blob: 7eac12069f7034a49a2f0f4b8b2d9092eba5a028 [file] [log] [blame]
# epydoc -- API Documentation Classes
#
# Copyright (C) 2005 Edward Loper
# Author: Edward Loper <edloper@loper.org>
# URL: <http://epydoc.sf.net>
#
# $Id: apidoc.py 1675 2008-01-29 17:12:56Z edloper $
"""
Classes for encoding API documentation about Python programs.
These classes are used as a common representation for combining
information derived from introspection and from parsing.
The API documentation for a Python program is encoded using a graph of
L{APIDoc} objects, each of which encodes information about a single
Python variable or value. C{APIDoc} has two direct subclasses:
L{VariableDoc}, for documenting variables; and L{ValueDoc}, for
documenting values. The C{ValueDoc} class is subclassed further, to
define the different pieces of information that should be recorded
about each value type:
G{classtree: APIDoc}
The distinction between variables and values is intentionally made
explicit. This allows us to distinguish information about a variable
itself (such as whether it should be considered 'public' in its
containing namespace) from information about the value it contains
(such as what type the value has). This distinction is also important
because several variables can contain the same value: each variable
should be described by a separate C{VariableDoc}; but we only need one
C{ValueDoc}, since they share a single value.
@todo: Add a cache to canonical name lookup?
"""
__docformat__ = 'epytext en'
######################################################################
## Imports
######################################################################
import types, re, os.path, pickle
from epydoc import log
import epydoc
import __builtin__
from epydoc.compat import * # Backwards compatibility
from epydoc.util import decode_with_backslashreplace, py_src_filename
import epydoc.markup.pyval_repr
######################################################################
# Dotted Names
######################################################################
class DottedName:
"""
A sequence of identifiers, separated by periods, used to name a
Python variable, value, or argument. The identifiers that make up
a dotted name can be accessed using the indexing operator:
>>> name = DottedName('epydoc', 'api_doc', 'DottedName')
>>> print name
epydoc.apidoc.DottedName
>>> name[1]
'api_doc'
"""
UNREACHABLE = "??"
_IDENTIFIER_RE = re.compile("""(?x)
(%s | # UNREACHABLE marker, or..
(script-)? # Prefix: script (not a module)
\w+ # Identifier (yes, identifiers starting with a
# digit are allowed. See SF bug #1649347)
'?) # Suffix: submodule that is shadowed by a var
(-\d+)? # Suffix: unreachable vals with the same name
$"""
% re.escape(UNREACHABLE))
class InvalidDottedName(ValueError):
"""
An exception raised by the DottedName constructor when one of
its arguments is not a valid dotted name.
"""
_ok_identifiers = set()
"""A cache of identifier strings that have been checked against
_IDENTIFIER_RE and found to be acceptable."""
def __init__(self, *pieces, **options):
"""
Construct a new dotted name from the given sequence of pieces,
each of which can be either a C{string} or a C{DottedName}.
Each piece is divided into a sequence of identifiers, and
these sequences are combined together (in order) to form the
identifier sequence for the new C{DottedName}. If a piece
contains a string, then it is divided into substrings by
splitting on periods, and each substring is checked to see if
it is a valid identifier.
As an optimization, C{pieces} may also contain a single tuple
of values. In that case, that tuple will be used as the
C{DottedName}'s identifiers; it will I{not} be checked to
see if it's valid.
@kwparam strict: if true, then raise an L{InvalidDottedName}
if the given name is invalid.
"""
if len(pieces) == 1 and isinstance(pieces[0], tuple):
self._identifiers = pieces[0] # Optimization
return
if len(pieces) == 0:
raise DottedName.InvalidDottedName('Empty DottedName')
self._identifiers = []
for piece in pieces:
if isinstance(piece, DottedName):
self._identifiers += piece._identifiers
elif isinstance(piece, basestring):
for subpiece in piece.split('.'):
if piece not in self._ok_identifiers:
if not self._IDENTIFIER_RE.match(subpiece):
if options.get('strict'):
raise DottedName.InvalidDottedName(
'Bad identifier %r' % (piece,))
else:
log.warning("Identifier %r looks suspicious; "
"using it anyway." % piece)
self._ok_identifiers.add(piece)
self._identifiers.append(subpiece)
else:
raise TypeError('Bad identifier %r: expected '
'DottedName or str' % (piece,))
self._identifiers = tuple(self._identifiers)
def __repr__(self):
idents = [`ident` for ident in self._identifiers]
return 'DottedName(' + ', '.join(idents) + ')'
def __str__(self):
"""
Return the dotted name as a string formed by joining its
identifiers with periods:
>>> print DottedName('epydoc', 'api_doc', DottedName')
epydoc.apidoc.DottedName
"""
return '.'.join(self._identifiers)
def __add__(self, other):
"""
Return a new C{DottedName} whose identifier sequence is formed
by adding C{other}'s identifier sequence to C{self}'s.
"""
if isinstance(other, (basestring, DottedName)):
return DottedName(self, other)
else:
return DottedName(self, *other)
def __radd__(self, other):
"""
Return a new C{DottedName} whose identifier sequence is formed
by adding C{self}'s identifier sequence to C{other}'s.
"""
if isinstance(other, (basestring, DottedName)):
return DottedName(other, self)
else:
return DottedName(*(list(other)+[self]))
def __getitem__(self, i):
"""
Return the C{i}th identifier in this C{DottedName}. If C{i} is
a non-empty slice, then return a C{DottedName} built from the
identifiers selected by the slice. If C{i} is an empty slice,
return an empty list (since empty C{DottedName}s are not valid).
"""
if isinstance(i, types.SliceType):
pieces = self._identifiers[i.start:i.stop]
if pieces: return DottedName(pieces)
else: return []
else:
return self._identifiers[i]
def __hash__(self):
return hash(self._identifiers)
def __cmp__(self, other):
"""
Compare this dotted name to C{other}. Two dotted names are
considered equal if their identifier subsequences are equal.
Ordering between dotted names is lexicographic, in order of
identifier from left to right.
"""
if not isinstance(other, DottedName):
return -1
return cmp(self._identifiers, other._identifiers)
def __len__(self):
"""
Return the number of identifiers in this dotted name.
"""
return len(self._identifiers)
def container(self):
"""
Return the DottedName formed by removing the last identifier
from this dotted name's identifier sequence. If this dotted
name only has one name in its identifier sequence, return
C{None} instead.
"""
if len(self._identifiers) == 1:
return None
else:
return DottedName(*self._identifiers[:-1])
def dominates(self, name, strict=False):
"""
Return true if this dotted name is equal to a prefix of
C{name}. If C{strict} is true, then also require that
C{self!=name}.
>>> DottedName('a.b').dominates(DottedName('a.b.c.d'))
True
"""
len_self = len(self._identifiers)
len_name = len(name._identifiers)
if (len_self > len_name) or (strict and len_self == len_name):
return False
# The following is redundant (the first clause is implied by
# the second), but is done as an optimization.
return ((self._identifiers[0] == name._identifiers[0]) and
self._identifiers == name._identifiers[:len_self])
def contextualize(self, context):
"""
If C{self} and C{context} share a common ancestor, then return
a name for C{self}, relative to that ancestor. If they do not
share a common ancestor (or if C{context} is C{UNKNOWN}), then
simply return C{self}.
This is used to generate shorter versions of dotted names in
cases where users can infer the intended target from the
context.
@type context: L{DottedName}
@rtype: L{DottedName}
"""
if context is UNKNOWN or not context or len(self) <= 1:
return self
if self[0] == context[0]:
return self[1:].contextualize(context[1:])
else:
return self
# Find the first index where self & context differ.
for i in range(min(len(context), len(self))):
if self._identifiers[i] != context._identifiers[i]:
first_difference = i
break
else:
first_difference = i+1
# Strip off anything before that index.
if first_difference == 0:
return self
elif first_difference == len(self):
return self[-1:]
else:
return self[first_difference:]
######################################################################
# UNKNOWN Value
######################################################################
class _Sentinel:
"""
A unique value that won't compare equal to any other value. This
class is used to create L{UNKNOWN}.
"""
def __init__(self, name):
self.name = name
def __repr__(self):
return '<%s>' % self.name
def __nonzero__(self):
raise ValueError('Sentinel value <%s> can not be used as a boolean' %
self.name)
UNKNOWN = _Sentinel('UNKNOWN')
"""A special value used to indicate that a given piece of
information about an object is unknown. This is used as the
default value for all instance variables."""
######################################################################
# API Documentation Objects: Abstract Base Classes
######################################################################
class APIDoc(object):
"""
API documentation information for a single element of a Python
program. C{APIDoc} itself is an abstract base class; subclasses
are used to specify what information should be recorded about each
type of program element. In particular, C{APIDoc} has two direct
subclasses, C{VariableDoc} for documenting variables and
C{ValueDoc} for documenting values; and the C{ValueDoc} class is
subclassed further for different value types.
Each C{APIDoc} subclass specifies the set of attributes that
should be used to record information about the corresponding
program element type. The default value for each attribute is
stored in the class; these default values can then be overridden
with instance variables. Most attributes use the special value
L{UNKNOWN} as their default value, to indicate that the correct
value for that attribute has not yet been determined. This makes
it easier to merge two C{APIDoc} objects that are documenting the
same element (in particular, to merge information about an element
that was derived from parsing with information that was derived
from introspection).
