blob: c89354db58f6f04d50c8e2c83e0429c9cdc87f46 [file] [log] [blame]
/*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef SYSTEM_VOLD_KEYMASTER_TAGS_H_
#define SYSTEM_VOLD_KEYMASTER_TAGS_H_
/**
* This header contains various definitions that make working with keymaster tags safer and easier.
*
* It makes use of a fair amount of template metaprogramming. The metaprogramming serves the purpose
* of making it impossible to make certain classes of mistakes when operating on keymaster
* authorizations. For example, it's an error to create a KeyParameter with tag == Tag::PURPOSE
* and then to assign Algorithm::RSA to algorithm element of its union. But because the user
* must choose the union field, there could be a mismatch which the compiler has now way to
* diagnose.
*
* The machinery in this header solves these problems by describing which union field corresponds
* to which Tag. Central to this mechanism is the template TypedTag. It has zero size and binds a
* numeric Tag to a type that the compiler understands. By means of the macro DECLARE_TYPED_TAG,
* we declare types for each of the tags defined in hardware/interfaces/keymaster/2.0/types.hal.
*
* The macro DECLARE_TYPED_TAG(name) generates a typename TAG_name_t and a zero sized instance
* TAG_name. Once these typed tags have been declared we define metafunctions mapping the each tag
* to its value c++ type and the correct union element of KeyParameter. This is done by means of
* the macros MAKE_TAG_*VALUE_ACCESSOR, which generates TypedTag2ValueType, a metafunction mapping
* a typed tag to the corresponding c++ type, and access function, accessTagValue returning a
* reference to the correct element of KeyParameter.
* E.g.:
* given "KeyParameter param;" then "accessTagValue(TAG_PURPOSE, param)"
* yields a reference to param.f.purpose
* If used in an assignment the compiler can now check the compatibility of the assigned value.
*
* For convenience we also provide the constructor like function Authorization().
* Authorization takes a typed tag and a value and checks at compile time whether the value given
* is suitable for the given tag. At runtime it creates a new KeyParameter initialized with the
* given tag and value and returns it by value.
*
* The second convenience function, authorizationValue, allows access to the KeyParameter value in
* a safe way. It takes a typed tag and a KeyParameter and returns a reference to the value wrapped
* by NullOr. NullOr has out-of-band information about whether it is save to access the wrapped
* reference.
* E.g.:
* auto param = Authorization(TAG_ALGORITM, Algorithm::RSA);
* auto value1 = authorizationValue(TAG_PURPOSE, param);
* auto value2 = authorizationValue(TAG_ALGORITM, param);
* value1.isOk() yields false, but value2.isOk() yields true, thus value2.value() is save to access.
*/
#include <android/hardware/keymaster/3.0/IHwKeymasterDevice.h>
#include <hardware/hw_auth_token.h>
#include <type_traits>
namespace keystore {
using ::android::hardware::keymaster::V3_0::Algorithm;
using ::android::hardware::keymaster::V3_0::BlockMode;
using ::android::hardware::keymaster::V3_0::Digest;
using ::android::hardware::keymaster::V3_0::EcCurve;
using ::android::hardware::keymaster::V3_0::ErrorCode;
using ::android::hardware::keymaster::V3_0::HardwareAuthToken;
using ::android::hardware::keymaster::V3_0::HardwareAuthenticatorType;
using ::android::hardware::keymaster::V3_0::IKeymasterDevice;
using ::android::hardware::keymaster::V3_0::KeyBlobUsageRequirements;
using ::android::hardware::keymaster::V3_0::KeyCharacteristics;
using ::android::hardware::keymaster::V3_0::KeyDerivationFunction;
using ::android::hardware::keymaster::V3_0::KeyFormat;
using ::android::hardware::keymaster::V3_0::KeyOrigin;
using ::android::hardware::keymaster::V3_0::KeyParameter;
using ::android::hardware::keymaster::V3_0::KeyPurpose;
using ::android::hardware::keymaster::V3_0::PaddingMode;
using ::android::hardware::keymaster::V3_0::Tag;
using ::android::hardware::keymaster::V3_0::TagType;
using ::android::hardware::hidl_vec;
using ::android::hardware::Return;
// The following create the numeric values that KM_TAG_PADDING and KM_TAG_DIGEST used to have. We
// need these old values to be able to support old keys that use them.
static const int32_t KM_TAG_DIGEST_OLD = static_cast<int32_t>(TagType::ENUM) | 5;
static const int32_t KM_TAG_PADDING_OLD = static_cast<int32_t>(TagType::ENUM) | 7;
constexpr TagType typeFromTag(Tag tag) {
return static_cast<TagType>(static_cast<uint32_t>(tag) & static_cast<uint32_t>(0xf0000000));
}
/**
* TypedTag is a templatized version of Tag, which provides compile-time checking of
* keymaster tag types. Instances are convertible to Tag, so they can be used wherever
* Tag is expected, and because they encode the tag type it's possible to create
* function overloads that only operate on tags with a particular type.
