk>
for(long x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (SelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
color = GetPixelColor(x,y);
n=(long)((rand()/(float)RAND_MAX - 0.5)*level);
color.rgbRed = (BYTE)max(0,min(255,(int)(color.rgbRed + n)));
n=(long)((rand()/(float)RAND_MAX - 0.5)*level);
color.rgbGreen = (BYTE)max(0,min(255,(int)(color.rgbGreen + n)));
n=(long)((rand()/(float)RAND_MAX - 0.5)*level);
color.rgbBlue = (BYTE)max(0,min(255,(int)(color.rgbBlue + n)));
SetPixelColor(x,y,color);
}
}
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Computes the bidimensional FFT or DFT of the image.
* - The images are processed as grayscale
* - If the dimensions of the image are a power of, 2 the FFT is performed automatically.
* - If dstReal and/or dstImag are NULL, the resulting images replaces the original(s).
* - Note: with 8 bits there is a HUGE loss in the dynamics. The function tries
* to keep an acceptable SNR, but 8bit = 48dB...
*
* \param srcReal, srcImag: source images: One can be NULL, but not both
* \param dstReal, dstImag: destination images. Can be NULL.
* \param direction: 1 = forward, -1 = inverse.
* \param bForceFFT: if true, the images are resampled to make the dimensions a power of 2.
* \param bMagnitude: if true, the real part returns the magnitude, the imaginary part returns the phase
* \return true if everything is ok
*/
bool CxImage::FFT2(CxImage* srcReal, CxImage* srcImag, CxImage* dstReal, CxImage* dstImag,
long direction, bool bForceFFT, bool bMagnitude)
{
//check if there is something to convert
if (srcReal==NULL && srcImag==NULL) return false;
long w,h;
//get width and height
if (srcReal) {
w=srcReal->GetWidth();
h=srcReal->GetHeight();
} else {
w=srcImag->GetWidth();
h=srcImag->GetHeight();
}
bool bXpow2 = IsPowerof2(w);
bool bYpow2 = IsPowerof2(h);
//if bForceFFT, width AND height must be powers of 2
if (bForceFFT && !(bXpow2 && bYpow2)) {
long i;
i=0;
while((1<<i)<w) i++;
w=1<<i;
bXpow2=true;
i=0;
while((1<<i)<h) i++;
h=1<<i;
bYpow2=true;
}
// I/O images for FFT
CxImage *tmpReal,*tmpImag;
// select output
tmpReal = (dstReal) ? dstReal : srcReal;
tmpImag = (dstImag) ? dstImag : srcImag;
// src!=dst -> copy the image
if (srcReal && dstReal) tmpReal->Copy(*srcReal,true,false,false);
if (srcImag && dstImag) tmpImag->Copy(*srcImag,true,false,false);
// dst&&src are empty -> create new one, else turn to GrayScale
if (srcReal==0 && dstReal==0){
tmpReal = new CxImage(w,h,8);
tmpReal->Clear(0);
tmpReal->SetGrayPalette();
} else {
if (!tmpReal->IsGrayScale()) tmpReal->GrayScale();
}
if (srcImag==0 && dstImag==0){
tmpImag = new CxImage(w,h,8);
tmpImag->Clear(0);
tmpImag->SetGrayPalette();
} else {
if (!tmpImag->IsGrayScale()) tmpImag->GrayScale();
}
if (!(tmpReal->IsValid() && tmpImag->IsValid())){
if (srcReal==0 && dstReal==0) delete tmpReal;
if (srcImag==0 && dstImag==0) delete tmpImag;
return false;
}
//resample for FFT, if necessary