For all attributes with boolean values, use only the constants
C{True} and C{False} to designate true and false. In particular,
do I{not} use other values that evaluate as true or false, such as
C{2} or C{()}. This restriction makes it easier to handle
C{UNKNOWN} values. For example, to test if a boolean attribute is
C{True} or C{UNKNOWN}, use 'C{attrib in (True, UNKNOWN)}' or
'C{attrib is not False}'.
Two C{APIDoc} objects describing the same object can be X{merged},
using the method L{merge_and_overwrite(other)}. After two
C{APIDoc}s are merged, any changes to one will be reflected in the
other. This is accomplished by setting the two C{APIDoc} objects
to use a shared instance dictionary. See the documentation for
L{merge_and_overwrite} for more information, and some important
caveats about hashing.
"""
#{ Docstrings
docstring = UNKNOWN
"""@ivar: The documented item's docstring.
@type: C{string} or C{None}"""
docstring_lineno = UNKNOWN
"""@ivar: The line number on which the documented item's docstring
begins.
@type: C{int}"""
#} end of "docstrings" group
#{ Information Extracted from Docstrings
descr = UNKNOWN
"""@ivar: A description of the documented item, extracted from its
docstring.
@type: L{ParsedDocstring<epydoc.markup.ParsedDocstring>}"""
summary = UNKNOWN
"""@ivar: A summary description of the documented item, extracted from
its docstring.
@type: L{ParsedDocstring<epydoc.markup.ParsedDocstring>}"""
other_docs = UNKNOWN
"""@ivar: A flag indicating if the entire L{docstring} body (except tags
if any) is entirely included in the L{summary}.
@type: C{bool}"""
metadata = UNKNOWN
"""@ivar: Metadata about the documented item, extracted from fields in
its docstring. I{Currently} this is encoded as a list of tuples
C{(field, arg, descr)}. But that may change.
@type: C{(str, str, L{ParsedDocstring<markup.ParsedDocstring>})}"""
extra_docstring_fields = UNKNOWN
"""@ivar: A list of new docstring fields tags that are defined by the
documented item's docstring. These new field tags can be used by
this item or by any item it contains.
@type: L{DocstringField <epydoc.docstringparser.DocstringField>}"""
#} end of "information extracted from docstrings" group
#{ Source Information
docs_extracted_by = UNKNOWN # 'parser' or 'introspecter' or 'both'
"""@ivar: Information about where the information contained by this
C{APIDoc} came from. Can be one of C{'parser'},
C{'introspector'}, or C{'both'}.
@type: C{str}"""
#} end of "source information" group
def __init__(self, **kwargs):
"""
Construct a new C{APIDoc} object. Keyword arguments may be
used to initialize the new C{APIDoc}'s attributes.
@raise TypeError: If a keyword argument is specified that does
not correspond to a valid attribute for this (sub)class of
C{APIDoc}.
"""
if epydoc.DEBUG:
for key in kwargs:
if key[0] != '_' and not hasattr(self.__class__, key):
raise TypeError('%s got unexpected arg %r' %
(self.__class__.__name__, key))
self.__dict__.update(kwargs)
def _debug_setattr(self, attr, val):
"""
Modify an C{APIDoc}'s attribute. This is used when
L{epydoc.DEBUG} is true, to make sure we don't accidentally
set any inappropriate attributes on C{APIDoc} objects.
@raise AttributeError: If C{attr} is not a valid attribute for
this (sub)class of C{APIDoc}. (C{attr} is considered a
valid attribute iff C{self.__class__} defines an attribute
with that name.)
"""
# Don't intercept special assignments like __class__, or
# assignments to private variables.
if attr.startswith('_'):
return object.__setattr__(self, attr, val)
if not hasattr(self, attr):
raise AttributeError('%s does not define attribute %r' %
(self.__class__.__name__, attr))
self.__dict__[attr] = val
if epydoc.DEBUG:
__setattr__ = _debug_setattr
def __repr__(self):
return '<%s>' % self.__class__.__name__
def pp(self, doublespace=0, depth=5, exclude=(), include=()):
"""
Return a pretty-printed string representation for the
information contained in this C{APIDoc}.
"""
return pp_apidoc(self, doublespace, depth, exclude, include)
__str__ = pp
def specialize_to(self, cls):
"""
Change C{self}'s class to C{cls}. C{cls} must be a subclass
of C{self}'s current class. For example, if a generic
C{ValueDoc} was created for a value, and it is determined that
the value is a routine, you can update its class with:
>>> valdoc.specialize_to(RoutineDoc)
"""
if not issubclass(cls, self.__class__):
raise ValueError('Can not specialize to %r' % cls)
# Update the class.
self.__class__ = cls
# Update the class of any other apidoc's in the mergeset.
if self.__mergeset is not None:
for apidoc in self.__mergeset:
apidoc.__class__ = cls
# Re-initialize self, in case the subclass constructor does
# any special processing on its arguments.
self.__init__(**self.__dict__)
__has_been_hashed = False
"""True iff L{self.__hash__()} has ever been called."""
def __hash__(self):
self.__has_been_hashed = True
return id(self.__dict__)
def __cmp__(self, other):
if not isinstance(other, APIDoc): return -1
if self.__dict__ is other.__dict__: return 0
name_cmp = cmp(self.canonical_name, other.canonical_name)
if name_cmp == 0: return -1
else: return name_cmp
def is_detailed(self):
"""
Does this object deserve a box with extra details?
@return: True if the object needs extra details, else False.
@rtype: C{bool}
"""
if self.other_docs is True:
return True
if self.metadata is not UNKNOWN:
return bool(self.metadata)
__mergeset = None
"""The set of all C{APIDoc} objects that have been merged with
this C{APIDoc} (using L{merge_and_overwrite()}). Each C{APIDoc}
in this set shares a common instance dictionary (C{__dict__})."""
def merge_and_overwrite(self, other, ignore_hash_conflict=False):
"""
Combine C{self} and C{other} into a X{merged object}, such
that any changes made to one will affect the other. Any
attributes that C{other} had before merging will be discarded.
This is accomplished by copying C{self.__dict__} over
C{other.__dict__} and C{self.__class__} over C{other.__class__}.
Care must be taken with this method, since it modifies the
hash value of C{other}. To help avoid the problems that this
can cause, C{merge_and_overwrite} will raise an exception if
C{other} has ever been hashed, unless C{ignore_hash_conflict}
is True. Note that adding C{other} to a dictionary, set, or
similar data structure will implicitly cause it to be hashed.
If you do set C{ignore_hash_conflict} to True, then any
existing data structures that rely on C{other}'s hash staying
constant may become corrupted.
@return: C{self}
@raise ValueError: If C{other} has ever been hashed.
"""
# If we're already merged, then there's nothing to do.
if (self.__dict__ is other.__dict__ and
self.__class__ is other.__class__): return self
if other.__has_been_hashed and not ignore_hash_conflict:
raise ValueError("%r has already been hashed! Merging it "
"would cause its has value to change." % other)
# If other was itself already merged with anything,
# then we need to merge those too.
a,b = (self.__mergeset, other.__mergeset)
mergeset = (self.__mergeset or [self]) + (other.__mergeset or [other])
other.__dict__.clear()
for apidoc in mergeset:
#if apidoc is self: pass
apidoc.__class__ = self.__class__
apidoc.__dict__ = self.__dict__
self.__mergeset = mergeset
# Sanity chacks.
assert self in mergeset and other in mergeset
for apidoc in mergeset:
assert apidoc.__dict__ is self.__dict__
# Return self.
return self
def apidoc_links(self, **filters):
"""
Return a list of all C{APIDoc}s that are directly linked from
this C{APIDoc} (i.e., are contained or pointed to by one or
more of this C{APIDoc}'s attributes.)
Keyword argument C{filters} can be used to selectively exclude
certain categories of attribute value. For example, using
C{includes=False} will exclude variables that were imported
from other modules; and C{subclasses=False} will exclude
subclasses. The filter categories currently supported by
epydoc are:
- C{imports}: Imported variables.
- C{packages}: Containing packages for modules.
- C{submodules}: Contained submodules for packages.
- C{bases}: Bases for classes.
- C{subclasses}: Subclasses for classes.
- C{variables}: All variables.
- C{private}: Private variables.
- C{overrides}: Points from class variables to the variables
they override. This filter is False by default.
"""
return []
def reachable_valdocs(root, **filters):
"""
Return a list of all C{ValueDoc}s that can be reached, directly or
indirectly from the given root list of C{ValueDoc}s.
@param filters: A set of filters that can be used to prevent
C{reachable_valdocs} from following specific link types when
looking for C{ValueDoc}s that can be reached from the root
set. See C{APIDoc.apidoc_links} for a more complete
description.
"""
apidoc_queue = list(root)
val_set = set()
var_set = set()
while apidoc_queue:
api_doc = apidoc_queue.pop()
if isinstance(api_doc, ValueDoc):
val_set.add(api_doc)
else:
var_set.add(api_doc)
apidoc_queue.extend([v for v in api_doc.apidoc_links(**filters)
if v not in val_set and v not in var_set])
return val_set
######################################################################
# Variable Documentation Objects
######################################################################
class VariableDoc(APIDoc):
"""
API documentation information about a single Python variable.
