blob: b05abc3dcca24409d7e103266ce700e34b74aec8 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "slicer/instrumentation.h"
#include "slicer/dex_ir_builder.h"
#include <iomanip>
#include <sstream>
namespace slicer {
namespace {
struct BytecodeConvertingVisitor : public lir::Visitor {
lir::Bytecode* out = nullptr;
bool Visit(lir::Bytecode* bytecode) {
out = bytecode;
return true;
}
};
void BoxValue(lir::Bytecode* bytecode,
lir::CodeIr* code_ir,
ir::Type* type,
dex::u4 src_reg,
dex::u4 dst_reg) {
bool is_wide = false;
const char* boxed_type_name = nullptr;
switch (*(type->descriptor)->c_str()) {
case 'Z':
boxed_type_name = "Ljava/lang/Boolean;";
break;
case 'B':
boxed_type_name = "Ljava/lang/Byte;";
break;
case 'C':
boxed_type_name = "Ljava/lang/Character;";
break;
case 'S':
boxed_type_name = "Ljava/lang/Short;";
break;
case 'I':
boxed_type_name = "Ljava/lang/Integer;";
break;
case 'J':
is_wide = true;
boxed_type_name = "Ljava/lang/Long;";
break;
case 'F':
boxed_type_name = "Ljava/lang/Float;";
break;
case 'D':
is_wide = true;
boxed_type_name = "Ljava/lang/Double;";
break;
}
SLICER_CHECK_NE(boxed_type_name, nullptr);
ir::Builder builder(code_ir->dex_ir);
std::vector<ir::Type*> param_types;
param_types.push_back(type);
auto boxed_type = builder.GetType(boxed_type_name);
auto ir_proto = builder.GetProto(boxed_type, builder.GetTypeList(param_types));
auto ir_method_decl = builder.GetMethodDecl(
builder.GetAsciiString("valueOf"), ir_proto, boxed_type);
auto boxing_method = code_ir->Alloc<lir::Method>(ir_method_decl, ir_method_decl->orig_index);
auto args = code_ir->Alloc<lir::VRegRange>(src_reg, 1 + is_wide);
auto boxing_invoke = code_ir->Alloc<lir::Bytecode>();
boxing_invoke->opcode = dex::OP_INVOKE_STATIC_RANGE;
boxing_invoke->operands.push_back(args);
boxing_invoke->operands.push_back(boxing_method);
code_ir->instructions.InsertBefore(bytecode, boxing_invoke);
auto move_result = code_ir->Alloc<lir::Bytecode>();
move_result->opcode = dex::OP_MOVE_RESULT_OBJECT;
move_result->operands.push_back(code_ir->Alloc<lir::VReg>(dst_reg));
code_ir->instructions.InsertBefore(bytecode, move_result);
}
std::string MethodLabel(ir::EncodedMethod* ir_method) {
auto signature_str = ir_method->decl->prototype->Signature();
return ir_method->decl->parent->Decl() + "->" + ir_method->decl->name->c_str() + signature_str;
}
} // namespace
bool EntryHook::Apply(lir::CodeIr* code_ir) {
lir::Bytecode* bytecode = nullptr;
// find the first bytecode in the method body to insert the hook before it
for (auto instr : code_ir->instructions) {
BytecodeConvertingVisitor visitor;
instr->Accept(&visitor);
bytecode = visitor.out;
if (bytecode != nullptr) {
break;
}
}
if (bytecode == nullptr) {
return false;
}
if (tweak_ == Tweak::ArrayParams) {
return InjectArrayParamsHook(code_ir, bytecode);
}
ir::Builder builder(code_ir->dex_ir);
const auto ir_method = code_ir->ir_method;
// construct the hook method declaration
std::vector<ir::Type*> param_types;
if ((ir_method->access_flags & dex::kAccStatic) == 0) {
ir::Type* this_argument_type;
switch (tweak_) {
case Tweak::ThisAsObject:
this_argument_type = builder.GetType("Ljava/lang/Object;");
break;
default:
this_argument_type = ir_method->decl->parent;
break;
}
param_types.push_back(this_argument_type);
}
if (ir_method->decl->prototype->param_types != nullptr) {
const auto& orig_param_types = ir_method->decl->prototype->param_types->types;
param_types.insert(param_types.end(), orig_param_types.begin(), orig_param_types.end());
}