tmpReal->Resample(w,h,0);
tmpImag->Resample(w,h,0);
//ok, here we have 2 (w x h), grayscale images ready for a FFT
double* real;
double* imag;
long j,k,m;
_complex **grid;
//double mean = tmpReal->Mean();
/* Allocate memory for the grid */
grid = (_complex **)malloc(w * sizeof(_complex));
for (k=0;k<w;k++) {
grid[k] = (_complex *)malloc(h * sizeof(_complex));
}
for (j=0;j<h;j++) {
for (k=0;k<w;k++) {
grid[k][j].x = tmpReal->GetPixelIndex(k,j)-128;
grid[k][j].y = tmpImag->GetPixelIndex(k,j)-128;
}
}
//DFT buffers
double *real2,*imag2;
real2 = (double*)malloc(max(w,h) * sizeof(double));
imag2 = (double*)malloc(max(w,h) * sizeof(double));
/* Transform the rows */
real = (double *)malloc(w * sizeof(double));
imag = (double *)malloc(w * sizeof(double));
m=0;
while((1<<m)<w) m++;
for (j=0;j<h;j++) {
for (k=0;k<w;k++) {
real[k] = grid[k][j].x;
imag[k] = grid[k][j].y;
}
if (bXpow2) FFT(direction,m,real,imag);
else DFT(direction,w,real,imag,real2,imag2);
for (k=0;k<w;k++) {
grid[k][j].x = real[k];
grid[k][j].y = imag[k];
}
}
free(real);
free(imag);
/* Transform the columns */
real = (double *)malloc(h * sizeof(double));
imag = (double *)malloc(h * sizeof(double));
m=0;
while((1<<m)<h) m++;
for (k=0;k<w;k++) {
for (j=0;j<h;j++) {
real[j] = grid[k][j].x;
imag[j] = grid[k][j].y;
}
if (bYpow2) FFT(direction,m,real,imag);
else DFT(direction,h,real,imag,real2,imag2);
for (j=0;j<h;j++) {
grid[k][j].x = real[j];
grid[k][j].y = imag[j];
}
}
free(real);
free(imag);
free(real2);
free(imag2);
/* converting from double to byte, there is a HUGE loss in the dynamics
"nn" tries to keep an acceptable SNR, but 8bit=48dB: don't ask more */
double nn=pow((double)2,(double)log((double)max(w,h))/(double)log((double)2)-4);
//reversed gain for reversed transform
if (direction==-1) nn=1/nn;
//bMagnitude : just to see it on the screen
if (bMagnitude) nn*=4;
for (j=0;j<h;j++) {
for (k=0;k<w;k++) {
if (bMagnitude){
tmpReal->SetPixelIndex(k,j,(BYTE)max(0,min(255,(nn*(3+log(_cabs(grid[k][j])))))));
if (grid[k][j].x==0){
tmpImag->SetPixelIndex(k,j,(BYTE)max(0,min(255,(128+(atan(grid[k][j].y/0.0000000001)*nn)))));
} else {
tmpImag->SetPixelIndex(k,j,(BYTE)max(0,min(255,(128+(atan(grid[k][j].y/grid[k][j].x)*nn)))));
}
} else {
tmpReal->SetPixelIndex(k,j,(BYTE)max(0,min(255,(128 + grid[k][j].x*nn))));
tmpImag->SetPixelIndex(k,j,(BYTE)max(0,min(255,(128 + grid[k][j].y*nn))));
}
}
}
for (k=0;k<w;k++) free (grid[k]);
free (grid);
if (srcReal==0 && dstReal==0) delete tmpReal;
if (srcImag==0 && dstImag==0) delete tmpImag;
return true;
}
////////////////////////////////////////////////////////////////////////////////
bool CxImage::IsPowerof2(long x)
{
long i=0;
while ((1<<i)<x) i++;
if (x==(1<<i)) return true;
return false;
}
////////////////////////////////////////////////////////////////////////////////
/**
This computes an in-place complex-to-complex FFT
x and y are the real and imaginary arrays of n=2^m points.
