blob: 9e91a0728489da20fcc175d3b61c0ae53b89822a [file] [log] [blame]
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include <atomic>
#include <memory>
#include <mutex>
#include <string>
#include <utility>
#include <7zCrc.h>
#include <Xz.h>
#include <XzCrc64.h>
#include <unwindstack/Log.h>
#include "MemoryXz.h"
namespace unwindstack {
// Statistics (used only for optional debug log messages).
static constexpr bool kLogMemoryXzUsage = false;
std::atomic_size_t MemoryXz::total_used_ = 0;
std::atomic_size_t MemoryXz::total_size_ = 0;
std::atomic_size_t MemoryXz::total_open_ = 0;
MemoryXz::MemoryXz(Memory* memory, uint64_t addr, uint64_t size, const std::string& name)
: compressed_memory_(memory), compressed_addr_(addr), compressed_size_(size), name_(name) {
total_open_ += 1;
}
bool MemoryXz::Init() {
static std::once_flag crc_initialized;
std::call_once(crc_initialized, []() {
CrcGenerateTable();
Crc64GenerateTable();
});
if (compressed_size_ >= kMaxCompressedSize) {
return false;
}
if (!ReadBlocks()) {
return false;
}
// All blocks (except the last one) must have the same power-of-2 size.
if (blocks_.size() > 1) {
size_t block_size_log2 = __builtin_ctz(blocks_.front().decompressed_size);
auto correct_size = [=](XzBlock& b) { return b.decompressed_size == (1 << block_size_log2); };
if (std::all_of(blocks_.begin(), std::prev(blocks_.end()), correct_size) &&
blocks_.back().decompressed_size <= (1 << block_size_log2)) {
block_size_log2_ = block_size_log2;
} else {
// Inconsistent block-sizes. Decompress and merge everything now.
std::unique_ptr<uint8_t[]> data(new uint8_t[size_]);
size_t offset = 0;
for (XzBlock& block : blocks_) {
if (!Decompress(&block)) {
return false;
}
memcpy(data.get() + offset, block.decompressed_data.get(), block.decompressed_size);
offset += block.decompressed_size;
}
blocks_.clear();
blocks_.push_back(XzBlock{
.decompressed_data = std::move(data),
.decompressed_size = size_,
});
block_size_log2_ = 31; // Because 32 bits is too big (shift right by 32 is not allowed).
}
}
return true;
}
MemoryXz::~MemoryXz() {
total_used_ -= used_;
total_size_ -= size_;
total_open_ -= 1;
}
size_t MemoryXz::Read(uint64_t addr, void* buffer, size_t size) {
if (addr >= size_) {
return 0; // Read past the end.
}
uint8_t* dst = reinterpret_cast<uint8_t*>(buffer); // Position in the output buffer.
for (size_t i = addr >> block_size_log2_; i < blocks_.size(); i++) {
XzBlock* block = &blocks_[i];
if (block->decompressed_data == nullptr) {
if (!Decompress(block)) {
break;
}
}
size_t offset = (addr - (i << block_size_log2_)); // Start inside the block.
size_t copy_bytes = std::min<size_t>(size, block->decompressed_size - offset);
memcpy(dst, block->decompressed_data.get() + offset, copy_bytes);
dst += copy_bytes;
addr += copy_bytes;
size -= copy_bytes;
if (size == 0) {
break;
}
}
return dst - reinterpret_cast<uint8_t*>(buffer);
}
bool MemoryXz::ReadBlocks() {
static ISzAlloc alloc;
alloc.Alloc = [](ISzAllocPtr, size_t size) { return malloc(size); };
alloc.Free = [](ISzAllocPtr, void* ptr) { return free(ptr); };
// Read the compressed data, so we can quickly scan through the headers.
std::unique_ptr<uint8_t[]> compressed_data(new (std::nothrow) uint8_t[compressed_size_]);
if (compressed_data.get() == nullptr) {
return false;
}
if (!compressed_memory_->ReadFully(compressed_addr_, compressed_data.get(), compressed_size_)) {
return false;
}
// Implement the required interface for communication
// (written in C so we can not use virtual methods or member functions).