auto ir_proto = builder.GetProto(builder.GetType("V"),
builder.GetTypeList(param_types));
auto ir_method_decl = builder.GetMethodDecl(
builder.GetAsciiString(hook_method_id_.method_name), ir_proto,
builder.GetType(hook_method_id_.class_descriptor));
auto hook_method = code_ir->Alloc<lir::Method>(ir_method_decl, ir_method_decl->orig_index);
// argument registers
auto regs = ir_method->code->registers;
auto args_count = ir_method->code->ins_count;
auto args = code_ir->Alloc<lir::VRegRange>(regs - args_count, args_count);
// invoke hook bytecode
auto hook_invoke = code_ir->Alloc<lir::Bytecode>();
hook_invoke->opcode = dex::OP_INVOKE_STATIC_RANGE;
hook_invoke->operands.push_back(args);
hook_invoke->operands.push_back(hook_method);
// insert the hook before the first bytecode in the method body
code_ir->instructions.InsertBefore(bytecode, hook_invoke);
return true;
}
void GenerateShiftParamsCode(lir::CodeIr* code_ir, lir::Instruction* position, dex::u4 shift) {
const auto ir_method = code_ir->ir_method;
// Since the goal is to relocate the registers when extra scratch registers are needed,
// if there are no parameters this is a no-op.
if (ir_method->code->ins_count == 0) {
return;
}
// build a param list with the explicit "this" argument for non-static methods
std::vector<ir::Type*> param_types;
if ((ir_method->access_flags & dex::kAccStatic) == 0) {
param_types.push_back(ir_method->decl->parent);
}
if (ir_method->decl->prototype->param_types != nullptr) {
const auto& orig_param_types = ir_method->decl->prototype->param_types->types;
param_types.insert(param_types.end(), orig_param_types.begin(), orig_param_types.end());
}
const dex::u4 regs = ir_method->code->registers;
const dex::u4 ins_count = ir_method->code->ins_count;
SLICER_CHECK_GE(regs, ins_count);
// generate the args "relocation" instructions
dex::u4 reg = regs - ins_count;
for (const auto& type : param_types) {
auto move = code_ir->Alloc<lir::Bytecode>();
switch (type->GetCategory()) {
case ir::Type::Category::Reference:
move->opcode = dex::OP_MOVE_OBJECT_16;
move->operands.push_back(code_ir->Alloc<lir::VReg>(reg - shift));
move->operands.push_back(code_ir->Alloc<lir::VReg>(reg));
reg += 1;
break;
case ir::Type::Category::Scalar:
move->opcode = dex::OP_MOVE_16;
move->operands.push_back(code_ir->Alloc<lir::VReg>(reg - shift));
move->operands.push_back(code_ir->Alloc<lir::VReg>(reg));
reg += 1;
break;
case ir::Type::Category::WideScalar:
move->opcode = dex::OP_MOVE_WIDE_16;
move->operands.push_back(code_ir->Alloc<lir::VRegPair>(reg - shift));
move->operands.push_back(code_ir->Alloc<lir::VRegPair>(reg));
reg += 2;
break;
case ir::Type::Category::Void:
SLICER_FATAL("void parameter type");
}
code_ir->instructions.InsertBefore(position, move);
}
}
bool EntryHook::InjectArrayParamsHook(lir::CodeIr* code_ir, lir::Bytecode* bytecode) {
ir::Builder builder(code_ir->dex_ir);
const auto ir_method = code_ir->ir_method;
auto param_types_list = ir_method->decl->prototype->param_types;
auto param_types = param_types_list != nullptr ? param_types_list->types : std::vector<ir::Type*>();
bool is_static = (ir_method->access_flags & dex::kAccStatic) != 0;
// number of registers that we need to operate
dex::u2 regs_count = 3;
auto non_param_regs = ir_method->code->registers - ir_method->code->ins_count;
// do we have enough registers to operate?
bool needsExtraRegs = non_param_regs < regs_count;
if (needsExtraRegs) {
// we don't have enough registers, so we allocate more, we will shift
// params to their original registers later.