o(n)=n*log2(n)
dir = 1 gives forward transform
dir = -1 gives reverse transform
Written by Paul Bourke, July 1998
FFT algorithm by Cooley and Tukey, 1965
*/
bool CxImage::FFT(int dir,int m,double *x,double *y)
{
long nn,i,i1,j,k,i2,l,l1,l2;
double c1,c2,tx,ty,t1,t2,u1,u2,z;
/* Calculate the number of points */
nn = 1<<m;
/* Do the bit reversal */
i2 = nn >> 1;
j = 0;
for (i=0;i<nn-1;i++) {
if (i < j) {
tx = x[i];
ty = y[i];
x[i] = x[j];
y[i] = y[j];
x[j] = tx;
y[j] = ty;
}
k = i2;
while (k <= j) {
j -= k;
k >>= 1;
}
j += k;
}
/* Compute the FFT */
c1 = -1.0;
c2 = 0.0;
l2 = 1;
for (l=0;l<m;l++) {
l1 = l2;
l2 <<= 1;
u1 = 1.0;
u2 = 0.0;
for (j=0;j<l1;j++) {
for (i=j;i<nn;i+=l2) {
i1 = i + l1;
t1 = u1 * x[i1] - u2 * y[i1];
t2 = u1 * y[i1] + u2 * x[i1];
x[i1] = x[i] - t1;
y[i1] = y[i] - t2;
x[i] += t1;
y[i] += t2;
}
z = u1 * c1 - u2 * c2;
u2 = u1 * c2 + u2 * c1;
u1 = z;
}
c2 = sqrt((1.0 - c1) / 2.0);
if (dir == 1)
c2 = -c2;
c1 = sqrt((1.0 + c1) / 2.0);
}
/* Scaling for forward transform */
if (dir == 1) {
for (i=0;i<nn;i++) {
x[i] /= (double)nn;
y[i] /= (double)nn;
}
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
Direct fourier transform o(n)=n^2
Written by Paul Bourke, July 1998
*/
bool CxImage::DFT(int dir,long m,double *x1,double *y1,double *x2,double *y2)
{
long i,k;
double arg;
double cosarg,sinarg;
for (i=0;i<m;i++) {
x2[i] = 0;
y2[i] = 0;
arg = - dir * 2.0 * PI * i / (double)m;
for (k=0;k<m;k++) {
cosarg = cos(k * arg);
sinarg = sin(k * arg);
x2[i] += (x1[k] * cosarg - y1[k] * sinarg);
y2[i] += (x1[k] * sinarg + y1[k] * cosarg);
}
}
/* Copy the data back */
if (dir == 1) {
for (i=0;i<m;i++) {
x1[i] = x2[i] / m;
y1[i] = y2[i] / m;
}
} else {
for (i=0;i<m;i++) {
x1[i] = x2[i];
y1[i] = y2[i];
}
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Combines different color components into a single image
* \param r,g,b: color channels
* \param a: alpha layer, can be NULL
* \param colorspace: 0 = RGB, 1 = HSL, 2 = YUV, 3 = YIQ, 4 = XYZ
* \return true if everything is ok
*/
bool CxImage::Combine(CxImage* r,CxImage* g,CxImage* b,CxImage* a, long colorspace)
{
if (r==0 || g==0 || b==0) return false;
long w = r->GetWidth();
long h = r->GetHeight();
Create(w,h,24);
g->Resample(w,h);
b->Resample(w,h);
if (a) {
a->Resample(w,h);
#if CXIMAGE_SUPPORT_ALPHA
AlphaCreate();
#endif //CXIMAGE_SUPPORT_ALPHA
}
RGBQUAD c;
for (long y=0;y<h;y++){
info.nProgress = (long)(100*y/h); //<Anatoly Ivasyuk>
for (long x=0;x<w;x++){
c.rgbRed=r->GetPixelIndex(x,y);
c.rgbGreen=g->GetPixelIndex(x,y);
c.rgbBlue=b->GetPixelIndex(x,y);
switch (colorspace){
case 1:
SetPixelColor(x,y,HSLtoRGB(c));
break;
case 2:
SetPixelColor(x,y,YUVtoRGB(c));
break;
case 3:
SetPixelColor(x,y,YIQtoRGB(c));
break;
case 4:
SetPixelColor(x,y,XYZtoRGB(c));
break;
default:
SetPixelColor(x,y,c);
}
#if CXIMAGE_SUPPORT_ALPHA
if (a) AlphaSet(x,y,a->GetPixelIndex(x,y));
#endif //CXIMAGE_SUPPORT_ALPHA
}
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Smart blurring to remove small defects, dithering or artifacts.