*/
template <TagType tag_type, Tag tag>
struct TypedTag {
inline TypedTag() {
// Ensure that it's impossible to create a TypedTag instance whose 'tag' doesn't have type
// 'tag_type'. Attempting to instantiate a tag with the wrong type will result in a compile
// error (no match for template specialization StaticAssert<false>), with no run-time cost.
static_assert(typeFromTag(tag) == tag_type, "mismatch between tag and tag_type");
}
operator Tag() const { return tag; }
};
template <Tag tag>
struct Tag2TypedTag {
typedef TypedTag<typeFromTag(tag), tag> type;
};
template <Tag tag>
struct Tag2String;
#define _TAGS_STRINGIFY(x) #x
#define TAGS_STRINGIFY(x) _TAGS_STRINGIFY(x)
#define DECLARE_TYPED_TAG(name) \
typedef typename Tag2TypedTag<Tag::name>::type TAG_##name##_t; \
extern TAG_##name##_t TAG_##name; \
template <> \
struct Tag2String<Tag::name> { \
static const char* value() { return "Tag::" TAGS_STRINGIFY(name); } \
}
DECLARE_TYPED_TAG(INVALID);
DECLARE_TYPED_TAG(KEY_SIZE);
DECLARE_TYPED_TAG(MAC_LENGTH);
DECLARE_TYPED_TAG(CALLER_NONCE);
DECLARE_TYPED_TAG(MIN_MAC_LENGTH);
DECLARE_TYPED_TAG(RSA_PUBLIC_EXPONENT);
DECLARE_TYPED_TAG(ECIES_SINGLE_HASH_MODE);
DECLARE_TYPED_TAG(INCLUDE_UNIQUE_ID);
DECLARE_TYPED_TAG(ACTIVE_DATETIME);
DECLARE_TYPED_TAG(ORIGINATION_EXPIRE_DATETIME);
DECLARE_TYPED_TAG(USAGE_EXPIRE_DATETIME);
DECLARE_TYPED_TAG(MIN_SECONDS_BETWEEN_OPS);
DECLARE_TYPED_TAG(MAX_USES_PER_BOOT);
DECLARE_TYPED_TAG(ALL_USERS);
DECLARE_TYPED_TAG(USER_ID);
DECLARE_TYPED_TAG(USER_SECURE_ID);
DECLARE_TYPED_TAG(NO_AUTH_REQUIRED);
DECLARE_TYPED_TAG(AUTH_TIMEOUT);
DECLARE_TYPED_TAG(ALLOW_WHILE_ON_BODY);
DECLARE_TYPED_TAG(ALL_APPLICATIONS);
DECLARE_TYPED_TAG(APPLICATION_ID);
DECLARE_TYPED_TAG(APPLICATION_DATA);
DECLARE_TYPED_TAG(CREATION_DATETIME);
DECLARE_TYPED_TAG(ROLLBACK_RESISTANT);
DECLARE_TYPED_TAG(ROOT_OF_TRUST);
DECLARE_TYPED_TAG(ASSOCIATED_DATA);
DECLARE_TYPED_TAG(NONCE);
DECLARE_TYPED_TAG(AUTH_TOKEN);
DECLARE_TYPED_TAG(BOOTLOADER_ONLY);
DECLARE_TYPED_TAG(OS_VERSION);
DECLARE_TYPED_TAG(OS_PATCHLEVEL);
DECLARE_TYPED_TAG(UNIQUE_ID);
DECLARE_TYPED_TAG(ATTESTATION_CHALLENGE);
DECLARE_TYPED_TAG(ATTESTATION_APPLICATION_ID);
DECLARE_TYPED_TAG(RESET_SINCE_ID_ROTATION);
DECLARE_TYPED_TAG(PURPOSE);
DECLARE_TYPED_TAG(ALGORITHM);
DECLARE_TYPED_TAG(BLOCK_MODE);
DECLARE_TYPED_TAG(DIGEST);
DECLARE_TYPED_TAG(PADDING);
DECLARE_TYPED_TAG(BLOB_USAGE_REQUIREMENTS);
DECLARE_TYPED_TAG(ORIGIN);
DECLARE_TYPED_TAG(USER_AUTH_TYPE);
DECLARE_TYPED_TAG(KDF);
DECLARE_TYPED_TAG(EC_CURVE);
template <typename... Elems>
struct MetaList {};
using all_tags_t = MetaList<
TAG_INVALID_t, TAG_KEY_SIZE_t, TAG_MAC_LENGTH_t, TAG_CALLER_NONCE_t, TAG_MIN_MAC_LENGTH_t,
TAG_RSA_PUBLIC_EXPONENT_t, TAG_ECIES_SINGLE_HASH_MODE_t, TAG_INCLUDE_UNIQUE_ID_t,
TAG_ACTIVE_DATETIME_t, TAG_ORIGINATION_EXPIRE_DATETIME_t, TAG_USAGE_EXPIRE_DATETIME_t,
TAG_MIN_SECONDS_BETWEEN_OPS_t, TAG_MAX_USES_PER_BOOT_t, TAG_ALL_USERS_t, TAG_USER_ID_t,
TAG_USER_SECURE_ID_t, TAG_NO_AUTH_REQUIRED_t, TAG_AUTH_TIMEOUT_t, TAG_ALLOW_WHILE_ON_BODY_t,
TAG_ALL_APPLICATIONS_t, TAG_APPLICATION_ID_t, TAG_APPLICATION_DATA_t, TAG_CREATION_DATETIME_t,
TAG_ROLLBACK_RESISTANT_t, TAG_ROOT_OF_TRUST_t, TAG_ASSOCIATED_DATA_t, TAG_NONCE_t,