code_ir->ir_method->code->registers += regs_count - non_param_regs;
}
// use three first registers:
// all three are needed when we "aput" a string/boxed-value (1) into an array (2) at an index (3)
// register that will store size of during allocation
// later will be reused to store index when do "aput"
dex::u4 array_size_reg = 0;
// register that will store an array that will be passed
// as a parameter in entry hook
dex::u4 array_reg = 1;
// stores result of boxing (if it's needed); also stores the method signature string
dex::u4 value_reg = 2;
// array size bytecode
auto const_size_op = code_ir->Alloc<lir::Bytecode>();
const_size_op->opcode = dex::OP_CONST;
const_size_op->operands.push_back(code_ir->Alloc<lir::VReg>(array_size_reg));
const_size_op->operands.push_back(code_ir->Alloc<lir::Const32>(
2 + param_types.size())); // method signature + params + "this" object
code_ir->instructions.InsertBefore(bytecode, const_size_op);
// allocate array
const auto obj_array_type = builder.GetType("[Ljava/lang/Object;");
auto allocate_array_op = code_ir->Alloc<lir::Bytecode>();
allocate_array_op->opcode = dex::OP_NEW_ARRAY;
allocate_array_op->operands.push_back(code_ir->Alloc<lir::VReg>(array_reg));
allocate_array_op->operands.push_back(code_ir->Alloc<lir::VReg>(array_size_reg));
allocate_array_op->operands.push_back(
code_ir->Alloc<lir::Type>(obj_array_type, obj_array_type->orig_index));
code_ir->instructions.InsertBefore(bytecode, allocate_array_op);
// fill the array with parameters passed into function
std::vector<ir::Type*> types;
types.push_back(builder.GetType("Ljava/lang/String;")); // method signature string
if (!is_static) {
types.push_back(ir_method->decl->parent); // "this" object
}
types.insert(types.end(), param_types.begin(), param_types.end()); // parameters
// register where params start
dex::u4 current_reg = ir_method->code->registers - ir_method->code->ins_count;
// reuse not needed anymore register to store indexes
dex::u4 array_index_reg = array_size_reg;
int i = 0;
for (auto type: types) {
dex::u4 src_reg = 0;
if (i == 0) { // method signature string
// e.g. const-string v2, "(I[Ljava/lang/String;)Ljava/lang/String;"
// for (int, String[]) -> String
auto const_str_op = code_ir->Alloc<lir::Bytecode>();
const_str_op->opcode = dex::OP_CONST_STRING;
const_str_op->operands.push_back(code_ir->Alloc<lir::VReg>(value_reg)); // dst
auto method_label = builder.GetAsciiString(MethodLabel(ir_method).c_str());
const_str_op->operands.push_back(
code_ir->Alloc<lir::String>(method_label, method_label->orig_index)); // src
code_ir->instructions.InsertBefore(bytecode, const_str_op);
src_reg = value_reg;
} else if (type->GetCategory() != ir::Type::Category::Reference) {
BoxValue(bytecode, code_ir, type, current_reg, value_reg);
src_reg = value_reg;
current_reg += 1 + (type->GetCategory() == ir::Type::Category::WideScalar);
} else {
src_reg = current_reg;
current_reg++;
}
auto index_const_op = code_ir->Alloc<lir::Bytecode>();
index_const_op->opcode = dex::OP_CONST;
index_const_op->operands.push_back(code_ir->Alloc<lir::VReg>(array_index_reg));
index_const_op->operands.push_back(code_ir->Alloc<lir::Const32>(i++));
code_ir->instructions.InsertBefore(bytecode, index_const_op);
auto aput_op = code_ir->Alloc<lir::Bytecode>();
aput_op->opcode = dex::OP_APUT_OBJECT;
aput_op->operands.push_back(code_ir->Alloc<lir::VReg>(src_reg));
aput_op->operands.push_back(code_ir->Alloc<lir::VReg>(array_reg));
aput_op->operands.push_back(code_ir->Alloc<lir::VReg>(array_index_reg));
code_ir->instructions.InsertBefore(bytecode, aput_op);
// if function is static, then jumping over index 1
// since null should be be passed in this case
if (i == 1 && is_static) i++;
}
std::vector<ir::Type*> hook_param_types;
hook_param_types.push_back(obj_array_type);
auto ir_proto = builder.GetProto(builder.GetType("V"),
builder.GetTypeList(hook_param_types));
auto ir_method_decl = builder.GetMethodDecl(
builder.GetAsciiString(hook_method_id_.method_name), ir_proto,
builder.GetType(hook_method_id_.class_descriptor));
auto hook_method = code_ir->Alloc<lir::Method>(ir_method_decl, ir_method_decl->orig_index);
auto args = code_ir->Alloc<lir::VRegRange>(array_reg, 1);
auto hook_invoke = code_ir->Alloc<lir::Bytecode>();
hook_invoke->opcode = dex::OP_INVOKE_STATIC_RANGE;
hook_invoke->operands.push_back(args);
hook_invoke->operands.push_back(hook_method);
code_ir->instructions.InsertBefore(bytecode, hook_invoke);
// clean up registries used by us
// registers are assigned to a marker value 0xFE_FE_FE_FE (decimal
// value: -16843010) to help identify use of uninitialized registers.