* \param radius: normally between 0.01 and 0.5
* \param niterations: should be trimmed with radius, to avoid blurring should be (radius*niterations)<1
* \param colorspace: 0 = RGB, 1 = HSL, 2 = YUV, 3 = YIQ, 4 = XYZ
* \return true if everything is ok
*/
bool CxImage::Repair(float radius, long niterations, long colorspace)
{
if (!IsValid()) return false;
long w = GetWidth();
long h = GetHeight();
CxImage r,g,b;
r.Create(w,h,8);
g.Create(w,h,8);
b.Create(w,h,8);
switch (colorspace){
case 1:
SplitHSL(&r,&g,&b);
break;
case 2:
SplitYUV(&r,&g,&b);
break;
case 3:
SplitYIQ(&r,&g,&b);
break;
case 4:
SplitXYZ(&r,&g,&b);
break;
default:
SplitRGB(&r,&g,&b);
}
for (int i=0; i<niterations; i++){
RepairChannel(&r,radius);
RepairChannel(&g,radius);
RepairChannel(&b,radius);
}
CxImage* a=NULL;
#if CXIMAGE_SUPPORT_ALPHA
if (AlphaIsValid()){
a = new CxImage();
AlphaSplit(a);
}
#endif
Combine(&r,&g,&b,a,colorspace);
delete a;
return true;
}
////////////////////////////////////////////////////////////////////////////////
bool CxImage::RepairChannel(CxImage *ch, float radius)
{
if (ch==NULL) return false;
CxImage tmp(*ch);
if (!tmp.IsValid()) return false;
long w = ch->GetWidth()-1;
long h = ch->GetHeight()-1;
double correction,ix,iy,ixx,ixy,iyy,den,num;
int x,y,xy0,xp1,xm1,yp1,ym1;
for(x=1; x<w; x++){
for(y=1; y<h; y++){
xy0 = ch->GetPixelIndex(x,y);
xm1 = ch->GetPixelIndex(x-1,y);
xp1 = ch->GetPixelIndex(x+1,y);
ym1 = ch->GetPixelIndex(x,y-1);
yp1 = ch->GetPixelIndex(x,y+1);
ix= (xp1-xm1)/2.0;
iy= (yp1-ym1)/2.0;
ixx= xp1 - 2.0 * xy0 + xm1;
iyy= yp1 - 2.0 * xy0 + ym1;
ixy=(ch->GetPixelIndex(x+1,y+1)+ch->GetPixelIndex(x-1,y-1)-
ch->GetPixelIndex(x-1,y+1)-ch->GetPixelIndex(x+1,y-1))/4.0;
num= (1.0+iy*iy)*ixx - ix*iy*ixy + (1.0+ix*ix)*iyy;
den= 1.0+ix*ix+iy*iy;
correction = num/den;
tmp.SetPixelIndex(x,y,(BYTE)min(255,max(0,(xy0 + radius * correction))));
}
}
for (x=0;x<=w;x++){
tmp.SetPixelIndex(x,0,ch->GetPixelIndex(x,0));
tmp.SetPixelIndex(x,h,ch->GetPixelIndex(x,h));
}
for (y=0;y<=h;y++){
tmp.SetPixelIndex(0,y,ch->GetPixelIndex(0,y));
tmp.SetPixelIndex(w,y,ch->GetPixelIndex(w,y));
}
ch->Transfer(tmp);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Enhance the variations between adjacent pixels.
* Similar results can be achieved using Filter(),
* but the algorithms are different both in Edge() and in Contour().