TAG_AUTH_TOKEN_t, TAG_BOOTLOADER_ONLY_t, TAG_OS_VERSION_t, TAG_OS_PATCHLEVEL_t, TAG_UNIQUE_ID_t,
TAG_ATTESTATION_CHALLENGE_t, TAG_ATTESTATION_APPLICATION_ID_t, TAG_RESET_SINCE_ID_ROTATION_t,
TAG_PURPOSE_t, TAG_ALGORITHM_t, TAG_BLOCK_MODE_t, TAG_DIGEST_t, TAG_PADDING_t,
TAG_BLOB_USAGE_REQUIREMENTS_t, TAG_ORIGIN_t, TAG_USER_AUTH_TYPE_t, TAG_KDF_t, TAG_EC_CURVE_t>;
/* implementation in keystore_utils.cpp */
extern const char* stringifyTag(Tag tag);
template <typename TypedTagType>
struct TypedTag2ValueType;
#define MAKE_TAG_VALUE_ACCESSOR(tag_type, field_name) \
template <Tag tag> \
struct TypedTag2ValueType<TypedTag<tag_type, tag>> { \
typedef decltype(static_cast<KeyParameter*>(nullptr)->field_name) type; \
}; \
template <Tag tag> \
inline auto accessTagValue(TypedTag<tag_type, tag>, const KeyParameter& param) \
->const decltype(param.field_name)& { \
return param.field_name; \
} \
template <Tag tag> \
inline auto accessTagValue(TypedTag<tag_type, tag>, KeyParameter& param) \
->decltype(param.field_name)& { \
return param.field_name; \
}
MAKE_TAG_VALUE_ACCESSOR(TagType::ULONG, f.longInteger)
MAKE_TAG_VALUE_ACCESSOR(TagType::ULONG_REP, f.longInteger)
MAKE_TAG_VALUE_ACCESSOR(TagType::DATE, f.dateTime)
MAKE_TAG_VALUE_ACCESSOR(TagType::UINT, f.integer)
MAKE_TAG_VALUE_ACCESSOR(TagType::UINT_REP, f.integer)
MAKE_TAG_VALUE_ACCESSOR(TagType::BOOL, f.boolValue)
MAKE_TAG_VALUE_ACCESSOR(TagType::BYTES, blob)
MAKE_TAG_VALUE_ACCESSOR(TagType::BIGNUM, blob)
#define MAKE_TAG_ENUM_VALUE_ACCESSOR(typed_tag, field_name) \
template <> \
struct TypedTag2ValueType<decltype(typed_tag)> { \
typedef decltype(static_cast<KeyParameter*>(nullptr)->field_name) type; \
}; \
inline auto accessTagValue(decltype(typed_tag), const KeyParameter& param) \
->const decltype(param.field_name)& { \
return param.field_name; \
} \
inline auto accessTagValue(decltype(typed_tag), KeyParameter& param) \
->decltype(param.field_name)& { \
return param.field_name; \
}
MAKE_TAG_ENUM_VALUE_ACCESSOR(TAG_ALGORITHM, f.algorithm)
MAKE_TAG_ENUM_VALUE_ACCESSOR(TAG_BLOB_USAGE_REQUIREMENTS, f.keyBlobUsageRequirements)
MAKE_TAG_ENUM_VALUE_ACCESSOR(TAG_BLOCK_MODE, f.blockMode)
MAKE_TAG_ENUM_VALUE_ACCESSOR(TAG_DIGEST, f.digest)
MAKE_TAG_ENUM_VALUE_ACCESSOR(TAG_EC_CURVE, f.ecCurve)
MAKE_TAG_ENUM_VALUE_ACCESSOR(TAG_KDF, f.keyDerivationFunction)
MAKE_TAG_ENUM_VALUE_ACCESSOR(TAG_ORIGIN, f.origin)
MAKE_TAG_ENUM_VALUE_ACCESSOR(TAG_PADDING, f.paddingMode)
MAKE_TAG_ENUM_VALUE_ACCESSOR(TAG_PURPOSE, f.purpose)
MAKE_TAG_ENUM_VALUE_ACCESSOR(TAG_USER_AUTH_TYPE, f.hardwareAuthenticatorType)
template <TagType tag_type, Tag tag, typename ValueT>
inline KeyParameter makeKeyParameter(TypedTag<tag_type, tag> ttag, ValueT&& value) {
KeyParameter param;
param.tag = tag;
param.f.longInteger = 0;
accessTagValue(ttag, param) = std::forward<ValueT>(value);
return param;
}
// the boolean case
template <Tag tag>
inline KeyParameter makeKeyParameter(TypedTag<TagType::BOOL, tag>) {
KeyParameter param;
param.tag = tag;
param.f.boolValue = true;
return param;
}
template <typename... Pack>
struct FirstOrNoneHelper;
template <typename First>
struct FirstOrNoneHelper<First> {
typedef First type;
};
template <>
