blob: f4caae4c2378537c50035e5d8702eb3b9fea8b67 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "slicer/bytecode_encoder.h"
#include "slicer/common.h"
#include "slicer/chronometer.h"
#include <assert.h>
namespace lir {
// Pack a 16bit word: 00AA
static dex::u2 Pack_Z_8(dex::u4 a) {
dex::u2 fa = (a & 0xff);
SLICER_CHECK(fa == a);
return fa;
}
// Pack a 16bit word: AABB
static dex::u2 Pack_8_8(dex::u4 a, dex::u4 b) {
dex::u2 fa = (a & 0xff);
SLICER_CHECK(fa == a);
dex::u2 fb = (b & 0xff);
SLICER_CHECK(fb == b);
return (fa << 8) | fb;
}
// Pack a 16bit word: ABCC
static dex::u2 Pack_4_4_8(dex::u4 a, dex::u4 b, dex::u4 c) {
dex::u2 fa = (a & 0xf);
SLICER_CHECK(fa == a);
dex::u2 fb = (b & 0xf);
SLICER_CHECK(fb == b);
dex::u2 fc = (c & 0xff);
SLICER_CHECK(fc == c);
return (fa << 12) | (fb << 8) | fc;
}
// Pack a 16bit word: ABCD
static dex::u2 Pack_4_4_4_4(dex::u4 a, dex::u4 b, dex::u4 c, dex::u4 d) {
dex::u2 fa = (a & 0xf);
SLICER_CHECK(fa == a);
dex::u2 fb = (b & 0xf);
SLICER_CHECK(fb == b);
dex::u2 fc = (c & 0xf);
SLICER_CHECK(fc == c);
dex::u2 fd = (d & 0xf);
SLICER_CHECK(fd == d);
return (fa << 12) | (fb << 8) | (fc << 4) | fd;
}
// Pack a 16bit word: AAAA
static dex::u2 Pack_16(dex::u4 a) {
dex::u2 fa = (a & 0xffff);
SLICER_CHECK(fa == a);
return fa;
}
// Trim a 4bit signed integer, making sure we're not discarding significant bits
static dex::u4 Trim_S0(dex::u4 value) {
dex::u4 trim = value & 0xf;
SLICER_CHECK(dex::u4(dex::s4(trim << 28) >> 28) == value);
return trim;
}
// Trim a 8bit signed integer, making sure we're not discarding significant bits
static dex::u4 Trim_S1(dex::u4 value) {
dex::u4 trim = value & 0xff;
SLICER_CHECK(dex::u4(dex::s4(trim << 24) >> 24) == value);
return trim;
}
// Trim a 16bit signed integer, making sure we're not discarding significant bits
static dex::u4 Trim_S2(dex::u4 value) {
dex::u4 trim = value & 0xffff;
SLICER_CHECK(dex::u4(dex::s4(trim << 16) >> 16) == value);
return trim;
}
// Returns a register operand, checking the match between format and type
// (register fields can encode either a single 32bit vreg or a wide 64bit vreg pair)
static dex::u4 GetRegA(const Bytecode* bytecode, int index) {
auto flags = dex::GetFlagsFromOpcode(bytecode->opcode);
return (flags & dex::kInstrWideRegA) != 0
? bytecode->CastOperand<VRegPair>(index)->base_reg
: bytecode->CastOperand<VReg>(index)->reg;
}
// Returns a register operand, checking the match between format and type
// (register fields can encode either a single 32bit vreg or a wide 64bit vreg pair)
static dex::u4 GetRegB(const Bytecode* bytecode, int index) {
auto flags = dex::GetFlagsFromOpcode(bytecode->opcode);
return (flags & dex::kInstrWideRegB) != 0
? bytecode->CastOperand<VRegPair>(index)->base_reg
: bytecode->CastOperand<VReg>(index)->reg;
}
// Returns a register operand, checking the match between format and type
// (register fields can encode either a single 32bit vreg or a wide 64bit vreg pair)
static dex::u4 GetRegC(const Bytecode* bytecode, int index) {
auto flags = dex::GetFlagsFromOpcode(bytecode->opcode);
return (flags & dex::kInstrWideRegC) != 0
? bytecode->CastOperand<VRegPair>(index)->base_reg
: bytecode->CastOperand<VReg>(index)->reg;
}
// Encode one instruction into a .dex bytecode
//
// NOTE: the formats and the operand notation is documented here:
// https://source.android.com/devices/tech/dalvik/instruction-formats.html
//
bool BytecodeEncoder::Visit(Bytecode* bytecode) {
bytecode->offset = offset_;
dex::Opcode opcode = bytecode->opcode;
// Unconditionally replace short (8bit) branches with
// medium-range (16bit) branches. This should cover 99.999% of
// the cases and it avoids a more complex branch length handling.