* \return true if everything is ok
*/
bool CxImage::Contour()
{
if (!pDib) return false;
long Ksize = 3;
long k2 = Ksize/2;
long kmax= Ksize-k2;
long i,j,k;
BYTE maxr,maxg,maxb;
RGBQUAD pix1,pix2;
CxImage tmp(*this,pSelection!=0,true,true);
if (!tmp.IsValid()) return false;
long xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
for(long y=ymin; y<ymax; y++){
info.nProgress = (long)(100*y/head.biHeight);
if (info.nEscape) break;
for(long x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (SelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
pix1 = GetPixelColor(x,y);
maxr=maxg=maxb=0;
for(j=-k2, i=0;j<kmax;j++){
for(k=-k2;k<kmax;k++, i++){
pix2=GetPixelColor(x+j,y+k);
if ((pix2.rgbBlue-pix1.rgbBlue)>maxb) maxb = pix2.rgbBlue;
if ((pix2.rgbGreen-pix1.rgbGreen)>maxg) maxg = pix2.rgbGreen;
if ((pix2.rgbRed-pix1.rgbRed)>maxr) maxr = pix2.rgbRed;
}
}
pix1.rgbBlue=(BYTE)(255-maxb);
pix1.rgbGreen=(BYTE)(255-maxg);
pix1.rgbRed=(BYTE)(255-maxr);
tmp.SetPixelColor(x,y,pix1);
}
}
}
Transfer(tmp);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Adds a random offset to each pixel in the image
* \param radius: maximum pixel displacement
* \return true if everything is ok
*/
bool CxImage::Jitter(long radius)
{
if (!pDib) return false;
long nx,ny;
CxImage tmp(*this,pSelection!=0,true,true);
if (!tmp.IsValid()) return false;
long xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
for(long y=ymin; y<ymax; y++){
info.nProgress = (long)(100*y/head.biHeight);
if (info.nEscape) break;
for(long x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (SelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
nx=x+(long)((rand()/(float)RAND_MAX - 0.5)*(radius*2));
ny=y+(long)((rand()/(float)RAND_MAX - 0.5)*(radius*2));
if (!IsInside(nx,ny)) {
nx=x;
ny=y;
}
if (head.biClrUsed==0){
tmp.SetPixelColor(x,y,GetPixelColor(nx,ny));
} else {
tmp.SetPixelIndex(x,y,GetPixelIndex(nx,ny));
}
#if CXIMAGE_SUPPORT_ALPHA
tmp.AlphaSet(x,y,AlphaGet(nx,ny));
#endif //CXIMAGE_SUPPORT_ALPHA
}
}
}
Transfer(tmp);
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* generates a 1-D convolution matrix to be used for each pass of
* a two-pass gaussian blur. Returns the length of the matrix.
* \author [nipper]
*/
int CxImage::gen_convolve_matrix (float radius, float **cmatrix_p)
{
int matrix_length;
int matrix_midpoint;
float* cmatrix;
int i,j;
float std_dev;
float sum;
/* we want to generate a matrix that goes out a certain radius
* from the center, so we have to go out ceil(rad-0.5) pixels,
* inlcuding the center pixel. Of course, that's only in one direction,
* so we have to go the same amount in the other direction, but not count
* the center pixel again. So we double the previous result and subtract
* one.
* The radius parameter that is passed to this function is used as
* the standard deviation, and the radius of effect is the
* standard deviation * 2. It's a little confusing.
*/
radius = (float)fabs(radius) + 1.0f;
std_dev = radius;
radius = std_dev * 2;
/* go out 'radius' in each direction */
matrix_length = int (2 * ceil(radius-0.5) + 1);
if (matrix_length <= 0) matrix_length = 1;
matrix_midpoint = matrix_length/2 + 1;
*cmatrix_p = new float[matrix_length];
cmatrix = *cmatrix_p;
/* Now we fill the matrix by doing a numeric integration approximation
* from -2*std_dev to 2*std_dev, sampling 50 points per pixel.
* We do the bottom half, mirror it to the top half, then compute the
* center point. Otherwise asymmetric quantization errors will occur.
* The formula to integrate is e^-(x^2/2s^2).
*/
/* first we do the top (right) half of matrix */
for (i = matrix_length/2 + 1; i < matrix_length; i++)
{
float base_x = i - (float)floor((float)(matrix_length/2)) - 0.5f;
sum = 0;
for (j = 1; j <= 50; j++)
{
if ( base_x+0.02*j <= radius )
sum += (float)exp (-(base_x+0.02*j)*(base_x+0.02*j) /
(2*std_dev*std_dev));
}
cmatrix[i] = sum/50;
}
/* mirror the thing to the bottom half */
for (i=0; i<=matrix_length/2; i++) {
cmatrix[i] = cmatrix[matrix_length-1-i];
}
/* find center val -- calculate an odd number of quanta to make it symmetric,
* even if the center point is weighted slightly higher than others. */
sum = 0;
for (j=0; j<=50; j++)
{
sum += (float)exp (-(0.5+0.02*j)*(0.5+0.02*j) /
(2*std_dev*std_dev));
}
cmatrix[matrix_length/2] = sum/51;
/* normalize the distribution by scaling the total sum to one */
sum=0;
for (i=0; i<matrix_length; i++) sum += cmatrix[i];
for (i=0; i<matrix_length; i++) cmatrix[i] = cmatrix[i] / sum;
return matrix_length;
}
////////////////////////////////////////////////////////////////////////////////
/**
* generates a lookup table for every possible product of 0-255 and
* each value in the convolution matrix. The returned array is
* indexed first by matrix position, then by input multiplicand (?)