@note: The only time a C{VariableDoc} will have its own docstring
is if that variable was created using an assignment statement, and
that assignment statement had a docstring-comment or was followed
by a pseudo-docstring.
"""
#{ Basic Variable Information
name = UNKNOWN
"""@ivar: The name of this variable in its containing namespace.
@type: C{str}"""
container = UNKNOWN
"""@ivar: API documentation for the namespace that contains this
variable.
@type: L{ValueDoc}"""
canonical_name = UNKNOWN
"""@ivar: A dotted name that serves as a unique identifier for
this C{VariableDoc}. It should be formed by concatenating
the C{VariableDoc}'s C{container} with its C{name}.
@type: L{DottedName}"""
value = UNKNOWN
"""@ivar: The API documentation for this variable's value.
@type: L{ValueDoc}"""
#}
#{ Information Extracted from Docstrings
type_descr = UNKNOWN
"""@ivar: A description of the variable's expected type, extracted from
its docstring.
@type: L{ParsedDocstring<epydoc.markup.ParsedDocstring>}"""
#} end of "information extracted from docstrings" group
#{ Information about Imported Variables
imported_from = UNKNOWN
"""@ivar: The fully qualified dotted name of the variable that this
variable's value was imported from. This attribute should only
be defined if C{is_instvar} is true.
@type: L{DottedName}"""
is_imported = UNKNOWN
"""@ivar: Was this variable's value imported from another module?
(Exception: variables that are explicitly included in __all__ have
C{is_imported} set to C{False}, even if they are in fact
imported.)
@type: C{bool}"""
#} end of "information about imported variables" group
#{ Information about Variables in Classes
is_instvar = UNKNOWN
"""@ivar: If true, then this variable is an instance variable; if false,
then this variable is a class variable. This attribute should
only be defined if the containing namespace is a class
@type: C{bool}"""
overrides = UNKNOWN # [XXX] rename -- don't use a verb.
"""@ivar: The API documentation for the variable that is overridden by
this variable. This attribute should only be defined if the
containing namespace is a class.
@type: L{VariableDoc}"""
#} end of "information about variables in classes" group
#{ Flags
is_alias = UNKNOWN
"""@ivar: Is this variable an alias for another variable with the same
value? If so, then this variable will be dispreferred when
assigning canonical names.
@type: C{bool}"""
is_public = UNKNOWN
"""@ivar: Is this variable part of its container's public API?
@type: C{bool}"""
#} end of "flags" group
def __init__(self, **kwargs):
APIDoc.__init__(self, **kwargs)
if self.is_public is UNKNOWN and self.name is not UNKNOWN:
self.is_public = (not self.name.startswith('_') or
self.name.endswith('_'))
def __repr__(self):
if self.canonical_name is not UNKNOWN:
return '<%s %s>' % (self.__class__.__name__, self.canonical_name)
if self.name is not UNKNOWN:
return '<%s %s>' % (self.__class__.__name__, self.name)
else:
return '<%s>' % self.__class__.__name__
def _get_defining_module(self):
if self.container is UNKNOWN:
return UNKNOWN
return self.container.defining_module
defining_module = property(_get_defining_module, doc="""
A read-only property that can be used to get the variable's
defining module. This is defined as the defining module
of the variable's container.""")
def apidoc_links(self, **filters):
# nb: overrides filter is *False* by default.
if (filters.get('overrides', False) and
(self.overrides not in (None, UNKNOWN))):
overrides = [self.overrides]
else:
overrides = []
if self.value in (None, UNKNOWN):
return []+overrides
else:
return [self.value]+overrides
def is_detailed(self):
pval = super(VariableDoc, self).is_detailed()
if pval or self.value in (None, UNKNOWN):
return pval
if (self.overrides not in (None, UNKNOWN) and
isinstance(self.value, RoutineDoc)):
return True
if isinstance(self.value, GenericValueDoc):
# [XX] This is a little hackish -- we assume that the
# summary lines will have SUMMARY_REPR_LINELEN chars,
# that len(name) of those will be taken up by the name,
# and that 3 of those will be taken up by " = " between
# the name & val. Note that if any docwriter uses a
# different formula for maxlen for this, then it will
# not get the right value for is_detailed().
maxlen = self.value.SUMMARY_REPR_LINELEN-3-len(self.name)
return (not self.value.summary_pyval_repr(maxlen).is_complete)
else:
return self.value.is_detailed()
######################################################################
# Value Documentation Objects
######################################################################
class ValueDoc(APIDoc):
"""
API documentation information about a single Python value.
"""
canonical_name = UNKNOWN
"""@ivar: A dotted name that serves as a unique identifier for
this C{ValueDoc}'s value. If the value can be reached using a
single sequence of identifiers (given the appropriate imports),
then that sequence of identifiers is used as its canonical name.
If the value can be reached by multiple sequences of identifiers
(i.e., if it has multiple aliases), then one of those sequences of
identifiers is used. If the value cannot be reached by any
sequence of identifiers (e.g., if it was used as a base class but
then its variable was deleted), then its canonical name will start
with C{'??'}. If necessary, a dash followed by a number will be
appended to the end of a non-reachable identifier to make its
canonical name unique.
When possible, canonical names are chosen when new C{ValueDoc}s
are created. However, this is sometimes not possible. If a
canonical name can not be chosen when the C{ValueDoc} is created,
then one will be assigned by L{assign_canonical_names()
<docbuilder.assign_canonical_names>}.
@type: L{DottedName}"""
#{ Value Representation
pyval = UNKNOWN
"""@ivar: A pointer to the actual Python object described by this
C{ValueDoc}. This is used to display the value (e.g., when
describing a variable.) Use L{pyval_repr()} to generate a
plaintext string representation of this value.
@type: Python object"""
parse_repr = UNKNOWN
"""@ivar: A text representation of this value, extracted from
parsing its source code. This representation may not accurately
reflect the actual value (e.g., if the value was modified after
the initial assignment).
@type: C{unicode}"""
REPR_MAXLINES = 5
"""@cvar: The maximum number of lines of text that should be
generated by L{pyval_repr()}. If the string representation does
not fit in this number of lines, an ellpsis marker (...) will
be placed at the end of the formatted representation."""
REPR_LINELEN = 75
"""@cvar: The maximum number of characters for lines of text that
should be generated by L{pyval_repr()}. Any lines that exceed
this number of characters will be line-wrappped; The S{crarr}
symbol will be used to indicate that the line was wrapped."""
SUMMARY_REPR_LINELEN = 75
"""@cvar: The maximum number of characters for the single-line
text representation generated by L{summary_pyval_repr()}. If
the value's representation does not fit in this number of
characters, an ellipsis marker (...) will be placed at the end
of the formatted representation."""
REPR_MIN_SCORE = 0
"""@cvar: The minimum score that a value representation based on
L{pyval} should have in order to be used instead of L{parse_repr}
as the canonical representation for this C{ValueDoc}'s value.
@see: L{epydoc.markup.pyval_repr}"""
#} end of "value representation" group
#{ Context
defining_module = UNKNOWN
"""@ivar: The documentation for the module that defines this
value. This is used, e.g., to lookup the appropriate markup
language for docstrings. For a C{ModuleDoc},
C{defining_module} should be C{self}.
@type: L{ModuleDoc}"""
#} end of "context group"
#{ Information about Imported Variables
proxy_for = None # [xx] in progress.
"""@ivar: If C{proxy_for} is not None, then this value was
imported from another file. C{proxy_for} is the dotted name of
the variable that this value was imported from. If that
variable is documented, then its C{value} may contain more
complete API documentation about this value. The C{proxy_for}
attribute is used by the source code parser to link imported
values to their source values (in particular, for base
classes). When possible, these proxy C{ValueDoc}s are replaced
by the imported value's C{ValueDoc} by
L{link_imports()<docbuilder.link_imports>}.
@type: L{DottedName}"""
#} end of "information about imported variables" group
#: @ivar:
#: This is currently used to extract values from __all__, etc, in
#: the docparser module; maybe I should specialize
#: process_assignment and extract it there? Although, for __all__,
#: it's not clear where I'd put the value, since I just use it to
#: set private/public/imported attribs on other vars (that might not
#: exist yet at the time.)
toktree = UNKNOWN
def __repr__(self):
if self.canonical_name is not UNKNOWN:
return '<%s %s>' % (self.__class__.__name__, self.canonical_name)
else:
return '<%s %s>' % (self.__class__.__name__,
self.summary_pyval_repr().to_plaintext(None))
def __setstate__(self, state):
self.__dict__ = state
def __getstate__(self):
"""
State serializer for the pickle module. This is necessary
because sometimes the C{pyval} attribute contains an
un-pickleable value.