struct XzLookInStream : public ILookInStream, public ICompressProgress {
static SRes LookImpl(const ILookInStream* p, const void** buf, size_t* size) {
auto* ctx = reinterpret_cast<const XzLookInStream*>(p);
*buf = ctx->data + ctx->offset;
*size = std::min(*size, ctx->size - ctx->offset);
return SZ_OK;
}
static SRes SkipImpl(const ILookInStream* p, size_t len) {
auto* ctx = reinterpret_cast<XzLookInStream*>(const_cast<ILookInStream*>(p));
ctx->offset += len;
return SZ_OK;
}
static SRes ReadImpl(const ILookInStream* p, void* buf, size_t* size) {
auto* ctx = reinterpret_cast<const XzLookInStream*>(p);
*size = std::min(*size, ctx->size - ctx->offset);
memcpy(buf, ctx->data + ctx->offset, *size);
return SZ_OK;
}
static SRes SeekImpl(const ILookInStream* p, Int64* pos, ESzSeek origin) {
auto* ctx = reinterpret_cast<XzLookInStream*>(const_cast<ILookInStream*>(p));
switch (origin) {
case SZ_SEEK_SET:
ctx->offset = *pos;
break;
case SZ_SEEK_CUR:
ctx->offset += *pos;
break;
case SZ_SEEK_END:
ctx->offset = ctx->size + *pos;
break;
}
*pos = ctx->offset;
return SZ_OK;
}
static SRes ProgressImpl(const ICompressProgress*, UInt64, UInt64) { return SZ_OK; }
size_t offset;
uint8_t* data;
size_t size;
};
XzLookInStream callbacks;
callbacks.Look = &XzLookInStream::LookImpl;
callbacks.Skip = &XzLookInStream::SkipImpl;
callbacks.Read = &XzLookInStream::ReadImpl;
callbacks.Seek = &XzLookInStream::SeekImpl;
callbacks.Progress = &XzLookInStream::ProgressImpl;
callbacks.offset = 0;
callbacks.data = compressed_data.get();
callbacks.size = compressed_size_;
// Iterate over the internal XZ blocks without decompressing them.
CXzs xzs;
Xzs_Construct(&xzs);
Int64 end_offset = compressed_size_;
if (Xzs_ReadBackward(&xzs, &callbacks, &end_offset, &callbacks, &alloc) == SZ_OK) {
blocks_.reserve(Xzs_GetNumBlocks(&xzs));
size_t dst_offset = 0;
for (int s = xzs.num - 1; s >= 0; s--) {
const CXzStream& stream = xzs.streams[s];
size_t src_offset = stream.startOffset + XZ_STREAM_HEADER_SIZE;
for (size_t b = 0; b < stream.numBlocks; b++) {
const CXzBlockSizes& block = stream.blocks[b];
blocks_.push_back(XzBlock{
.decompressed_data = nullptr, // Lazy allocation and decompression.
.decompressed_size = static_cast<uint32_t>(block.unpackSize),
.compressed_offset = static_cast<uint32_t>(src_offset),
.compressed_size = static_cast<uint32_t>((block.totalSize + 3) & ~3u),
.stream_flags = stream.flags,
});
dst_offset += blocks_.back().decompressed_size;
src_offset += blocks_.back().compressed_size;
}
}
size_ = dst_offset;
total_size_ += dst_offset;
}
Xzs_Free(&xzs, &alloc);
return !blocks_.empty();
}
bool MemoryXz::Decompress(XzBlock* block) {
static ISzAlloc alloc;
alloc.Alloc = [](ISzAllocPtr, size_t size) { return malloc(size); };
alloc.Free = [](ISzAllocPtr, void* ptr) { return free(ptr); };
// Read the compressed data for this block.
std::unique_ptr<uint8_t[]> compressed_data(new (std::nothrow) uint8_t[block->compressed_size]);
if (compressed_data.get() == nullptr) {
return false;
}
if (!compressed_memory_->ReadFully(compressed_addr_ + block->compressed_offset,
compressed_data.get(), block->compressed_size)) {
return false;
}
// Allocate decompressed memory.
std::unique_ptr<uint8_t[]> decompressed_data(new uint8_t[block->decompressed_size]);
if (decompressed_data == nullptr) {
return false;
}
// Decompress.
CXzUnpacker state{};
XzUnpacker_Construct(&state, &alloc);
state.streamFlags = block->stream_flags;
XzUnpacker_PrepareToRandomBlockDecoding(&state);
size_t decompressed_size = block->decompressed_size;
size_t compressed_size = block->compressed_size;
ECoderStatus status;
XzUnpacker_SetOutBuf(&state, decompressed_data.get(), decompressed_size);
int return_val =
XzUnpacker_Code(&state, /*decompressed_data=*/nullptr, &decompressed_size,
compressed_data.get(), &compressed_size, true, CODER_FINISH_END, &status);
XzUnpacker_Free(&state);
if (return_val != SZ_OK || status != CODER_STATUS_FINISHED_WITH_MARK) {
Log::Error("Cannot decompress \"%s\"", name_.c_str());
return false;
}
used_ += block->decompressed_size;
total_used_ += block->decompressed_size;
if (kLogMemoryXzUsage) {
Log::Info("decompressed memory: %zi%% of %ziKB (%zi files), %i%% of %iKB (%s)",
100 * total_used_ / total_size_, total_size_ / 1024, total_open_.load(),
100 * used_ / size_, size_ / 1024, name_.c_str());
}
block->decompressed_data = std::move(decompressed_data);
return true;
}
} // namespace unwindstack