* value.
* \author [nipper]
*/
float* CxImage::gen_lookup_table (float *cmatrix, int cmatrix_length)
{
float* lookup_table = new float[cmatrix_length * 256];
float* lookup_table_p = lookup_table;
float* cmatrix_p = cmatrix;
for (int i=0; i<cmatrix_length; i++)
{
for (int j=0; j<256; j++)
{
*(lookup_table_p++) = *cmatrix_p * (float)j;
}
cmatrix_p++;
}
return lookup_table;
}
////////////////////////////////////////////////////////////////////////////////
/**
* this function is written as if it is blurring a column at a time,
* even though it can operate on rows, too. There is no difference
* in the processing of the lines, at least to the blur_line function.
* \author [nipper]
*/
void CxImage::blur_line (float *ctable, float *cmatrix, int cmatrix_length, BYTE* cur_col, BYTE* dest_col, int y, long bytes)
{
float scale;
float sum;
int i=0, j=0;
int row;
int cmatrix_middle = cmatrix_length/2;
float *cmatrix_p;
BYTE *cur_col_p;
BYTE *cur_col_p1;
BYTE *dest_col_p;
float *ctable_p;
/* this first block is the same as the non-optimized version --
* it is only used for very small pictures, so speed isn't a
* big concern.
*/
if (cmatrix_length > y)
{
for (row = 0; row < y ; row++)
{
scale=0;
/* find the scale factor */
for (j = 0; j < y ; j++)
{
/* if the index is in bounds, add it to the scale counter */
if ((j + cmatrix_length/2 - row >= 0) &&
(j + cmatrix_length/2 - row < cmatrix_length))
scale += cmatrix[j + cmatrix_length/2 - row];
}
for (i = 0; i<bytes; i++)
{
sum = 0;
for (j = 0; j < y; j++)
{
if ((j >= row - cmatrix_length/2) &&
(j <= row + cmatrix_length/2))
sum += cur_col[j*bytes + i] * cmatrix[j];
}
dest_col[row*bytes + i] = (BYTE)(0.5f + sum / scale);
}
}
}
else
{
/* for the edge condition, we only use available info and scale to one */
for (row = 0; row < cmatrix_middle; row++)
{
/* find scale factor */
scale=0;
for (j = cmatrix_middle - row; j<cmatrix_length; j++)
scale += cmatrix[j];
for (i = 0; i<bytes; i++)
{
sum = 0;
for (j = cmatrix_middle - row; j<cmatrix_length; j++)
{
sum += cur_col[(row + j-cmatrix_middle)*bytes + i] * cmatrix[j];
}
dest_col[row*bytes + i] = (BYTE)(0.5f + sum / scale);
}
}
/* go through each pixel in each col */
dest_col_p = dest_col + row*bytes;
for (; row < y-cmatrix_middle; row++)
{
cur_col_p = (row - cmatrix_middle) * bytes + cur_col;
for (i = 0; i<bytes; i++)
{
sum = 0;
cmatrix_p = cmatrix;
cur_col_p1 = cur_col_p;
ctable_p = ctable;
for (j = cmatrix_length; j>0; j--)
{
sum += *(ctable_p + *cur_col_p1);
cur_col_p1 += bytes;
ctable_p += 256;
}
cur_col_p++;
*(dest_col_p++) = (BYTE)(0.5f + sum);
}
}
/* for the edge condition , we only use available info, and scale to one */
for (; row < y; row++)
{
/* find scale factor */
scale=0;
for (j = 0; j< y-row + cmatrix_middle; j++)
scale += cmatrix[j];
for (i = 0; i<bytes; i++)
{
sum = 0;
for (j = 0; j<y-row + cmatrix_middle; j++)
{
sum += cur_col[(row + j-cmatrix_middle)*bytes + i] * cmatrix[j];
}
dest_col[row*bytes + i] = (BYTE) (0.5f + sum / scale);
}
}
}
}
////////////////////////////////////////////////////////////////////////////////
/**
* \author [nipper]
*/
bool CxImage::UnsharpMask(float radius /*= 5.0*/, float amount /*= 0.5*/, int threshold /*= 0*/)
{
if (!pDib) return false;
if (!(head.biBitCount == 24 || IsGrayScale()))
return false;
CxImage tmp(*this);