for (dex::u2 i = 0; i < regs_count; ++i) {
auto cleanup = code_ir->Alloc<lir::Bytecode>();
cleanup->opcode = dex::OP_CONST;
cleanup->operands.push_back(code_ir->Alloc<lir::VReg>(i));
cleanup->operands.push_back(code_ir->Alloc<lir::Const32>(0xFEFEFEFE));
code_ir->instructions.InsertBefore(bytecode, cleanup);
}
// now we have to shift params to their original registers
if (needsExtraRegs) {
GenerateShiftParamsCode(code_ir, bytecode, regs_count - non_param_regs);
}
return true;
}
bool ExitHook::Apply(lir::CodeIr* code_ir) {
ir::Builder builder(code_ir->dex_ir);
const auto ir_method = code_ir->ir_method;
const auto declared_return_type = ir_method->decl->prototype->return_type;
bool return_as_object = (tweak_ & Tweak::ReturnAsObject) != 0;
// do we have a void-return method?
bool return_void = (::strcmp(declared_return_type->descriptor->c_str(), "V") == 0);
// returnAsObject supports only object return type;
SLICER_CHECK(!return_as_object ||
(declared_return_type->GetCategory() == ir::Type::Category::Reference));
const auto return_type = return_as_object ? builder.GetType("Ljava/lang/Object;")
: declared_return_type;
bool pass_method_signature = (tweak_ & Tweak::PassMethodSignature) != 0;
// construct the hook method declaration
std::vector<ir::Type*> param_types;
if (pass_method_signature) {
param_types.push_back(builder.GetType("Ljava/lang/String;"));
}
if (!return_void) {
param_types.push_back(return_type);
}
auto ir_proto = builder.GetProto(return_type, builder.GetTypeList(param_types));
auto ir_method_decl = builder.GetMethodDecl(
builder.GetAsciiString(hook_method_id_.method_name), ir_proto,
builder.GetType(hook_method_id_.class_descriptor));
auto hook_method = code_ir->Alloc<lir::Method>(ir_method_decl, ir_method_decl->orig_index);
// find and instrument all return instructions
for (auto instr : code_ir->instructions) {
BytecodeConvertingVisitor visitor;
instr->Accept(&visitor);
auto bytecode = visitor.out;
if (bytecode == nullptr) {
continue;
}
dex::Opcode move_result_opcode = dex::OP_NOP;
dex::u4 reg = 0;
int reg_count = 0;
switch (bytecode->opcode) {
case dex::OP_RETURN_VOID:
SLICER_CHECK(return_void);
break;
case dex::OP_RETURN:
SLICER_CHECK(!return_void);
move_result_opcode = dex::OP_MOVE_RESULT;
reg = bytecode->CastOperand<lir::VReg>(0)->reg;
reg_count = 1;
break;
case dex::OP_RETURN_OBJECT:
SLICER_CHECK(!return_void);
move_result_opcode = dex::OP_MOVE_RESULT_OBJECT;
reg = bytecode->CastOperand<lir::VReg>(0)->reg;
reg_count = 1;
break;
case dex::OP_RETURN_WIDE:
SLICER_CHECK(!return_void);
move_result_opcode = dex::OP_MOVE_RESULT_WIDE;
reg = bytecode->CastOperand<lir::VRegPair>(0)->base_reg;
reg_count = 2;
break;
default:
// skip the bytecode...