"""
# Construct our pickled dictionary. Maintain this dictionary
# as a private attribute, so we can reuse it later, since
# merged objects need to share a single dictionary.
if not hasattr(self, '_ValueDoc__pickle_state'):
# Make sure __pyval_repr & __summary_pyval_repr are cached:
self.pyval_repr(), self.summary_pyval_repr()
# Construct the dictionary; leave out 'pyval'.
self.__pickle_state = self.__dict__.copy()
self.__pickle_state['pyval'] = UNKNOWN
if not isinstance(self, GenericValueDoc):
assert self.__pickle_state != {}
# Return the pickle state.
return self.__pickle_state
#{ Value Representation
def pyval_repr(self):
"""
Return a formatted representation of the Python object
described by this C{ValueDoc}. This representation may
include data from introspection or parsing, and is authorative
as 'the best way to represent a Python value.' Any lines that
go beyond L{REPR_LINELEN} characters will be wrapped; and if
the representation as a whole takes more than L{REPR_MAXLINES}
lines, then it will be truncated (with an ellipsis marker).
This function will never return L{UNKNOWN} or C{None}.
@rtype: L{ColorizedPyvalRepr}
"""
# Use self.__pyval_repr to cache the result.
if not hasattr(self, '_ValueDoc__pyval_repr'):
self.__pyval_repr = epydoc.markup.pyval_repr.colorize_pyval(
self.pyval, self.parse_repr, self.REPR_MIN_SCORE,
self.REPR_LINELEN, self.REPR_MAXLINES, linebreakok=True)
return self.__pyval_repr
def summary_pyval_repr(self, max_len=None):
"""
Return a single-line formatted representation of the Python
object described by this C{ValueDoc}. This representation may
include data from introspection or parsing, and is authorative
as 'the best way to summarize a Python value.' If the
representation takes more then L{SUMMARY_REPR_LINELEN}
characters, then it will be truncated (with an ellipsis
marker). This function will never return L{UNKNOWN} or
C{None}.
@rtype: L{ColorizedPyvalRepr}
"""
# If max_len is specified, then do *not* cache the result.
if max_len is not None:
return epydoc.markup.pyval_repr.colorize_pyval(
self.pyval, self.parse_repr, self.REPR_MIN_SCORE,
max_len, maxlines=1, linebreakok=False)
# Use self.__summary_pyval_repr to cache the result.
if not hasattr(self, '_ValueDoc__summary_pyval_repr'):
self.__summary_pyval_repr = epydoc.markup.pyval_repr.colorize_pyval(
self.pyval, self.parse_repr, self.REPR_MIN_SCORE,
self.SUMMARY_REPR_LINELEN, maxlines=1, linebreakok=False)
return self.__summary_pyval_repr
#} end of "value representation" group
def apidoc_links(self, **filters):
return []
class GenericValueDoc(ValueDoc):
"""
API documentation about a 'generic' value, i.e., one that does not
have its own docstring or any information other than its value and
parse representation. C{GenericValueDoc}s do not get assigned
cannonical names.
"""
canonical_name = None
def is_detailed(self):
return (not self.summary_pyval_repr().is_complete)
class NamespaceDoc(ValueDoc):
"""
API documentation information about a singe Python namespace
value. (I.e., a module or a class).
"""
#{ Information about Variables
variables = UNKNOWN
"""@ivar: The contents of the namespace, encoded as a
dictionary mapping from identifiers to C{VariableDoc}s. This
dictionary contains all names defined by the namespace,
including imported variables, aliased variables, and variables
inherited from base classes (once L{inherit_docs()
<epydoc.docbuilder.inherit_docs>} has added them).
@type: C{dict} from C{string} to L{VariableDoc}"""
sorted_variables = UNKNOWN
"""@ivar: A list of all variables defined by this
namespace, in sorted order. The elements of this list should
exactly match the values of L{variables}. The sort order for
this list is defined as follows:
- Any variables listed in a C{@sort} docstring field are
listed in the order given by that field.
- These are followed by any variables that were found while
parsing the source code, in the order in which they were
defined in the source file.
- Finally, any remaining variables are listed in
alphabetical order.
@type: C{list} of L{VariableDoc}"""
sort_spec = UNKNOWN
"""@ivar: The order in which variables should be listed,
encoded as a list of names. Any variables whose names are not
included in this list should be listed alphabetically,
following the variables that are included.
@type: C{list} of C{str}"""
group_specs = UNKNOWN
"""@ivar: The groups that are defined by this namespace's
docstrings. C{group_specs} is encoded as an ordered list of
tuples C{(group_name, elt_names)}, where C{group_name} is the
name of a group and C{elt_names} is a list of element names in
that group. (An element can be a variable or a submodule.) A
'*' in an element name will match any string of characters.
@type: C{list} of C{(str,list)}"""
variable_groups = UNKNOWN
"""@ivar: A dictionary specifying what group each
variable belongs to. The keys of the dictionary are group
names, and the values are lists of C{VariableDoc}s. The order
that groups should be listed in should be taken from
L{group_specs}.
@type: C{dict} from C{str} to C{list} of L{VariableDoc}"""
#} end of group "information about variables"
def __init__(self, **kwargs):
kwargs.setdefault('variables', {})
APIDoc.__init__(self, **kwargs)
assert self.variables is not UNKNOWN
def is_detailed(self):
return True
def apidoc_links(self, **filters):
variables = filters.get('variables', True)
imports = filters.get('imports', True)
private = filters.get('private', True)
if variables and imports and private:
return self.variables.values() # list the common case first.
elif not variables:
return []
elif not imports and not private:
return [v for v in self.variables.values() if
v.is_imported != True and v.is_public != False]
elif not private:
return [v for v in self.variables.values() if
v.is_public != False]
elif not imports:
return [v for v in self.variables.values() if
v.is_imported != True]
assert 0, 'this line should be unreachable'
def init_sorted_variables(self):
"""
Initialize the L{sorted_variables} attribute, based on the
L{variables} and L{sort_spec} attributes. This should usually
be called after all variables have been added to C{variables}
(including any inherited variables for classes).
"""
unsorted = self.variables.copy()
self.sorted_variables = []
# Add any variables that are listed in sort_spec
if self.sort_spec is not UNKNOWN:
unused_idents = set(self.sort_spec)
for ident in self.sort_spec:
if ident in unsorted:
self.sorted_variables.append(unsorted.pop(ident))
unused_idents.discard(ident)
elif '*' in ident:
regexp = re.compile('^%s$' % ident.replace('*', '(.*)'))
# sort within matching group?
for name, var_doc in unsorted.items():
if regexp.match(name):
self.sorted_variables.append(unsorted.pop(name))
unused_idents.discard(ident)
for ident in unused_idents:
if ident not in ['__all__', '__docformat__', '__path__']:
log.warning("@sort: %s.%s not found" %
(self.canonical_name, ident))
# Add any remaining variables in alphabetical order.
var_docs = unsorted.items()
var_docs.sort()
for name, var_doc in var_docs:
self.sorted_variables.append(var_doc)
def init_variable_groups(self):
"""
Initialize the L{variable_groups} attribute, based on the
L{sorted_variables} and L{group_specs} attributes.
"""
if self.sorted_variables is UNKNOWN:
self.init_sorted_variables()
assert len(self.sorted_variables) == len(self.variables)
elts = [(v.name, v) for v in self.sorted_variables]
self._unused_groups = dict([(n,set(i)) for (n,i) in self.group_specs])
self.variable_groups = self._init_grouping(elts)
def group_names(self):
"""
Return a list of the group names defined by this namespace, in
the order in which they should be listed, with no duplicates.
"""
name_list = ['']
name_set = set()
for name, spec in self.group_specs:
if name not in name_set:
name_set.add(name)
name_list.append(name)
return name_list
def _init_grouping(self, elts):
"""
Divide a given a list of APIDoc objects into groups, as
specified by L{self.group_specs}.
@param elts: A list of tuples C{(name, apidoc)}.
@return: A list of tuples C{(groupname, elts)}, where
C{groupname} is the name of a group and C{elts} is a list of
C{APIDoc}s in that group. The first tuple has name C{''}, and
is used for ungrouped elements. The remaining tuples are
listed in the order that they appear in C{self.group_specs}.
Within each tuple, the elements are listed in the order that
they appear in C{api_docs}.
"""
# Make the common case fast.
if len(self.group_specs) == 0:
return {'': [elt[1] for elt in elts]}
ungrouped = set([elt_doc for (elt_name, elt_doc) in elts])
ungrouped = dict(elts)
groups = {}
for elt_name, elt_doc in elts:
for (group_name, idents) in self.group_specs:
group = groups.setdefault(group_name, [])
unused_groups = self._unused_groups[group_name]
for ident in idents:
if re.match('^%s$' % ident.replace('*', '(.*)'), elt_name):
unused_groups.discard(ident)
if elt_name in ungrouped:
group.append(ungrouped.pop(elt_name))
else:
log.warning("%s.%s in multiple groups" %
(self.canonical_name, elt_name))
# Convert ungrouped from an unordered set to an ordered list.
groups[''] = [elt_doc for (elt_name, elt_doc) in elts
if elt_name in ungrouped]
return groups
def report_unused_groups(self):
"""
Issue a warning for any @group items that were not used by
L{_init_grouping()}.
"""
for (group, unused_idents) in self._unused_groups.items():
for ident in unused_idents:
log.warning("@group %s: %s.%s not found" %
(group, self.canonical_name, ident))
class ModuleDoc(NamespaceDoc):
"""
API documentation information about a single module.
"""
#{ Information about the Module
filename = UNKNOWN
"""@ivar: The name of the file that defines the module.
@type: C{string}"""
docformat = UNKNOWN
"""@ivar: The markup language used by docstrings in this module.