if (!tmp.IsValid()) return false;
CImageIterator itSrc(this);
CImageIterator itDst(&tmp);
// generate convolution matrix and make sure it's smaller than each dimension
float *cmatrix = NULL;
int cmatrix_length = gen_convolve_matrix(radius, &cmatrix);
// generate lookup table
float *ctable = gen_lookup_table(cmatrix, cmatrix_length);
double dbScaler = 33.3/head.biHeight;
int y;
// blur the rows
for (y=0;y<head.biHeight;y++)
{
if (info.nEscape) break;
info.nProgress = (long)(y*dbScaler);
blur_line(ctable, cmatrix, cmatrix_length, itSrc.GetRow(y), itDst.GetRow(y), head.biWidth, 3);
}
// blur the cols
BYTE* cur_col = new BYTE[head.biHeight*3];
BYTE* dest_col = new BYTE[head.biHeight*3];
dbScaler = 33.3/head.biWidth;
for (int x=0;x<head.biWidth;x++)
{
if (info.nEscape) break;
info.nProgress = (long)(33.3+x*dbScaler);
itSrc.GetCol(cur_col, x);
itDst.GetCol(dest_col, x);
blur_line(ctable, cmatrix, cmatrix_length, cur_col, dest_col, head.biHeight, 3);
itSrc.SetCol(cur_col, x);
itDst.SetCol(dest_col, x);
}
delete [] cur_col;
delete [] dest_col;
delete [] cmatrix;
delete [] ctable;
// these are used for the merging step
int diff;
int value;
dbScaler = 33.3/head.biHeight;
// merge the source and destination (which currently contains
// the blurred version) images
for (y=0;y<head.biHeight;y++)
{
if (info.nEscape) break;
info.nProgress = (long)(66.6+y*dbScaler);
value = 0;
// get source row
BYTE* cur_row = itSrc.GetRow(y);
// get dest row
BYTE* dest_row = itDst.GetRow(y);
// combine the two
for (int u = 0; u < head.biWidth; u++)
{
for (int v = 0; v < 3; v++)
{
diff = (cur_row[u*3+v] - dest_row[u*3+v]);
// do tresholding
if (abs (2 * diff) < threshold)
diff = 0;
value = int(cur_row[u*3+v] + amount * diff);
if (value < 0) dest_row[u*3+v] =0;
else if (value > 255) dest_row[u*3+v] = 255;
else dest_row[u*3+v] = value;
}
}
}
Transfer(tmp);
return TRUE;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Apply a look up table to the image.
* \param pLut: BYTE[256] look up table
* \return true if everything is ok
*/
bool CxImage::Lut(BYTE* pLut)
{
if (!pDib || !pLut) return false;
RGBQUAD color;
double dbScaler;
if (head.biClrUsed==0){
long xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
// faster loop for full image
BYTE *iSrc=info.pImage;
for(unsigned long i=0; i < head.biSizeImage ; i++){
*iSrc = pLut[*iSrc];
iSrc++;
}
return true;
}
dbScaler = 100.0/ymax;
for(long y=ymin; y<ymax; y++){
info.nProgress = (long)(y*dbScaler); //<Anatoly Ivasyuk>
for(long x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (SelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
color = GetPixelColor(x,y);
color.rgbRed = pLut[color.rgbRed];
color.rgbGreen = pLut[color.rgbGreen];
color.rgbBlue = pLut[color.rgbBlue];
SetPixelColor(x,y,color);
}
}
}
#if CXIMAGE_SUPPORT_SELECTION
} else if (pSelection && (head.biBitCount==8) && IsGrayScale()){
long xmin,xmax,ymin,ymax;
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
dbScaler = 100.0/ymax;
for(long y=ymin; y<ymax; y++){
info.nProgress = (long)(y*dbScaler);
for(long x=xmin; x<xmax; x++){
if (SelectionIsInside(x,y))
{
SetPixelIndex(x,y,pLut[GetPixelIndex(x,y)]);
}
}
}
#endif //CXIMAGE_SUPPORT_SELECTION
} else {
for(DWORD j=0; j<head.biClrUsed; j++){
color = GetPaletteColor((BYTE)j);
color.rgbRed = pLut[color.rgbRed];