if (opcode == dex::OP_GOTO) {
opcode = dex::OP_GOTO_16;
}
auto buff_offset = bytecode_.size();
auto format = dex::GetFormatFromOpcode(opcode);
switch (format) {
case dex::kFmt10x: // op
{
SLICER_CHECK(bytecode->operands.size() == 0);
bytecode_.Push<dex::u2>(Pack_Z_8(opcode));
} break;
case dex::kFmt12x: // op vA, vB
{
SLICER_CHECK(bytecode->operands.size() == 2);
dex::u4 vA = GetRegA(bytecode, 0);
dex::u4 vB = GetRegB(bytecode, 1);
bytecode_.Push<dex::u2>(Pack_4_4_8(vB, vA, opcode));
} break;
case dex::kFmt22x: // op vAA, vBBBB
{
SLICER_CHECK(bytecode->operands.size() == 2);
dex::u4 vA = GetRegA(bytecode, 0);
dex::u4 vB = GetRegB(bytecode, 1);
bytecode_.Push<dex::u2>(Pack_8_8(vA, opcode));
bytecode_.Push<dex::u2>(Pack_16(vB));
} break;
case dex::kFmt32x: // op vAAAA, vBBBB
{
SLICER_CHECK(bytecode->operands.size() == 2);
dex::u4 vA = GetRegA(bytecode, 0);
dex::u4 vB = GetRegB(bytecode, 1);
bytecode_.Push<dex::u2>(Pack_Z_8(opcode));
bytecode_.Push<dex::u2>(Pack_16(vA));
bytecode_.Push<dex::u2>(Pack_16(vB));
} break;
case dex::kFmt11n: // op vA, #+B
{
SLICER_CHECK(bytecode->operands.size() == 2);
dex::u4 vA = GetRegA(bytecode, 0);
dex::u4 B = Trim_S0(bytecode->CastOperand<Const32>(1)->u.u4_value);
bytecode_.Push<dex::u2>(Pack_4_4_8(B, vA, opcode));
} break;
case dex::kFmt21s: // op vAA, #+BBBB
{
SLICER_CHECK(bytecode->operands.size() == 2);
dex::u4 vA = GetRegA(bytecode, 0);
dex::u4 B = Trim_S2(bytecode->CastOperand<Const32>(1)->u.u4_value);
bytecode_.Push<dex::u2>(Pack_8_8(vA, opcode));
bytecode_.Push<dex::u2>(Pack_16(B));
} break;
case dex::kFmt11x: // op vAA
{
SLICER_CHECK(bytecode->operands.size() == 1);
dex::u4 vA = GetRegA(bytecode, 0);
bytecode_.Push<dex::u2>(Pack_8_8(vA, opcode));
} break;
case dex::kFmt31i: // op vAA, #+BBBBBBBB
{
SLICER_CHECK(bytecode->operands.size() == 2);
dex::u4 vA = GetRegA(bytecode, 0);
dex::u4 B = bytecode->CastOperand<Const32>(1)->u.u4_value;
bytecode_.Push<dex::u2>(Pack_8_8(vA, opcode));
bytecode_.Push<dex::u2>(Pack_16(B & 0xffff));
bytecode_.Push<dex::u2>(Pack_16(B >> 16));
} break;
case dex::kFmt20t: // op +AAAA
{
SLICER_CHECK(bytecode->operands.size() == 1);
auto label = bytecode->CastOperand<CodeLocation>(0)->label;
dex::u4 A = 0;
if (label->offset != kInvalidOffset) {
assert(label->offset <= offset_);
A = label->offset - offset_;
SLICER_CHECK(A != 0);
SLICER_CHECK((A >> 16) == 0xffff); // TODO: out of range!