@type: C{string}"""
#{ Information about Submodules
submodules = UNKNOWN
"""@ivar: Modules contained by this module (if this module
is a package). (Note: on rare occasions, a module may have a
submodule that is shadowed by a variable with the same name.)
@type: C{list} of L{ModuleDoc}"""
submodule_groups = UNKNOWN
"""@ivar: A dictionary specifying what group each
submodule belongs to. The keys of the dictionary are group
names, and the values are lists of C{ModuleDoc}s. The order
that groups should be listed in should be taken from
L{group_specs}.
@type: C{dict} from C{str} to C{list} of L{ModuleDoc}"""
#{ Information about Packages
package = UNKNOWN
"""@ivar: API documentation for the module's containing package.
@type: L{ModuleDoc}"""
is_package = UNKNOWN
"""@ivar: True if this C{ModuleDoc} describes a package.
@type: C{bool}"""
path = UNKNOWN
"""@ivar: If this C{ModuleDoc} describes a package, then C{path}
contains a list of directories that constitute its path (i.e.,
the value of its C{__path__} variable).
@type: C{list} of C{str}"""
#{ Information about Imported Variables
imports = UNKNOWN
"""@ivar: A list of the source names of variables imported into
this module. This is used to construct import graphs.
@type: C{list} of L{DottedName}"""
#}
def apidoc_links(self, **filters):
val_docs = NamespaceDoc.apidoc_links(self, **filters)
if (filters.get('packages', True) and
self.package not in (None, UNKNOWN)):
val_docs.append(self.package)
if (filters.get('submodules', True) and
self.submodules not in (None, UNKNOWN)):
val_docs += self.submodules
return val_docs
def init_submodule_groups(self):
"""
Initialize the L{submodule_groups} attribute, based on the
L{submodules} and L{group_specs} attributes.
"""
if self.submodules in (None, UNKNOWN):
return
self.submodules = sorted(self.submodules,
key=lambda m:m.canonical_name)
elts = [(m.canonical_name[-1], m) for m in self.submodules]
self.submodule_groups = self._init_grouping(elts)
def select_variables(self, group=None, value_type=None, public=None,
imported=None, detailed=None):
"""
Return a specified subset of this module's L{sorted_variables}
list. If C{value_type} is given, then only return variables
whose values have the specified type. If C{group} is given,
then only return variables that belong to the specified group.
@require: The L{sorted_variables}, L{variable_groups}, and
L{submodule_groups} attributes must be initialized before
this method can be used. See L{init_sorted_variables()},
L{init_variable_groups()}, and L{init_submodule_groups()}.
@param value_type: A string specifying the value type for
which variables should be returned. Valid values are:
- 'class' - variables whose values are classes or types.
- 'function' - variables whose values are functions.
- 'other' - variables whose values are not classes,
exceptions, types, or functions.
@type value_type: C{string}
@param group: The name of the group for which variables should
be returned. A complete list of the groups defined by
this C{ModuleDoc} is available in the L{group_names}
instance variable. The first element of this list is
always the special group name C{''}, which is used for
variables that do not belong to any group.
@type group: C{string}
@param detailed: If True (False), return only the variables
deserving (not deserving) a detailed informative box.
If C{None}, don't care.
@type detailed: C{bool}
"""
if (self.sorted_variables is UNKNOWN or
self.variable_groups is UNKNOWN):
raise ValueError('sorted_variables and variable_groups '
'must be initialized first.')
if group is None: var_list = self.sorted_variables
else:
var_list = self.variable_groups.get(group, self.sorted_variables)
# Public/private filter (Count UNKNOWN as public)
if public is True:
var_list = [v for v in var_list if v.is_public is not False]
elif public is False:
var_list = [v for v in var_list if v.is_public is False]
# Imported filter (Count UNKNOWN as non-imported)
if imported is True:
var_list = [v for v in var_list if v.is_imported is True]
elif imported is False:
var_list = [v for v in var_list if v.is_imported is not True]
# Detailed filter
if detailed is True:
var_list = [v for v in var_list if v.is_detailed() is True]
elif detailed is False:
var_list = [v for v in var_list if v.is_detailed() is not True]
# [xx] Modules are not currently included in any of these
# value types.
if value_type is None:
return var_list
elif value_type == 'class':
return [var_doc for var_doc in var_list
if (isinstance(var_doc.value, ClassDoc))]
elif value_type == 'function':
return [var_doc for var_doc in var_list
if isinstance(var_doc.value, RoutineDoc)]
elif value_type == 'other':
return [var_doc for var_doc in var_list
if not isinstance(var_doc.value,
(ClassDoc, RoutineDoc, ModuleDoc))]
else:
raise ValueError('Bad value type %r' % value_type)
class ClassDoc(NamespaceDoc):
"""
API documentation information about a single class.
"""
#{ Information about Base Classes
bases = UNKNOWN
"""@ivar: API documentation for the class's base classes.
@type: C{list} of L{ClassDoc}"""
#{ Information about Subclasses
subclasses = UNKNOWN
"""@ivar: API documentation for the class's known subclasses.
@type: C{list} of L{ClassDoc}"""
#}
def apidoc_links(self, **filters):
val_docs = NamespaceDoc.apidoc_links(self, **filters)
if (filters.get('bases', True) and
self.bases not in (None, UNKNOWN)):
val_docs += self.bases
if (filters.get('subclasses', True) and
self.subclasses not in (None, UNKNOWN)):
val_docs += self.subclasses
return val_docs
def is_type(self):
if self.canonical_name == DottedName('type'): return True
if self.bases is UNKNOWN: return False
for base in self.bases:
if isinstance(base, ClassDoc) and base.is_type():
return True
return False
def is_exception(self):
if self.canonical_name == DottedName('Exception'): return True
if self.bases is UNKNOWN: return False
for base in self.bases:
if isinstance(base, ClassDoc) and base.is_exception():
return True
return False
def is_newstyle_class(self):
if self.canonical_name == DottedName('object'): return True
if self.bases is UNKNOWN: return False
for base in self.bases:
if isinstance(base, ClassDoc) and base.is_newstyle_class():
return True
return False
def mro(self, warn_about_bad_bases=False):
if self.is_newstyle_class():
return self._c3_mro(warn_about_bad_bases)
else:
return self._dfs_bases([], set(), warn_about_bad_bases)
def _dfs_bases(self, mro, seen, warn_about_bad_bases):
if self in seen: return mro
mro.append(self)
seen.add(self)
if self.bases is not UNKNOWN:
for base in self.bases:
if isinstance(base, ClassDoc) and base.proxy_for is None:
base._dfs_bases(mro, seen, warn_about_bad_bases)
elif warn_about_bad_bases:
self._report_bad_base(base)
return mro
def _c3_mro(self, warn_about_bad_bases):
"""
Compute the class precedence list (mro) according to C3.
@seealso: U{http://www.python.org/2.3/mro.html}
"""
bases = [base for base in self.bases if isinstance(base, ClassDoc)]
if len(bases) != len(self.bases) and warn_about_bad_bases:
for base in self.bases:
if (not isinstance(base, ClassDoc) or
base.proxy_for is not None):
self._report_bad_base(base)
w = [warn_about_bad_bases]*len(bases)
return self._c3_merge([[self]] + map(ClassDoc._c3_mro, bases, w) +
[list(bases)])
def _report_bad_base(self, base):
if not isinstance(base, ClassDoc):
if not isinstance(base, GenericValueDoc):
base_name = base.canonical_name
elif base.parse_repr is not UNKNOWN:
base_name = base.parse_repr
else:
base_name = '%r' % base
log.warning("%s's base %s is not a class" %
(self.canonical_name, base_name))
elif base.proxy_for is not None:
log.warning("No information available for %s's base %s" %
(self.canonical_name, base.proxy_for))
def _c3_merge(self, seqs):
"""
Helper function for L{_c3_mro}.
"""
res = []
while 1:
nonemptyseqs=[seq for seq in seqs if seq]
if not nonemptyseqs: return res
for seq in nonemptyseqs: # find merge candidates among seq heads
cand = seq[0]
nothead=[s for s in nonemptyseqs if cand in s[1:]]
if nothead: cand=None #reject candidate
else: break
if not cand: raise "Inconsistent hierarchy"
res.append(cand)
for seq in nonemptyseqs: # remove cand
if seq[0] == cand: del seq[0]
def select_variables(self, group=None, value_type=None, inherited=None,
public=None, imported=None, detailed=None):
"""
Return a specified subset of this class's L{sorted_variables}
list. If C{value_type} is given, then only return variables
whose values have the specified type. If C{group} is given,
then only return variables that belong to the specified group.
If C{inherited} is True, then only return inherited variables;
if C{inherited} is False, then only return local variables.
@require: The L{sorted_variables} and L{variable_groups}
attributes must be initialized before this method can be
used. See L{init_sorted_variables()} and
L{init_variable_groups()}.
@param value_type: A string specifying the value type for
which variables should be returned. Valid values are:
- 'instancemethod' - variables whose values are
instance methods.
- 'classmethod' - variables whose values are class
methods.
- 'staticmethod' - variables whose values are static
methods.
- 'properties' - variables whose values are properties.
- 'class' - variables whose values are nested classes
(including exceptions and types).