color.rgbGreen = pLut[color.rgbGreen];
color.rgbBlue = pLut[color.rgbBlue];
SetPaletteColor((BYTE)j,color);
}
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Apply an indipendent look up table for each channel
* \param pLutR, pLutG, pLutB, pLutA: BYTE[256] look up tables
* \return true if everything is ok
*/
bool CxImage::Lut(BYTE* pLutR, BYTE* pLutG, BYTE* pLutB, BYTE* pLutA)
{
if (!pDib || !pLutR || !pLutG || !pLutB) return false;
RGBQUAD color;
double dbScaler;
if (head.biClrUsed==0){
long xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
dbScaler = 100.0/ymax;
for(long y=ymin; y<ymax; y++){
info.nProgress = (long)(y*dbScaler);
for(long x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (SelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
color = GetPixelColor(x,y);
color.rgbRed = pLutR[color.rgbRed];
color.rgbGreen = pLutG[color.rgbGreen];
color.rgbBlue = pLutB[color.rgbBlue];
if (pLutA) color.rgbReserved=pLutA[color.rgbReserved];
SetPixelColor(x,y,color,true);
}
}
}
} else {
for(DWORD j=0; j<head.biClrUsed; j++){
color = GetPaletteColor((BYTE)j);
color.rgbRed = pLutR[color.rgbRed];
color.rgbGreen = pLutG[color.rgbGreen];
color.rgbBlue = pLutB[color.rgbBlue];
SetPaletteColor((BYTE)j,color);
}
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
/**
* Use the RedEyeRemove function to remove the red-eye effect that frequently
* occurs in photographs of humans and animals. You must select the region
* where the function will filter the red channel.
* \return true if everything is ok
*/
bool CxImage::RedEyeRemove()
{
if (!pDib) return false;
RGBQUAD color;
long xmin,xmax,ymin,ymax;
if (pSelection){
xmin = info.rSelectionBox.left; xmax = info.rSelectionBox.right;
ymin = info.rSelectionBox.bottom; ymax = info.rSelectionBox.top;
} else {
xmin = ymin = 0;
xmax = head.biWidth; ymax=head.biHeight;
}
for(long y=ymin; y<ymax; y++){
for(long x=xmin; x<xmax; x++){
#if CXIMAGE_SUPPORT_SELECTION
if (SelectionIsInside(x,y))
#endif //CXIMAGE_SUPPORT_SELECTION
{
color = GetPixelColor(x,y);
color.rgbRed = min(color.rgbGreen,color.rgbBlue);
SetPixelColor(x,y,color);
}
}
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
/*bool CxImage::FloodFill(int x, int y, RGBQUAD FillColor)
{
//<JDL>
if (!pDib) return false;
FloodFill2(x,y,GetPixelColor(x,y),FillColor);
return true;
}
////////////////////////////////////////////////////////////////////////////////
void CxImage::FloodFill2(int x, int y, RGBQUAD old_color, RGBQUAD new_color)
{
// Fill in the actual pixels.
// Function steps recursively until it finds borders (color that is not old_color)
if (!IsInside(x,y)) return;
RGBQUAD r = GetPixelColor(x,y);
COLORREF cr = RGB(r.rgbRed,r.rgbGreen,r.rgbBlue);
if(cr == RGB(old_color.rgbRed,old_color.rgbGreen,old_color.rgbBlue)
&& cr != RGB(new_color.rgbRed,new_color.rgbGreen,new_color.rgbBlue) ) {
// the above if statement, after && is there to prevent
// stack overflows. The program will continue to find
// colors if you flood-fill an entire region (entire picture)
SetPixelColor(x,y,new_color);
FloodFill2((x+1),y,old_color,new_color);
FloodFill2((x-1),y,old_color,new_color);
FloodFill2(x,(y+1),old_color,new_color);
FloodFill2(x,(y-1),old_color,new_color);
}
}*/
///////////////////////////////////////////////////////////////////////////////
#endif //CXIMAGE_SUPPORT_DSP