continue;
}
dex::u4 scratch_reg = 0;
// load method signature into scratch_reg
if (pass_method_signature) {
// is there a register that can be overtaken
bool needsScratchReg = ir_method->code->registers < reg_count + 1;
if (needsScratchReg) {
// don't renumber registers underneath us
slicer::AllocateScratchRegs alloc_regs(1, false);
alloc_regs.Apply(code_ir);
}
// we need use one register before results to put signature there
// however result starts in register 0, thefore it is shifted
// to register 1
if (reg == 0 && bytecode->opcode != dex::OP_RETURN_VOID) {
auto move_op = code_ir->Alloc<lir::Bytecode>();
switch (bytecode->opcode) {
case dex::OP_RETURN_OBJECT:
move_op->opcode = dex::OP_MOVE_OBJECT_16;
move_op->operands.push_back(code_ir->Alloc<lir::VReg>(reg + 1));
move_op->operands.push_back(code_ir->Alloc<lir::VReg>(reg));
break;
case dex::OP_RETURN:
move_op->opcode = dex::OP_MOVE_16;
move_op->operands.push_back(code_ir->Alloc<lir::VReg>(reg + 1));
move_op->operands.push_back(code_ir->Alloc<lir::VReg>(reg));
break;
case dex::OP_RETURN_WIDE:
move_op->opcode = dex::OP_MOVE_WIDE_16;
move_op->operands.push_back(code_ir->Alloc<lir::VRegPair>(reg + 1));
move_op->operands.push_back(code_ir->Alloc<lir::VRegPair>(reg));
break;
default: {
std::stringstream ss;
ss <<"Unexpected bytecode opcode: " << bytecode->opcode;
SLICER_FATAL(ss.str());
}
}
code_ir->instructions.InsertBefore(bytecode, move_op);
// return is the last call, return is shifted to one, so taking over 0 registry
scratch_reg = 0;
} else {
// return is the last call, so we're taking over previous registry
scratch_reg = bytecode->opcode == dex::OP_RETURN_VOID ? 0 : reg - 1;
}
// return is the last call, so we're taking over previous registry
auto method_label = builder.GetAsciiString(MethodLabel(ir_method).c_str());
auto const_str_op = code_ir->Alloc<lir::Bytecode>();
const_str_op->opcode = dex::OP_CONST_STRING;
const_str_op->operands.push_back(code_ir->Alloc<lir::VReg>(scratch_reg)); // dst
const_str_op->operands.push_back(code_ir->Alloc<lir::String>(method_label, method_label->orig_index)); // src
code_ir->instructions.InsertBefore(bytecode, const_str_op);
}
auto args = pass_method_signature
? code_ir->Alloc<lir::VRegRange>(scratch_reg, reg_count + 1)
: code_ir->Alloc<lir::VRegRange>(reg, reg_count);
auto hook_invoke = code_ir->Alloc<lir::Bytecode>();
hook_invoke->opcode = dex::OP_INVOKE_STATIC_RANGE;
hook_invoke->operands.push_back(args);
hook_invoke->operands.push_back(hook_method);
code_ir->instructions.InsertBefore(bytecode, hook_invoke);
// move result back to the right register
//
// NOTE: we're reusing the original return's operand,
// which is valid and more efficient than allocating
// a new LIR node, but it's also fragile: we need to be
// very careful about mutating shared nodes.