} else {
fixups_.push_back(LabelFixup(offset_, label, true));
}
bytecode_.Push<dex::u2>(Pack_Z_8(opcode));
bytecode_.Push<dex::u2>(Pack_16(A & 0xffff));
} break;
case dex::kFmt30t: // op +AAAAAAAA
{
SLICER_CHECK(bytecode->operands.size() == 1);
auto label = bytecode->CastOperand<CodeLocation>(0)->label;
dex::u4 A = 0;
if (label->offset != kInvalidOffset) {
// NOTE: goto/32 can branch to itself
assert(label->offset <= offset_);
A = label->offset - offset_;
} else {
fixups_.push_back(LabelFixup(offset_, label, false));
}
bytecode_.Push<dex::u2>(Pack_Z_8(opcode));
bytecode_.Push<dex::u2>(Pack_16(A & 0xffff));
bytecode_.Push<dex::u2>(Pack_16(A >> 16));
} break;
case dex::kFmt21t: // op vAA, +BBBB
{
SLICER_CHECK(bytecode->operands.size() == 2);
dex::u4 vA = GetRegA(bytecode, 0);
auto label = bytecode->CastOperand<CodeLocation>(1)->label;
dex::u4 B = 0;
if (label->offset != kInvalidOffset) {
assert(label->offset <= offset_);
B = label->offset - offset_;
SLICER_CHECK(B != 0);
SLICER_CHECK((B >> 16) == 0xffff); // TODO: out of range!
} else {
fixups_.push_back(LabelFixup(offset_, label, true));
}
bytecode_.Push<dex::u2>(Pack_8_8(vA, opcode));
bytecode_.Push<dex::u2>(Pack_16(B & 0xffff));
} break;
case dex::kFmt22t: // op vA, vB, +CCCC
{
SLICER_CHECK(bytecode->operands.size() == 3);
dex::u4 vA = GetRegA(bytecode, 0);
dex::u4 vB = GetRegB(bytecode, 1);
auto label = bytecode->CastOperand<CodeLocation>(2)->label;
dex::u4 C = 0;
if (label->offset != kInvalidOffset) {
assert(label->offset <= offset_);
C = label->offset - offset_;
SLICER_CHECK(C != 0);
SLICER_CHECK((C >> 16) == 0xffff); // TODO: out of range!
} else {
fixups_.push_back(LabelFixup(offset_, label, true));
}
bytecode_.Push<dex::u2>(Pack_4_4_8(vB, vA, opcode));
bytecode_.Push<dex::u2>(Pack_16(C & 0xffff));
} break;
case dex::kFmt31t: // op vAA, +BBBBBBBB
{
SLICER_CHECK(bytecode->operands.size() == 2);
dex::u4 vA = GetRegA(bytecode, 0);
auto label = bytecode->CastOperand<CodeLocation>(1)->label;
dex::u4 B = 0;
if (label->offset != kInvalidOffset) {
assert(label->offset <= offset_);
B = label->offset - offset_;
SLICER_CHECK(B != 0);
} else {
fixups_.push_back(LabelFixup(offset_, label, false));
}
bytecode_.Push<dex::u2>(Pack_8_8(vA, opcode));
bytecode_.Push<dex::u2>(Pack_16(B & 0xffff));
bytecode_.Push<dex::u2>(Pack_16(B >> 16));
} break;
case dex::kFmt23x: // op vAA, vBB, vCC
{
SLICER_CHECK(bytecode->operands.size() == 3);
dex::u4 vA = GetRegA(bytecode, 0);
dex::u4 vB = GetRegB(bytecode, 1);
dex::u4 vC = GetRegC(bytecode, 2);
bytecode_.Push<dex::u2>(Pack_8_8(vA, opcode));
bytecode_.Push<dex::u2>(Pack_8_8(vC, vB));
} break;
case dex::kFmt22b: // op vAA, vBB, #+CC
{
SLICER_CHECK(bytecode->operands.size() == 3);
dex::u4 vA = GetRegA(bytecode, 0);
dex::u4 vB = GetRegB(bytecode, 1);
dex::u4 C = Trim_S1(bytecode->CastOperand<Const32>(2)->u.u4_value);
bytecode_.Push<dex::u2>(Pack_8_8(vA, opcode));
