blob: 782f03d8a74c3ab6f325615299f8d18f52160355 [file] [log] [blame]
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package webdav
import (
"io"
"net/http"
"os"
"path"
"path/filepath"
"strings"
"sync"
"time"
)
// A FileSystem implements access to a collection of named files. The elements
// in a file path are separated by slash ('/', U+002F) characters, regardless
// of host operating system convention.
//
// Each method has the same semantics as the os package's function of the same
// name.
type FileSystem interface {
Mkdir(name string, perm os.FileMode) error
OpenFile(name string, flag int, perm os.FileMode) (File, error)
RemoveAll(name string) error
Stat(name string) (os.FileInfo, error)
}
// A File is returned by a FileSystem's OpenFile method and can be served by a
// Handler.
type File interface {
http.File
io.Writer
}
// A Dir implements FileSystem using the native file system restricted to a
// specific directory tree.
//
// While the FileSystem.OpenFile method takes '/'-separated paths, a Dir's
// string value is a filename on the native file system, not a URL, so it is
// separated by filepath.Separator, which isn't necessarily '/'.
//
// An empty Dir is treated as ".".
type Dir string
func (d Dir) resolve(name string) string {
// This implementation is based on Dir.Open's code in the standard net/http package.
if filepath.Separator != '/' && strings.IndexRune(name, filepath.Separator) >= 0 ||
strings.Contains(name, "\x00") {
return ""
}
dir := string(d)
if dir == "" {
dir = "."
}
return filepath.Join(dir, filepath.FromSlash(path.Clean("/"+name)))
}
func (d Dir) Mkdir(name string, perm os.FileMode) error {
if name = d.resolve(name); name == "" {
return os.ErrNotExist
}
return os.Mkdir(name, perm)
}
func (d Dir) OpenFile(name string, flag int, perm os.FileMode) (File, error) {
if name = d.resolve(name); name == "" {
return nil, os.ErrNotExist
}
return os.OpenFile(name, flag, perm)
}
func (d Dir) RemoveAll(name string) error {
if name = d.resolve(name); name == "" {
return os.ErrNotExist
}
if name == filepath.Clean(string(d)) {
// Prohibit removing the virtual root directory.
return os.ErrInvalid
}
return os.RemoveAll(name)
}
func (d Dir) Stat(name string) (os.FileInfo, error) {
if name = d.resolve(name); name == "" {
return nil, os.ErrNotExist
}
return os.Stat(name)
}
// NewMemFS returns a new in-memory FileSystem implementation.
func NewMemFS() FileSystem {
return &memFS{
root: memFSNode{
children: make(map[string]*memFSNode),
mode: 0660 | os.ModeDir,
modTime: time.Now(),
},
}
}
// A memFS implements FileSystem, storing all metadata and actual file data
// in-memory. No limits on filesystem size are used, so it is not recommended
// this be used where the clients are untrusted.
//
// Concurrent access is permitted. The tree structure is protected by a mutex,
// and each node's contents and metadata are protected by a per-node mutex.
//
// TODO: Enforce file permissions.
type memFS struct {
mu sync.Mutex
root memFSNode
}
// walk walks the directory tree for the fullname, calling f at each step. If f
// returns an error, the walk will be aborted and return that same error.
//
// Each walk is atomic: fs's mutex is held for the entire operation, including
// all calls to f.
//
// dir is the directory at that step, frag is the name fragment, and final is
// whether it is the final step. For example, walking "/foo/bar/x" will result
// in 3 calls to f:
// - "/", "foo", false
// - "/foo/", "bar", false
// - "/foo/bar/", "x", true
// The frag argument will be empty only if dir is the root node and the walk
// ends at that root node.
func (fs *memFS) walk(op, fullname string, f func(dir *memFSNode, frag string, final bool) error) error {
fs.mu.Lock()
defer fs.mu.Unlock()
original := fullname
fullname = path.Clean("/" + fullname)
// Strip any leading "/"s to make fullname a relative path, as the walk
// starts at fs.root.