struct FirstOrNoneHelper<> {
struct type {};
};
template <typename... Pack>
using FirstOrNone = typename FirstOrNoneHelper<Pack...>::type;
template <TagType tag_type, Tag tag, typename... Args>
inline KeyParameter Authorization(TypedTag<tag_type, tag> ttag, Args&&... args) {
static_assert(tag_type != TagType::BOOL || (sizeof...(args) == 0),
"TagType::BOOL Authorizations do not take parameters. Presence is truth.");
static_assert(tag_type == TagType::BOOL || (sizeof...(args) == 1),
"Authorization other then TagType::BOOL take exactly one parameter.");
static_assert(
tag_type == TagType::BOOL ||
std::is_convertible<std::remove_cv_t<std::remove_reference_t<FirstOrNone<Args...>>>,
typename TypedTag2ValueType<TypedTag<tag_type, tag>>::type>::value,
"Invalid argument type for given tag.");
return makeKeyParameter(ttag, std::forward<Args>(args)...);
}
/**
* This class wraps a (mostly return) value and stores whether or not the wrapped value is valid out
* of band. Note that if the wrapped value is a reference it is unsafe to access the value if
* !isOk(). If the wrapped type is a pointer or value and !isOk(), it is still safe to access the
* wrapped value. In this case the pointer will be NULL though, and the value will be default
* constructed.
*/
template <typename ValueT>
class NullOr {
template <typename T>
struct reference_initializer {
static T&& init() { return *static_cast<std::remove_reference_t<T>*>(nullptr); }
};
template <typename T>
struct pointer_initializer {
static T init() { return nullptr; }
};
template <typename T>
struct value_initializer {
static T init() { return T(); }
};
template <typename T>
using initializer_t = std::conditional_t<
std::is_lvalue_reference<T>::value, reference_initializer<T>,
std::conditional_t<std::is_pointer<T>::value, pointer_initializer<T>, value_initializer<T>>>;
public:
NullOr() : value_(initializer_t<ValueT>::init()), null_(true) {}
NullOr(ValueT&& value) : value_(std::forward<ValueT>(value)), null_(false) {}
bool isOk() const { return !null_; }
const ValueT& value() const & { return value_; }
ValueT& value() & { return value_; }
ValueT&& value() && { return std::move(value_); }
private:
ValueT value_;
bool null_;
};
template <typename T>
std::remove_reference_t<T> NullOrOr(T&& v) {
if (v.isOk()) return v;
return {};
}
template <typename Head, typename... Tail>
std::remove_reference_t<Head> NullOrOr(Head&& head, Tail&&... tail) {
if (head.isOk()) return head;
return NullOrOr(std::forward<Tail>(tail)...);
}
template <typename Default, typename Wrapped>
std::remove_reference_t<Wrapped> defaultOr(NullOr<Wrapped>&& optional, Default&& def) {
static_assert(
std::is_convertible<std::remove_reference_t<Default>, std::remove_reference_t<Wrapped>>::value,
"Type of default value must match the type wrapped by NullOr");
if (optional.isOk()) return optional.value();
return def;
}
template <TagType tag_type, Tag tag>
inline NullOr<const typename TypedTag2ValueType<TypedTag<tag_type, tag>>::type&> authorizationValue(
TypedTag<tag_type, tag> ttag, const KeyParameter& param) {
if (tag != param.tag) return {};
return accessTagValue(ttag, param);
}
} // namespace keystore
#endif // SYSTEM_SECURITY_KEYSTORE_KEYMASTER_TAGS_H_