//
if (move_result_opcode != dex::OP_NOP) {
auto move_result = code_ir->Alloc<lir::Bytecode>();
move_result->opcode = move_result_opcode;
move_result->operands.push_back(bytecode->operands[0]);
code_ir->instructions.InsertBefore(bytecode, move_result);
if ((tweak_ & Tweak::ReturnAsObject) != 0) {
auto check_cast = code_ir->Alloc<lir::Bytecode>();
check_cast->opcode = dex::OP_CHECK_CAST;
check_cast->operands.push_back(code_ir->Alloc<lir::VReg>(reg));
check_cast->operands.push_back(
code_ir->Alloc<lir::Type>(declared_return_type, declared_return_type->orig_index));
code_ir->instructions.InsertBefore(bytecode, check_cast);
}
}
}
return true;
}
bool DetourHook::Apply(lir::CodeIr* code_ir) {
ir::Builder builder(code_ir->dex_ir);
// search for matching invoke-virtual[/range] bytecodes
for (auto instr : code_ir->instructions) {
BytecodeConvertingVisitor visitor;
instr->Accept(&visitor);
auto bytecode = visitor.out;
if (bytecode == nullptr) {
continue;
}
dex::Opcode new_call_opcode = GetNewOpcode(bytecode->opcode);
if (new_call_opcode == dex::OP_NOP) {
continue;
}
auto orig_method = bytecode->CastOperand<lir::Method>(1)->ir_method;
if (!orig_method_id_.Match(orig_method)) {
// this is not the method you're looking for...
continue;
}
// construct the detour method declaration
// (matching the original method, plus an explicit "this" argument)
std::vector<ir::Type*> param_types;
param_types.push_back(orig_method->parent);
if (orig_method->prototype->param_types != nullptr) {
const auto& orig_param_types = orig_method->prototype->param_types->types;
param_types.insert(param_types.end(), orig_param_types.begin(),
orig_param_types.end());
}
auto ir_proto = builder.GetProto(orig_method->prototype->return_type,
builder.GetTypeList(param_types));
auto ir_method_decl = builder.GetMethodDecl(
builder.GetAsciiString(detour_method_id_.method_name), ir_proto,
builder.GetType(detour_method_id_.class_descriptor));
auto detour_method =
code_ir->Alloc<lir::Method>(ir_method_decl, ir_method_decl->orig_index);
// We mutate the original invoke bytecode in-place: this is ok
// because lir::Instructions can't be shared (referenced multiple times)
// in the code IR. It's also simpler and more efficient than allocating a
// new IR invoke bytecode.
bytecode->opcode = new_call_opcode;
bytecode->operands[1] = detour_method;
}
return true;
}
dex::Opcode DetourVirtualInvoke::GetNewOpcode(dex::Opcode opcode) {
switch (opcode) {
case dex::OP_INVOKE_VIRTUAL:
return dex::OP_INVOKE_STATIC;
case dex::OP_INVOKE_VIRTUAL_RANGE:
return dex::OP_INVOKE_STATIC_RANGE;
default:
// skip instruction ...
return dex::OP_NOP;
}
}
dex::Opcode DetourInterfaceInvoke::GetNewOpcode(dex::Opcode opcode) {
switch (opcode) {
case dex::OP_INVOKE_INTERFACE:
return dex::OP_INVOKE_STATIC;
case dex::OP_INVOKE_INTERFACE_RANGE:
return dex::OP_INVOKE_STATIC_RANGE;
default:
// skip instruction ...