bytecode_.Push<dex::u2>(Pack_8_8(C, vB));
} break;
case dex::kFmt22s: // op vA, vB, #+CCCC
{
SLICER_CHECK(bytecode->operands.size() == 3);
dex::u4 vA = GetRegA(bytecode, 0);
dex::u4 vB = GetRegB(bytecode, 1);
dex::u4 C = Trim_S2(bytecode->CastOperand<Const32>(2)->u.u4_value);
bytecode_.Push<dex::u2>(Pack_4_4_8(vB, vA, opcode));
bytecode_.Push<dex::u2>(Pack_16(C));
} break;
case dex::kFmt22c: // op vA, vB, thing@CCCC
{
SLICER_CHECK(bytecode->operands.size() == 3);
dex::u4 vA = GetRegA(bytecode, 0);
dex::u4 vB = GetRegB(bytecode, 1);
dex::u4 C = bytecode->CastOperand<IndexedOperand>(2)->index;
bytecode_.Push<dex::u2>(Pack_4_4_8(vB, vA, opcode));
bytecode_.Push<dex::u2>(Pack_16(C));
} break;
case dex::kFmt21c: // op vAA, thing@BBBB
{
SLICER_CHECK(bytecode->operands.size() == 2);
dex::u4 vA = GetRegA(bytecode, 0);
dex::u4 B = bytecode->CastOperand<IndexedOperand>(1)->index;
bytecode_.Push<dex::u2>(Pack_8_8(vA, opcode));
bytecode_.Push<dex::u2>(Pack_16(B));
} break;
case dex::kFmt31c: // op vAA, string@BBBBBBBB
{
SLICER_CHECK(bytecode->operands.size() == 2);
dex::u4 vA = GetRegA(bytecode, 0);
dex::u4 B = bytecode->CastOperand<IndexedOperand>(1)->index;
bytecode_.Push<dex::u2>(Pack_8_8(vA, opcode));
bytecode_.Push<dex::u2>(Pack_16(B & 0xffff));
bytecode_.Push<dex::u2>(Pack_16(B >> 16));
} break;
case dex::kFmt35c: // op {vC,vD,vE,vF,vG}, thing@BBBB
{
SLICER_CHECK(bytecode->operands.size() == 2);
const auto& regs = bytecode->CastOperand<VRegList>(0)->registers;
dex::u4 B = bytecode->CastOperand<IndexedOperand>(1)->index;
dex::u4 A = regs.size();
dex::u4 C = (A > 0) ? regs[0] : 0;
dex::u4 D = (A > 1) ? regs[1] : 0;
dex::u4 E = (A > 2) ? regs[2] : 0;
dex::u4 F = (A > 3) ? regs[3] : 0;
dex::u4 G = (A > 4) ? regs[4] : 0;
bytecode_.Push<dex::u2>(Pack_4_4_8(A, G, opcode));
bytecode_.Push<dex::u2>(Pack_16(B));
bytecode_.Push<dex::u2>(Pack_4_4_4_4(F, E, D, C));
// keep track of the outs_count
if ((dex::GetFlagsFromOpcode(opcode) & dex::kInstrInvoke) != 0) {
outs_count_ = std::max(outs_count_, A);
}
} break;
case dex::kFmt3rc: // op {vCCCC .. v(CCCC+AA-1)}, thing@BBBB
{
SLICER_CHECK(bytecode->operands.size() == 2);
auto vreg_range = bytecode->CastOperand<VRegRange>(0);
dex::u4 A = vreg_range->count;
dex::u4 B = bytecode->CastOperand<IndexedOperand>(1)->index;
dex::u4 C = vreg_range->base_reg;
bytecode_.Push<dex::u2>(Pack_8_8(A, opcode));
bytecode_.Push<dex::u2>(Pack_16(B));
bytecode_.Push<dex::u2>(Pack_16(C));
// keep track of the outs_count
if ((dex::GetFlagsFromOpcode(opcode) & dex::kInstrInvoke) != 0) {
outs_count_ = std::max(outs_count_, A);
}
} break;
case dex::kFmt51l: // op vAA, #+BBBBBBBBBBBBBBBB
{
SLICER_CHECK(bytecode->operands.size() == 2);
dex::u4 vA = GetRegA(bytecode, 0);
dex::u8 B = bytecode->CastOperand<Const64>(1)->u.u8_value;
bytecode_.Push<dex::u2>(Pack_8_8(vA, opcode));