- 'instancevariable' - instance variables. This includes
any variables that are explicitly marked as instance
variables with docstring fields; and variables with
docstrings that are initialized in the constructor.
- 'classvariable' - class variables. This includes any
variables that are not included in any of the above
categories.
@type value_type: C{string}
@param group: The name of the group for which variables should
be returned. A complete list of the groups defined by
this C{ClassDoc} is available in the L{group_names}
instance variable. The first element of this list is
always the special group name C{''}, which is used for
variables that do not belong to any group.
@type group: C{string}
@param inherited: If C{None}, then return both inherited and
local variables; if C{True}, then return only inherited
variables; if C{False}, then return only local variables.
@param detailed: If True (False), return only the variables
deserving (not deserving) a detailed informative box.
If C{None}, don't care.
@type detailed: C{bool}
"""
if (self.sorted_variables is UNKNOWN or
self.variable_groups is UNKNOWN):
raise ValueError('sorted_variables and variable_groups '
'must be initialized first.')
if group is None: var_list = self.sorted_variables
else: var_list = self.variable_groups[group]
# Public/private filter (Count UNKNOWN as public)
if public is True:
var_list = [v for v in var_list if v.is_public is not False]
elif public is False:
var_list = [v for v in var_list if v.is_public is False]
# Inherited filter (Count UNKNOWN as non-inherited)
if inherited is None: pass
elif inherited:
var_list = [v for v in var_list if v.container != self]
else:
var_list = [v for v in var_list if v.container == self ]
# Imported filter (Count UNKNOWN as non-imported)
if imported is True:
var_list = [v for v in var_list if v.is_imported is True]
elif imported is False:
var_list = [v for v in var_list if v.is_imported is not True]
# Detailed filter
if detailed is True:
var_list = [v for v in var_list if v.is_detailed() is True]
elif detailed is False:
var_list = [v for v in var_list if v.is_detailed() is not True]
if value_type is None:
return var_list
elif value_type == 'method':
return [var_doc for var_doc in var_list
if (isinstance(var_doc.value, RoutineDoc) and
var_doc.is_instvar in (False, UNKNOWN))]
elif value_type == 'instancemethod':
return [var_doc for var_doc in var_list
if (isinstance(var_doc.value, RoutineDoc) and
not isinstance(var_doc.value, ClassMethodDoc) and
not isinstance(var_doc.value, StaticMethodDoc) and
var_doc.is_instvar in (False, UNKNOWN))]
elif value_type == 'classmethod':
return [var_doc for var_doc in var_list
if (isinstance(var_doc.value, ClassMethodDoc) and
var_doc.is_instvar in (False, UNKNOWN))]
elif value_type == 'staticmethod':
return [var_doc for var_doc in var_list
if (isinstance(var_doc.value, StaticMethodDoc) and
var_doc.is_instvar in (False, UNKNOWN))]
elif value_type == 'property':
return [var_doc for var_doc in var_list
if (isinstance(var_doc.value, PropertyDoc) and
var_doc.is_instvar in (False, UNKNOWN))]
elif value_type == 'class':
return [var_doc for var_doc in var_list
if (isinstance(var_doc.value, ClassDoc) and
var_doc.is_instvar in (False, UNKNOWN))]
elif value_type == 'instancevariable':
return [var_doc for var_doc in var_list
if var_doc.is_instvar is True]
elif value_type == 'classvariable':
return [var_doc for var_doc in var_list
if (var_doc.is_instvar in (False, UNKNOWN) and
not isinstance(var_doc.value,
(RoutineDoc, ClassDoc, PropertyDoc)))]
else:
raise ValueError('Bad value type %r' % value_type)
class RoutineDoc(ValueDoc):
"""
API documentation information about a single routine.
"""
#{ Signature
posargs = UNKNOWN
"""@ivar: The names of the routine's positional arguments.
If an argument list contains \"unpacking\" arguments, then
their names will be specified using nested lists. E.g., if
a function's argument list is C{((x1,y1), (x2,y2))}, then
posargs will be C{[['x1','y1'], ['x2','y2']]}.
@type: C{list}"""
posarg_defaults = UNKNOWN
"""@ivar: API documentation for the positional arguments'
default values. This list has the same length as C{posargs}, and
each element of C{posarg_defaults} describes the corresponding
argument in C{posargs}. For positional arguments with no default,
C{posargs_defaults} will contain None.
@type: C{list} of C{ValueDoc} or C{None}"""
vararg = UNKNOWN
"""@ivar: The name of the routine's vararg argument, or C{None} if
it has no vararg argument.
@type: C{string} or C{None}"""
kwarg = UNKNOWN
"""@ivar: The name of the routine's keyword argument, or C{None} if
it has no keyword argument.
@type: C{string} or C{None}"""
lineno = UNKNOWN # used to look up profiling info from pstats.
"""@ivar: The line number of the first line of the function's
signature. For Python functions, this is equal to
C{func.func_code.co_firstlineno}. The first line of a file
is considered line 1.
@type: C{int}"""
#} end of "signature" group
#{ Decorators
decorators = UNKNOWN
"""@ivar: A list of names of decorators that were applied to this
routine, in the order that they are listed in the source code.
(I.e., in the reverse of the order that they were applied in.)
@type: C{list} of C{string}"""
#} end of "decorators" group
#{ Information Extracted from Docstrings
arg_descrs = UNKNOWN
"""@ivar: A list of descriptions of the routine's
arguments. Each element of this list is a tuple C{(args,
descr)}, where C{args} is a list of argument names; and
C{descr} is a L{ParsedDocstring
<epydoc.markup.ParsedDocstring>} describing the argument(s)
specified by C{arg}.
@type: C{list}"""
arg_types = UNKNOWN
"""@ivar: Descriptions of the expected types for the
routine's arguments, encoded as a dictionary mapping from
argument names to type descriptions.
@type: C{dict} from C{string} to L{ParsedDocstring
<epydoc.markup.ParsedDocstring>}"""
return_descr = UNKNOWN
"""@ivar: A description of the value returned by this routine.
@type: L{ParsedDocstring<epydoc.markup.ParsedDocstring>}"""
return_type = UNKNOWN
"""@ivar: A description of expected type for the value
returned by this routine.
@type: L{ParsedDocstring<epydoc.markup.ParsedDocstring>}"""
exception_descrs = UNKNOWN
"""@ivar: A list of descriptions of exceptions
that the routine might raise. Each element of this list is a
tuple C{(exc, descr)}, where C{exc} is a string contianing the
exception name; and C{descr} is a L{ParsedDocstring
<epydoc.markup.ParsedDocstring>} describing the circumstances
under which the exception specified by C{exc} is raised.
@type: C{list}"""
#} end of "information extracted from docstrings" group
callgraph_uid = None
"""@ivar: L{DotGraph}.uid of the call graph for the function.
@type: C{str}"""
def is_detailed(self):
if super(RoutineDoc, self).is_detailed():
return True
if self.arg_descrs not in (None, UNKNOWN) and self.arg_descrs:
return True
if self.arg_types not in (None, UNKNOWN) and self.arg_types:
return True
if self.return_descr not in (None, UNKNOWN):
return True
if self.exception_descrs not in (None, UNKNOWN) and self.exception_descrs:
return True
if (self.decorators not in (None, UNKNOWN)
and [ d for d in self.decorators
if d not in ('classmethod', 'staticmethod') ]):
return True
return False
def all_args(self):
"""
@return: A list of the names of all arguments (positional,
vararg, and keyword), in order. If a positional argument
consists of a tuple of names, then that tuple will be
flattened.
"""
if self.posargs is UNKNOWN:
return UNKNOWN
all_args = _flatten(self.posargs)
if self.vararg not in (None, UNKNOWN):
all_args.append(self.vararg)
if self.kwarg not in (None, UNKNOWN):
all_args.append(self.kwarg)
return all_args
def _flatten(lst, out=None):
"""
Return a flattened version of C{lst}.
"""
if out is None: out = []
for elt in lst:
if isinstance(elt, (list,tuple)):
_flatten(elt, out)
else:
out.append(elt)
return out
class ClassMethodDoc(RoutineDoc): pass
class StaticMethodDoc(RoutineDoc): pass
class PropertyDoc(ValueDoc):
"""
API documentation information about a single property.
"""
#{ Property Access Functions
fget = UNKNOWN
"""@ivar: API documentation for the property's get function.
@type: L{RoutineDoc}"""
fset = UNKNOWN
"""@ivar: API documentation for the property's set function.
@type: L{RoutineDoc}"""
fdel = UNKNOWN
"""@ivar: API documentation for the property's delete function.
@type: L{RoutineDoc}"""
#}
#{ Information Extracted from Docstrings
type_descr = UNKNOWN
"""@ivar: A description of the property's expected type, extracted
from its docstring.
@type: L{ParsedDocstring<epydoc.markup.ParsedDocstring>}"""
#} end of "information extracted from docstrings" group
def apidoc_links(self, **filters):
val_docs = []
if self.fget not in (None, UNKNOWN): val_docs.append(self.fget)
if self.fset not in (None, UNKNOWN): val_docs.append(self.fset)
if self.fdel not in (None, UNKNOWN): val_docs.append(self.fdel)
return val_docs
def is_detailed(self):
if super(PropertyDoc, self).is_detailed():
return True
if self.fget not in (None, UNKNOWN) and self.fget.pyval is not None:
return True
if self.fset not in (None, UNKNOWN) and self.fset.pyval is not None:
return True
if self.fdel not in (None, UNKNOWN) and self.fdel.pyval is not None:
return True
return False
######################################################################
## Index
######################################################################
class DocIndex:
"""
[xx] out of date.