return dex::OP_NOP;
}
}
// Register re-numbering visitor
// (renumbers vN to vN+shift)
class RegsRenumberVisitor : public lir::Visitor {
public:
explicit RegsRenumberVisitor(int shift) : shift_(shift) {
SLICER_CHECK_GT(shift, 0);
}
private:
virtual bool Visit(lir::Bytecode* bytecode) override {
for (auto operand : bytecode->operands) {
operand->Accept(this);
}
return true;
}
virtual bool Visit(lir::DbgInfoAnnotation* dbg_annotation) override {
for (auto operand : dbg_annotation->operands) {
operand->Accept(this);
}
return true;
}
virtual bool Visit(lir::VReg* vreg) override {
vreg->reg += shift_;
return true;
}
virtual bool Visit(lir::VRegPair* vreg_pair) override {
vreg_pair->base_reg += shift_;
return true;
}
virtual bool Visit(lir::VRegList* vreg_list) override {
for (auto& reg : vreg_list->registers) {
reg += shift_;
}
return true;
}
virtual bool Visit(lir::VRegRange* vreg_range) override {
vreg_range->base_reg += shift_;
return true;
}
private:
int shift_ = 0;
};
// Try to allocate registers by renumbering the existing allocation
//
// NOTE: we can't bump the register count over 16 since it may
// make existing bytecodes "unencodable" (if they have 4 bit reg fields)
//
void AllocateScratchRegs::RegsRenumbering(lir::CodeIr* code_ir) {
SLICER_CHECK_GT(left_to_allocate_, 0);
int delta = std::min(left_to_allocate_,
16 - static_cast<int>(code_ir->ir_method->code->registers));
if (delta < 1) {
// can't allocate any registers through renumbering
return;
}
assert(delta <= 16);
// renumber existing registers
RegsRenumberVisitor visitor(delta);
for (auto instr : code_ir->instructions) {
instr->Accept(&visitor);
}
// we just allocated "delta" registers (v0..vX)
Allocate(code_ir, 0, delta);
}
// Allocates registers by generating prologue code to relocate params
// into their original registers (parameters are allocated in the last IN registers)
//
// There are three types of register moves depending on the value type:
// 1. vreg -> vreg
// 2. vreg/wide -> vreg/wide
// 3. vreg/obj -> vreg/obj
//
void AllocateScratchRegs::ShiftParams(lir::CodeIr* code_ir) {
const auto ir_method = code_ir->ir_method;
SLICER_CHECK_GT(left_to_allocate_, 0);
const dex::u4 shift = left_to_allocate_;
Allocate(code_ir, ir_method->code->registers, left_to_allocate_);
assert(left_to_allocate_ == 0);
// generate the args "relocation" instructions
auto first_instr = *(code_ir->instructions.begin());
GenerateShiftParamsCode(code_ir, first_instr, shift);
}
// Mark [first_reg, first_reg + count) as scratch registers
void AllocateScratchRegs::Allocate(lir::CodeIr* code_ir, dex::u4 first_reg, int count) {
SLICER_CHECK(count > 0 && count <= left_to_allocate_);
code_ir->ir_method->code->registers += count;
left_to_allocate_ -= count;
for (int i = 0; i < count; ++i) {
SLICER_CHECK(scratch_regs_.insert(first_reg + i).second);
}
}
// Allocate scratch registers without doing a full register allocation:
//
// 1. if there are not params, increase the method regs count and we're done
// 2. if the method uses less than 16 registers, we can renumber the existing registers
// 3. if we still have registers to allocate, increase the method registers count,
// and generate prologue code to shift the param regs into their original registers
//
bool AllocateScratchRegs::Apply(lir::CodeIr* code_ir) {
const auto code = code_ir->ir_method->code;
// .dex bytecode allows up to 64k vregs
SLICER_CHECK_LE(code->registers + allocate_count_, (1 << 16));
scratch_regs_.clear();
left_to_allocate_ = allocate_count_;
// can we allocate by simply incrementing the method regs count?
if (code->ins_count == 0) {
Allocate(code_ir, code->registers, left_to_allocate_);
return true;
}
// allocate as many registers as possible using renumbering
if (allow_renumbering_) {
RegsRenumbering(code_ir);
}
// if we still have registers to allocate, generate prologue
// code to shift the params into their original registers
if (left_to_allocate_ > 0) {
ShiftParams(code_ir);
}
assert(left_to_allocate_ == 0);
assert(scratch_regs_.size() == size_t(allocate_count_));
return true;
}
bool MethodInstrumenter::InstrumentMethod(ir::EncodedMethod* ir_method) {
SLICER_CHECK_NE(ir_method, nullptr);
if (ir_method->code == nullptr) {
// can't instrument abstract methods
return false;
}
// apply all the queued transformations
lir::CodeIr code_ir(ir_method, dex_ir_);
for (const auto& transformation : transformations_) {
if (!transformation->Apply(&code_ir)) {
// the transformation failed, bail out...
return false;
}
}
code_ir.Assemble();
return true;
}
bool MethodInstrumenter::InstrumentMethod(const ir::MethodId& method_id) {
// locate the method to be instrumented
ir::Builder builder(dex_ir_);
auto ir_method = builder.FindMethod(method_id);
if (ir_method == nullptr) {
// we couldn't find the specified method
return false;
}
return InstrumentMethod(ir_method);
}
} // namespace slicer