bytecode_.Push<dex::u2>(Pack_16((B >> 0) & 0xffff));
bytecode_.Push<dex::u2>(Pack_16((B >> 16) & 0xffff));
bytecode_.Push<dex::u2>(Pack_16((B >> 32) & 0xffff));
bytecode_.Push<dex::u2>(Pack_16((B >> 48) & 0xffff));
} break;
case dex::kFmt21h: // op vAA, #+BBBB0000[00000000]
SLICER_CHECK(bytecode->operands.size() == 2);
switch (opcode) {
case dex::OP_CONST_HIGH16: {
dex::u4 vA = GetRegA(bytecode, 0);
dex::u4 B = bytecode->CastOperand<Const32>(1)->u.u4_value >> 16;
bytecode_.Push<dex::u2>(Pack_8_8(vA, opcode));
bytecode_.Push<dex::u2>(Pack_16(B));
} break;
case dex::OP_CONST_WIDE_HIGH16: {
dex::u4 vA = GetRegA(bytecode, 0);
dex::u4 B = bytecode->CastOperand<Const64>(1)->u.u8_value >> 48;
bytecode_.Push<dex::u2>(Pack_8_8(vA, opcode));
bytecode_.Push<dex::u2>(Pack_16(B));
} break;
default:
SLICER_FATAL("Unexpected fmt21h opcode: 0x%02x", opcode);
}
break;
default:
SLICER_FATAL("Unexpected format: 0x%02x", format);
}
SLICER_CHECK(bytecode_.size() - buff_offset == 2 * GetWidthFromOpcode(opcode));
offset_ += GetWidthFromOpcode(opcode);
return true;
}
bool BytecodeEncoder::Visit(PackedSwitchPayload* packed_switch) {
SLICER_CHECK(offset_ % 2 == 0);
// keep track of the switches
packed_switch->offset = offset_;
auto& instr = packed_switches_[offset_];
SLICER_CHECK(instr == nullptr);
instr = packed_switch;
// we're going to fix up the offsets in a later pass
auto orig_size = bytecode_.size();
bytecode_.Push<dex::u2>(dex::kPackedSwitchSignature);
bytecode_.Push<dex::u2>(Pack_16(packed_switch->targets.size()));
bytecode_.Push<dex::s4>(packed_switch->first_key);
for (size_t i = 0; i < packed_switch->targets.size(); ++i) {
bytecode_.Push<dex::u4>(0);
}
// offset is in 16bit units, not bytes
offset_ += (bytecode_.size() - orig_size) / 2;
return true;
}
bool BytecodeEncoder::Visit(SparseSwitchPayload* sparse_switch) {
SLICER_CHECK(offset_ % 2 == 0);
// keep track of the switches
sparse_switch->offset = offset_;
auto& instr = sparse_switches_[offset_];
SLICER_CHECK(instr == nullptr);
instr = sparse_switch;
// we're going to fix up the offsets in a later pass
auto orig_size = bytecode_.size();
bytecode_.Push<dex::u2>(dex::kSparseSwitchSignature);
bytecode_.Push<dex::u2>(Pack_16(sparse_switch->switch_cases.size()));
for (const auto& switch_case : sparse_switch->switch_cases) {
bytecode_.Push<dex::s4>(switch_case.key);
}
for (size_t i = 0; i < sparse_switch->switch_cases.size(); ++i) {
bytecode_.Push<dex::u4>(0);
}
offset_ += (bytecode_.size() - orig_size) / 2;
return true;
}
bool BytecodeEncoder::Visit(ArrayData* array_data) {
SLICER_CHECK(offset_ % 2 == 0);
array_data->offset = offset_;
auto orig_size = bytecode_.size();
// kArrayDataSignature is already included by array_data->data
// (no need to emit here)
bytecode_.Push(array_data->data);
offset_ += (bytecode_.size() - orig_size) / 2;
return true;
}
bool BytecodeEncoder::Visit(Label* label) {
// aligned label?