An index that .. hmm... it *can't* be used to access some things,
cuz they're not at the root level. Do I want to add them or what?
And if so, then I have a sort of a new top level. hmm.. so
basically the question is what to do with a name that's not in the
root var's name space. 2 types:
- entirely outside (eg os.path)
- inside but not known (eg a submodule that we didn't look at?)
- container of current thing not examined?
An index of all the C{APIDoc} objects that can be reached from a
root set of C{ValueDoc}s.
The members of this index can be accessed by dotted name. In
particular, C{DocIndex} defines two mappings, accessed via the
L{get_vardoc()} and L{get_valdoc()} methods, which can be used to
access C{VariableDoc}s or C{ValueDoc}s respectively by name. (Two
separate mappings are necessary because a single name can be used
to refer to both a variable and to the value contained by that
variable.)
Additionally, the index defines two sets of C{ValueDoc}s:
\"reachable C{ValueDoc}s\" and \"contained C{ValueDoc}s\". The
X{reachable C{ValueDoc}s} are defined as the set of all
C{ValueDoc}s that can be reached from the root set by following
I{any} sequence of pointers to C{ValueDoc}s or C{VariableDoc}s.
The X{contained C{ValueDoc}s} are defined as the set of all
C{ValueDoc}s that can be reached from the root set by following
only the C{ValueDoc} pointers defined by non-imported
C{VariableDoc}s. For example, if the root set contains a module
C{m}, then the contained C{ValueDoc}s includes the C{ValueDoc}s
for any functions, variables, or classes defined in that module,
as well as methods and variables defined in classes defined in the
module. The reachable C{ValueDoc}s includes all of those
C{ValueDoc}s, as well as C{ValueDoc}s for any values imported into
the module, and base classes for classes defined in the module.
"""
def __init__(self, root):
"""
Create a new documentation index, based on the given root set
of C{ValueDoc}s. If any C{APIDoc}s reachable from the root
set does not have a canonical name, then it will be assigned
one. etc.
@param root: A list of C{ValueDoc}s.
"""
for apidoc in root:
if apidoc.canonical_name in (None, UNKNOWN):
raise ValueError("All APIdocs passed to DocIndexer "
"must already have canonical names.")
# Initialize the root items list. We sort them by length in
# ascending order. (This ensures that variables will shadow
# submodules when appropriate.)
# When the elements name is the same, list in alphabetical order:
# this is needed by the check for duplicates below.
self.root = sorted(root,
key=lambda d: (len(d.canonical_name), d.canonical_name))
"""The list of C{ValueDoc}s to document.
@type: C{list}"""
# Drop duplicated modules
# [xx] maybe what causes duplicates should be fixed instead.
# If fixed, adjust the sort here above: sorting by names will not
# be required anymore
i = 1
while i < len(self.root):
if self.root[i-1] is self.root[i]:
del self.root[i]
else:
i += 1
self.mlclasses = self._get_module_classes(self.root)
"""A mapping from class names to L{ClassDoc}. Contains
classes defined at module level for modules in L{root}
and which can be used as fallback by L{find()} if looking
in containing namespaces fails.
@type: C{dict} from C{str} to L{ClassDoc} or C{list}"""
self.callers = None
"""A dictionary mapping from C{RoutineDoc}s in this index
to lists of C{RoutineDoc}s for the routine's callers.
This dictionary is initialized by calling
L{read_profiling_info()}.
@type: C{list} of L{RoutineDoc}"""
self.callees = None
"""A dictionary mapping from C{RoutineDoc}s in this index
to lists of C{RoutineDoc}s for the routine's callees.
This dictionary is initialized by calling
L{read_profiling_info()}.
@type: C{list} of L{RoutineDoc}"""
self._funcid_to_doc = {}
"""A mapping from C{profile} function ids to corresponding
C{APIDoc} objects. A function id is a tuple of the form
C{(filename, lineno, funcname)}. This is used to update
the L{callers} and L{callees} variables."""
self._container_cache = {}
"""A cache for the L{container()} method, to increase speed."""
self._get_cache = {}
"""A cache for the L{get_vardoc()} and L{get_valdoc()} methods,
to increase speed."""
#////////////////////////////////////////////////////////////
# Lookup methods
#////////////////////////////////////////////////////////////
# [xx]
# Currently these only work for things reachable from the
# root... :-/ I might want to change this so that imported
# values can be accessed even if they're not contained.
# Also, I might want canonical names to not start with ??
# if the thing is a top-level imported module..?
def get_vardoc(self, name):
"""
Return the C{VariableDoc} with the given name, or C{None} if this
index does not contain a C{VariableDoc} with the given name.
"""
var, val = self._get(name)
return var
def get_valdoc(self, name):
"""
Return the C{ValueDoc} with the given name, or C{None} if this
index does not contain a C{ValueDoc} with the given name.
"""
var, val = self._get(name)
return val
def _get(self, name):
"""
A helper function that's used to implement L{get_vardoc()}
and L{get_valdoc()}.
"""
# Convert name to a DottedName, if necessary.
if not isinstance(name, DottedName):
name = DottedName(name)
# Check if the result is cached.
val = self._get_cache.get(name)
if val is not None: return val
# Look for an element in the root set whose name is a prefix
# of `name`. If we can't find one, then return None.
for root_valdoc in self.root:
if root_valdoc.canonical_name.dominates(name):
# Starting at the root valdoc, walk down the variable/
# submodule chain until we find the requested item.
var_doc = None
val_doc = root_valdoc
for identifier in name[len(root_valdoc.canonical_name):]:
if val_doc is None: break
var_doc, val_doc = self._get_from(val_doc, identifier)
else:
# If we found it, then return.
if var_doc is not None or val_doc is not None:
self._get_cache[name] = (var_doc, val_doc)
return var_doc, val_doc
# We didn't find it.
self._get_cache[name] = (None, None)
return None, None
def _get_from(self, val_doc, identifier):
if isinstance(val_doc, NamespaceDoc):
child_var = val_doc.variables.get(identifier)
if child_var is not None:
child_val = child_var.value
if child_val is UNKNOWN: child_val = None
return child_var, child_val
# If that fails, then see if it's a submodule.
if (isinstance(val_doc, ModuleDoc) and
val_doc.submodules is not UNKNOWN):
for submodule in val_doc.submodules:
if submodule.canonical_name[-1] == identifier:
var_doc = None
val_doc = submodule
if val_doc is UNKNOWN: val_doc = None
return var_doc, val_doc
return None, None
def find(self, name, context):
"""
Look for an C{APIDoc} named C{name}, relative to C{context}.
Return the C{APIDoc} if one is found; otherwise, return
C{None}. C{find} looks in the following places, in order:
- Function parameters (if one matches, return C{None})
- All enclosing namespaces, from closest to furthest.
- If C{name} starts with C{'self'}, then strip it off and
look for the remaining part of the name using C{find}
- Builtins
- Parameter attributes
- Classes at module level (if the name is not ambiguous)
@type name: C{str} or L{DottedName}
@type context: L{APIDoc}
"""
if isinstance(name, basestring):
name = re.sub(r'\(.*\)$', '', name.strip())
if re.match('^([a-zA-Z_]\w*)(\.[a-zA-Z_]\w*)*$', name):
name = DottedName(name)
else:
return None
elif not isinstance(name, DottedName):
raise TypeError("'name' should be a string or DottedName")
if context is None or context.canonical_name is None:
container_name = []
else:
container_name = context.canonical_name
# Check for the name in all containing namespaces, starting
# with the closest one.
for i in range(len(container_name), -1, -1):
relative_name = container_name[:i]+name
# Is `name` the absolute name of a documented value?
# (excepting GenericValueDoc values.)
val_doc = self.get_valdoc(relative_name)
if (val_doc is not None and
not isinstance(val_doc, GenericValueDoc)):
return val_doc
# Is `name` the absolute name of a documented variable?
var_doc = self.get_vardoc(relative_name)
if var_doc is not None: return var_doc
# If the name begins with 'self', then try stripping that off
# and see if we can find the variable.
if name[0] == 'self':
doc = self.find('.'.join(name[1:]), context)
if doc is not None: return doc
# Is it the name of a builtin?
if len(name)==1 and hasattr(__builtin__, name[0]):
return None
# Is it a parameter's name or an attribute of a parameter?
if isinstance(context, RoutineDoc):
all_args = context.all_args()
if all_args is not UNKNOWN and name[0] in all_args:
return None
# Is this an object directly contained by any module?
doc = self.mlclasses.get(name[-1])
if isinstance(doc, APIDoc):
return doc
elif isinstance(doc, list):
log.warning("%s is an ambiguous name: it may be %s" % (
name[-1],
", ".join([ "'%s'" % d.canonical_name for d in doc ])))
# Drop this item so that the warning is reported only once.
# fail() will fail anyway.
del self.mlclasses[name[-1]]
def _get_module_classes(self, docs):
"""
Gather all the classes defined in a list of modules.