if fullname[0] == '/' {
fullname = fullname[1:]
}
dir := &fs.root
for {
frag, remaining := fullname, ""
i := strings.IndexRune(fullname, '/')
final := i < 0
if !final {
frag, remaining = fullname[:i], fullname[i+1:]
}
if frag == "" && dir != &fs.root {
panic("webdav: empty path fragment for a clean path")
}
if err := f(dir, frag, final); err != nil {
return &os.PathError{
Op: op,
Path: original,
Err: err,
}
}
if final {
break
}
child := dir.children[frag]
if child == nil {
return &os.PathError{
Op: op,
Path: original,
Err: os.ErrNotExist,
}
}
if !child.IsDir() {
return &os.PathError{
Op: op,
Path: original,
Err: os.ErrInvalid,
}
}
dir, fullname = child, remaining
}
return nil
}
func (fs *memFS) Mkdir(name string, perm os.FileMode) error {
return fs.walk("mkdir", name, func(dir *memFSNode, frag string, final bool) error {
if !final {
return nil
}
if frag == "" {
return os.ErrInvalid
}
if _, ok := dir.children[frag]; ok {
return os.ErrExist
}
dir.children[frag] = &memFSNode{
name: frag,
children: make(map[string]*memFSNode),
mode: perm.Perm() | os.ModeDir,
modTime: time.Now(),
}
return nil
})
}
func (fs *memFS) OpenFile(name string, flag int, perm os.FileMode) (File, error) {
var ret *memFile
err := fs.walk("open", name, func(dir *memFSNode, frag string, final bool) error {
if !final {
return nil
}
var n *memFSNode
if frag == "" {
if flag&(os.O_WRONLY|os.O_RDWR) != 0 {
return os.ErrPermission
}
n = &fs.root
} else {
n = dir.children[frag]
if flag&(os.O_SYNC|os.O_APPEND) != 0 {
return os.ErrInvalid
}
if flag&os.O_CREATE != 0 {
if flag&os.O_EXCL != 0 && n != nil {
return os.ErrExist
}
if n == nil {
n = &memFSNode{
name: frag,
mode: perm.Perm(),
}
dir.children[frag] = n
}
}
if n == nil {
return os.ErrNotExist
}
if flag&(os.O_WRONLY|os.O_RDWR) != 0 && flag&os.O_TRUNC != 0 {
n.mu.Lock()
n.data = nil
n.mu.Unlock()
}
}
children := make([]os.FileInfo, 0, len(n.children))
for _, c := range n.children {
children = append(children, c)
}
ret = &memFile{
n: n,
children: children,
}
return nil
})
if err != nil {
return nil, err
}
return ret, nil
}
func (fs *memFS) RemoveAll(name string) error {
return fs.walk("remove", name, func(dir *memFSNode, frag string, final bool) error {
if !final {
return nil
}
if frag == "" {
return os.ErrInvalid
}
if _, ok := dir.children[frag]; !ok {
return os.ErrNotExist
}
delete(dir.children, frag)
return nil
})
}
func (fs *memFS) Stat(name string) (os.FileInfo, error) {
var n *memFSNode
err := fs.walk("stat", name, func(dir *memFSNode, frag string, final bool) error {
if !final {
return nil
}
if frag == "" {
n = &fs.root
return nil
}
n = dir.children[frag]
if n == nil {
return os.ErrNotExist
}
return nil
})
if err != nil {
return nil, err
}
return n, nil
}
// A memFSNode represents a single entry in the in-memory filesystem and also
// implements os.FileInfo.
type memFSNode struct {
name string
mu sync.Mutex
modTime time.Time
mode os.FileMode
children map[string]*memFSNode
data []byte
}
func (n *memFSNode) Name() string {
return n.name
}
func (n *memFSNode) Size() int64 {
n.mu.Lock()
defer n.mu.Unlock()
return int64(len(n.data))
}
func (n *memFSNode) Mode() os.FileMode {
n.mu.Lock()
defer n.mu.Unlock()
return n.mode
}
func (n *memFSNode) ModTime() time.Time {
n.mu.Lock()
defer n.mu.Unlock()
return n.modTime
}
func (n *memFSNode) IsDir() bool {
return n.Mode().IsDir()
}
func (n *memFSNode) Sys() interface{} {
return nil
}
// A memFile is a File implementation for a memFSNode. It is a per-file (not
// per-node) read/write position, and if the node is a directory, a snapshot of
// that node's children.
type memFile struct {
n *memFSNode
children []os.FileInfo
// Changes to pos are guarded by n.mu.
pos int
}
func (f *memFile) Close() error {
return nil
}
func (f *memFile) Read(p []byte) (int, error) {
f.n.mu.Lock()
defer f.n.mu.Unlock()
if f.n.mode.IsDir() {
return 0, os.ErrInvalid
}
if f.pos >= len(f.n.data) {
return 0, io.EOF
}
n := copy(p, f.n.data[f.pos:])
f.pos += n
return n, nil
}
func (f *memFile) Readdir(count int) ([]os.FileInfo, error) {
f.n.mu.Lock()
defer f.n.mu.Unlock()
if !f.n.mode.IsDir() {
return nil, os.ErrInvalid
}
old := f.pos
if old >= len(f.children) {
// The os.File Readdir docs say that at the end of a directory,
// the error is io.EOF if count > 0 and nil if count <= 0.
if count > 0 {
return nil, io.EOF
}
return nil, nil
}
if count > 0 {
f.pos += count
if f.pos > len(f.children) {
f.pos = len(f.children)
}
} else {
f.pos = len(f.children)
old = 0
}
return f.children[old:f.pos], nil
}
func (f *memFile) Seek(offset int64, whence int) (int64, error) {
f.n.mu.Lock()
defer f.n.mu.Unlock()
npos := f.pos
// TODO: How to handle offsets greater than the size of system int?
switch whence {
case os.SEEK_SET:
npos = int(offset)
case os.SEEK_CUR:
npos += int(offset)
case os.SEEK_END:
npos = len(f.n.data) + int(offset)
default:
npos = -1
}
if npos < 0 {
return 0, os.ErrInvalid
}
f.pos = npos
return int64(f.pos), nil
}
func (f *memFile) Stat() (os.FileInfo, error) {
return f.n, nil
}
func (f *memFile) Write(p []byte) (int, error) {
lenp := len(p)
f.n.mu.Lock()
defer f.n.mu.Unlock()
if f.n.mode.IsDir() {
return 0, os.ErrInvalid
}
if f.pos < len(f.n.data) {
n := copy(f.n.data[f.pos:], p)
f.pos += n
p = p[n:]
} else if f.pos > len(f.n.data) {
// Write permits the creation of holes, if we've seek'ed past the
// existing end of file.
if f.pos <= cap(f.n.data) {
oldLen := len(f.n.data)
f.n.data = f.n.data[:f.pos]
hole := f.n.data[oldLen:]
for i := range hole {
hole[i] = 0
}
} else {
d := make([]byte, f.pos, f.pos+len(p))
copy(d, f.n.data)
f.n.data = d
}
}
if len(p) > 0 {
// We should only get here if f.pos == len(f.n.data).
f.n.data = append(f.n.data, p...)
f.pos = len(f.n.data)
}
f.n.modTime = time.Now()
return lenp, nil
}