if (label->aligned && offset_ % 2 == 1) {
bytecode_.Push<dex::u2>(dex::OP_NOP);
++offset_;
}
label->offset = offset_;
return true;
}
bool BytecodeEncoder::Visit(DbgInfoHeader* dbg_header) {
dbg_header->offset = offset_;
return true;
}
bool BytecodeEncoder::Visit(DbgInfoAnnotation* dbg_annotation) {
dbg_annotation->offset = offset_;
return true;
}
bool BytecodeEncoder::Visit(TryBlockBegin* try_begin) {
try_begin->offset = offset_;
return true;
}
bool BytecodeEncoder::Visit(TryBlockEnd* try_end) {
try_end->offset = offset_;
return true;
}
void BytecodeEncoder::FixupSwitchOffsets() {
dex::u2* const begin = bytecode_.ptr<dex::u2>(0);
dex::u2* const end = begin + bytecode_.size() / 2;
dex::u2* ptr = begin;
while (ptr < end) {
const auto opcode = dex::OpcodeFromBytecode(*ptr);
const auto offset = ptr - begin;
if (opcode == dex::OP_PACKED_SWITCH) {
auto dex_instr = dex::DecodeInstruction(ptr);
FixupPackedSwitch(offset, offset + dex::s4(dex_instr.vB));
} else if (opcode == dex::OP_SPARSE_SWITCH) {
auto dex_instr = dex::DecodeInstruction(ptr);
FixupSparseSwitch(offset, offset + dex::s4(dex_instr.vB));
}
auto isize = dex::GetWidthFromBytecode(ptr);
SLICER_CHECK(isize > 0);
ptr += isize;
}
SLICER_CHECK(ptr == end);
}
void BytecodeEncoder::FixupPackedSwitch(dex::u4 base_offset,
dex::u4 payload_offset) {
auto instr = packed_switches_[payload_offset];
SLICER_CHECK(instr != nullptr);
auto payload = bytecode_.ptr<dex::PackedSwitchPayload>(payload_offset * 2);
SLICER_CHECK(payload->ident == dex::kPackedSwitchSignature);
SLICER_CHECK(reinterpret_cast<dex::u1*>(payload->targets + payload->size) <=
bytecode_.data() + bytecode_.size());
for (int i = 0; i < payload->size; ++i) {
auto label = instr->targets[i];
assert(label->offset != kInvalidOffset);
payload->targets[i] = label->offset - base_offset;
}
}
void BytecodeEncoder::FixupSparseSwitch(dex::u4 base_offset,
dex::u4 payload_offset) {
auto instr = sparse_switches_[payload_offset];
SLICER_CHECK(instr != nullptr);
auto payload = bytecode_.ptr<dex::SparseSwitchPayload>(payload_offset * 2);
SLICER_CHECK(payload->ident == dex::kSparseSwitchSignature);
dex::s4* const targets = payload->data + payload->size;
SLICER_CHECK(reinterpret_cast<dex::u1*>(targets + payload->size) <=
bytecode_.data() + bytecode_.size());
for (int i = 0; i < payload->size; ++i) {
auto label = instr->switch_cases[i].target;
assert(label->offset != kInvalidOffset);
targets[i] = label->offset - base_offset;
}
}
void BytecodeEncoder::FixupLabels() {
for (const LabelFixup& fixup : fixups_) {
dex::u4 label_offset = fixup.label->offset;
assert(label_offset != kInvalidOffset);
assert(label_offset > fixup.offset);
dex::u4 rel_offset = label_offset - fixup.offset;
SLICER_CHECK(rel_offset != 0);
dex::u2* instr = bytecode_.ptr<dex::u2>(fixup.offset * 2);
if (fixup.short_fixup) {
// TODO: explicit out-of-range check
assert(instr[1] == 0);
instr[1] = Pack_16(rel_offset);
} else {
assert(instr[1] == 0);
assert(instr[2] == 0);
instr[1] = Pack_16(rel_offset & 0xffff);
instr[2] = Pack_16(rel_offset >> 16);
}
}
}
void BytecodeEncoder::Encode(ir::Code* ir_code, std::shared_ptr<ir::DexFile> dex_ir) {
SLICER_CHECK(bytecode_.empty());
SLICER_CHECK(offset_ == 0);
SLICER_CHECK(outs_count_ == 0);
packed_switches_.clear();
sparse_switches_.clear();
// reset all instruction offsets
for (auto instr : instructions_) {
instr->offset = kInvalidOffset;
}
// generate the .dex bytecodes
for (auto instr : instructions_) {
instr->Accept(this);
}
// no more appending (read & write is ok)
bytecode_.Seal(2);
FixupLabels();
FixupSwitchOffsets();
// update ir::Code
ir_code->instructions = slicer::ArrayView<const dex::u2>(
bytecode_.ptr<dex::u2>(0), bytecode_.size() / 2);
ir_code->outs_count = outs_count_;
// attach the new bytecode
dex_ir->AttachBuffer(std::move(bytecode_));
}
} // namespace lir