Very often people refers to classes only by class name,
even if they are not imported in the namespace. Linking
to such classes will fail if we look for them only in nested
namespaces. Allow them to retrieve only by name.
@param docs: containers of the objects to collect
@type docs: C{list} of C{APIDoc}
@return: mapping from objects name to the object(s) with that name
@rtype: C{dict} from C{str} to L{ClassDoc} or C{list}
"""
classes = {}
for doc in docs:
if not isinstance(doc, ModuleDoc):
continue
for var in doc.variables.values():
if not isinstance(var.value, ClassDoc):
continue
val = var.value
if val in (None, UNKNOWN) or val.defining_module is not doc:
continue
if val.canonical_name in (None, UNKNOWN):
continue
name = val.canonical_name[-1]
vals = classes.get(name)
if vals is None:
classes[name] = val
elif not isinstance(vals, list):
classes[name] = [ vals, val ]
else:
vals.append(val)
return classes
#////////////////////////////////////////////////////////////
# etc
#////////////////////////////////////////////////////////////
def reachable_valdocs(self, **filters):
"""
Return a list of all C{ValueDoc}s that can be reached,
directly or indirectly from this C{DocIndex}'s root set.
@param filters: A set of filters that can be used to prevent
C{reachable_valdocs} from following specific link types
when looking for C{ValueDoc}s that can be reached from the
root set. See C{APIDoc.apidoc_links} for a more complete
description.
"""
return reachable_valdocs(self.root, **filters)
def container(self, api_doc):
"""
Return the C{ValueDoc} that contains the given C{APIDoc}, or
C{None} if its container is not in the index.
"""
# Check if the result is cached.
val = self._container_cache.get(api_doc)
if val is not None: return val
if isinstance(api_doc, GenericValueDoc):
self._container_cache[api_doc] = None
return None # [xx] unknown.
if isinstance(api_doc, VariableDoc):
self._container_cache[api_doc] = api_doc.container
return api_doc.container
if len(api_doc.canonical_name) == 1:
self._container_cache[api_doc] = None
return None
elif isinstance(api_doc, ModuleDoc) and api_doc.package is not UNKNOWN:
self._container_cache[api_doc] = api_doc.package
return api_doc.package
else:
parent = self.get_valdoc(api_doc.canonical_name.container())
self._container_cache[api_doc] = parent
return parent
#////////////////////////////////////////////////////////////
# Profiling information
#////////////////////////////////////////////////////////////
def read_profiling_info(self, profile_stats):
"""
Initialize the L{callers} and L{callees} variables, given a
C{Stat} object from the C{pstats} module.
@warning: This method uses undocumented data structures inside
of C{profile_stats}.
"""
if self.callers is None: self.callers = {}
if self.callees is None: self.callees = {}
# The Stat object encodes functions using `funcid`s, or
# tuples of (filename, lineno, funcname). Create a mapping
# from these `funcid`s to `RoutineDoc`s.
self._update_funcid_to_doc(profile_stats)
for callee, (cc, nc, tt, ct, callers) in profile_stats.stats.items():
callee = self._funcid_to_doc.get(callee)
if callee is None: continue
for caller in callers:
caller = self._funcid_to_doc.get(caller)
if caller is None: continue
self.callers.setdefault(callee, []).append(caller)
self.callees.setdefault(caller, []).append(callee)
def _update_funcid_to_doc(self, profile_stats):
"""
Update the dictionary mapping from C{pstat.Stat} funciton ids to
C{RoutineDoc}s. C{pstat.Stat} function ids are tuples of
C{(filename, lineno, funcname)}.
"""
# Maps (filename, lineno, funcname) -> RoutineDoc
for val_doc in self.reachable_valdocs():
# We only care about routines.
if not isinstance(val_doc, RoutineDoc): continue
# Get the filename from the defining module.
module = val_doc.defining_module
if module is UNKNOWN or module.filename is UNKNOWN: continue
# Normalize the filename.
filename = os.path.abspath(module.filename)
try: filename = py_src_filename(filename)
except: pass
# Look up the stat_func_id
funcid = (filename, val_doc.lineno, val_doc.canonical_name[-1])
if funcid in profile_stats.stats:
self._funcid_to_doc[funcid] = val_doc
######################################################################
## Pretty Printing
######################################################################
def pp_apidoc(api_doc, doublespace=0, depth=5, exclude=(), include=(),
backpointers=None):
"""
@return: A multiline pretty-printed string representation for the
given C{APIDoc}.
@param doublespace: If true, then extra lines will be
inserted to make the output more readable.
@param depth: The maximum depth that pp_apidoc will descend
into descendent VarDocs. To put no limit on
depth, use C{depth=-1}.
@param exclude: A list of names of attributes whose values should
not be shown.
@param backpointers: For internal use.
"""
pyid = id(api_doc.__dict__)
if backpointers is None: backpointers = {}
if (hasattr(api_doc, 'canonical_name') and
api_doc.canonical_name not in (None, UNKNOWN)):
name = '%s for %s' % (api_doc.__class__.__name__,
api_doc.canonical_name)
elif getattr(api_doc, 'name', None) not in (UNKNOWN, None):
if (getattr(api_doc, 'container', None) not in (UNKNOWN, None) and
getattr(api_doc.container, 'canonical_name', None)
not in (UNKNOWN, None)):
name ='%s for %s' % (api_doc.__class__.__name__,
api_doc.container.canonical_name+
api_doc.name)
else:
name = '%s for %s' % (api_doc.__class__.__name__, api_doc.name)
else:
name = api_doc.__class__.__name__
if pyid in backpointers:
return '%s [%s] (defined above)' % (name, backpointers[pyid])
if depth == 0:
if hasattr(api_doc, 'name') and api_doc.name is not None:
return '%s...' % api_doc.name
else:
return '...'
backpointers[pyid] = len(backpointers)
s = '%s [%s]' % (name, backpointers[pyid])
# Only print non-empty fields:
fields = [field for field in api_doc.__dict__.keys()
if (field in include or
(getattr(api_doc, field) is not UNKNOWN
and field not in exclude))]
if include:
fields = [field for field in dir(api_doc)
if field in include]
else:
fields = [field for field in api_doc.__dict__.keys()
if (getattr(api_doc, field) is not UNKNOWN
and field not in exclude)]
fields.sort()
for field in fields:
fieldval = getattr(api_doc, field)
if doublespace: s += '\n |'
s += '\n +- %s' % field
if (isinstance(fieldval, types.ListType) and
len(fieldval)>0 and
isinstance(fieldval[0], APIDoc)):
s += _pp_list(api_doc, fieldval, doublespace, depth,
exclude, include, backpointers,
(field is fields[-1]))
elif (isinstance(fieldval, types.DictType) and
len(fieldval)>0 and
isinstance(fieldval.values()[0], APIDoc)):
s += _pp_dict(api_doc, fieldval, doublespace,
depth, exclude, include, backpointers,
(field is fields[-1]))
elif isinstance(fieldval, APIDoc):
s += _pp_apidoc(api_doc, fieldval, doublespace, depth,
exclude, include, backpointers,
(field is fields[-1]))
else:
s += ' = ' + _pp_val(api_doc, fieldval, doublespace,
depth, exclude, include, backpointers)
return s
def _pp_list(api_doc, items, doublespace, depth, exclude, include,
backpointers, is_last):
line1 = (is_last and ' ') or '|'
s = ''
for item in items:
line2 = ((item is items[-1]) and ' ') or '|'
joiner = '\n %s %s ' % (line1, line2)
if doublespace: s += '\n %s |' % line1
s += '\n %s +- ' % line1
valstr = _pp_val(api_doc, item, doublespace, depth, exclude, include,
backpointers)
s += joiner.join(valstr.split('\n'))
return s
def _pp_dict(api_doc, dict, doublespace, depth, exclude, include,
backpointers, is_last):
items = dict.items()
items.sort()
line1 = (is_last and ' ') or '|'
s = ''
for item in items:
line2 = ((item is items[-1]) and ' ') or '|'
joiner = '\n %s %s ' % (line1, line2)
if doublespace: s += '\n %s |' % line1
s += '\n %s +- ' % line1
valstr = _pp_val(api_doc, item[1], doublespace, depth, exclude,
include, backpointers)
s += joiner.join(('%s => %s' % (item[0], valstr)).split('\n'))
return s
def _pp_apidoc(api_doc, val, doublespace, depth, exclude, include,
backpointers, is_last):
line1 = (is_last and ' ') or '|'
s = ''
if doublespace: s += '\n %s | ' % line1
s += '\n %s +- ' % line1
joiner = '\n %s ' % line1
childstr = pp_apidoc(val, doublespace, depth-1, exclude,
include, backpointers)
return s + joiner.join(childstr.split('\n'))
def _pp_val(api_doc, val, doublespace, depth, exclude, include, backpointers):
from epydoc import markup
if isinstance(val, APIDoc):
return pp_apidoc(val, doublespace, depth-1, exclude,
include, backpointers)
elif isinstance(val, markup.ParsedDocstring):
valrepr = `val.to_plaintext(None)`
if len(valrepr) < 40: return valrepr
else: return valrepr[:37]+'...'
else:
valrepr = repr(val)
if len(valrepr) < 40: return valrepr
else: return valrepr[:37]+'...'