blob: fff777f4a93763390b922fbada230e38c28c2d32 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#define LOG_TAG "hidl_test_java_native"
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android/hardware/tests/baz/1.0/IBaz.h>
#include <android/hardware/tests/memory/2.0/IMemoryInterface.h>
#include <android/hardware/tests/memory/2.0/types.h>
#include <android/hardware/tests/safeunion/1.0/IOtherInterface.h>
#include <android/hardware/tests/safeunion/1.0/ISafeUnion.h>
#include <android/hidl/allocator/1.0/IAllocator.h>
#include <hidlmemory/mapping.h>
#include <hidl/LegacySupport.h>
#include <hidl/ServiceManagement.h>
#include <gtest/gtest.h>
#include <hidl/HidlTransportSupport.h>
#include <hidl/Status.h>
#include <numeric>
#include <sys/stat.h>
using ::android::sp;
using ::android::hardware::tests::baz::V1_0::IBase;
using ::android::hardware::tests::baz::V1_0::IBaz;
using ::android::hardware::tests::baz::V1_0::IBazCallback;
using ::android::hardware::tests::memory::V2_0::IMemoryInterface;
using ::android::hardware::tests::memory::V2_0::TwoMemory;
using ::android::hardware::tests::safeunion::V1_0::IOtherInterface;
using ::android::hardware::tests::safeunion::V1_0::ISafeUnion;
using ::android::hardware::hidl_array;
using ::android::hardware::hidl_vec;
using ::android::hardware::hidl_memory;
using ::android::hardware::hidl_handle;
using ::android::hardware::hidl_string;
using ::android::hardware::defaultPassthroughServiceImplementation;
using ::android::hardware::Return;
using ::android::hardware::Status;
using ::android::hardware::Void;
using ::android::hidl::allocator::V1_0::IAllocator;
using ::android::hidl::memory::V1_0::IMemory;
using HandleTypeSafeUnion = ISafeUnion::HandleTypeSafeUnion;
using InterfaceTypeSafeUnion = ISafeUnion::InterfaceTypeSafeUnion;
using LargeSafeUnion = ISafeUnion::LargeSafeUnion;
using SmallSafeUnion = ISafeUnion::SmallSafeUnion;
struct BazCallback : public IBazCallback {
Return<void> heyItsMe(const sp<IBazCallback> &cb) override;
Return<void> hey() override;
};
Return<void> BazCallback::heyItsMe(
const sp<IBazCallback> &cb) {
LOG(INFO) << "SERVER: heyItsMe cb = " << cb.get();
return Void();
}
Return<void> BazCallback::hey() {
LOG(INFO) << "SERVER: hey";
return Void();
}
struct OtherInterface : public IOtherInterface {
Return<void> concatTwoStrings(const hidl_string& a, const hidl_string& b,
concatTwoStrings_cb _hidl_cb) override {
hidl_string result = std::string(a) + std::string(b);
_hidl_cb(result);
return Void();
}
};
struct MemoryInterface : public IMemoryInterface {
MemoryInterface() {
sp<IAllocator> ashmem = IAllocator::getService("ashmem");
LOG_FATAL_IF(ashmem == nullptr);
ashmem->allocate(8, [&](bool success, const hidl_memory& m) {
LOG_FATAL_IF(!success);
(void) success;
mMemory = m;
});
sp<IMemory> memory = mapMemory(mMemory);
LOG_FATAL_IF(memory == nullptr);
uint8_t* data =
static_cast<uint8_t*>(static_cast<void*>(memory->getPointer()));
for (size_t i = 0; i < 8; ++i) {
data[i] = i;
}
memory->commit();
}
Return<void> bitwiseNot(const hidl_memory& mem) override {
sp<IMemory> memory = mapMemory(mem);
if (memory == nullptr) {
return Status::fromExceptionCode(Status::EX_ILLEGAL_ARGUMENT,
"Could not map hidl_memory");
}
uint8_t* data =
static_cast<uint8_t*>(static_cast<void*>(memory->getPointer()));
memory->update();
for (size_t i = 0; i < memory->getSize(); i++) {
data[i] = ~data[i];
}
memory->commit();
return Void();
}
Return<void> getTestMem(getTestMem_cb _hidl_cb) override {
_hidl_cb(mMemory);
return Status::ok();
}
Return<void> getSumDiff(const TwoMemory& in, getSumDiff_cb _hidl_cb) override {
if (in.mem1.size() != in.mem2.size()) {
return Status::fromExceptionCode(Status::EX_ILLEGAL_ARGUMENT,
"Buffers must be the same size.");
}
const size_t size = in.mem1.size();
// Map first input.
sp<IMemory> memory_in1 = mapMemory(in.mem1);
if (memory_in1 == nullptr) {
return Status::fromExceptionCode(Status::EX_ILLEGAL_ARGUMENT,
"Could not map hidl_memory");
}
uint8_t* data_in1 =
static_cast<uint8_t*>(static_cast<void*>(memory_in1->getPointer()));
memory_in1->update();
// Map second input.
sp<IMemory> memory_in2 = mapMemory(in.mem2);
if (memory_in2 == nullptr) {
return Status::fromExceptionCode(Status::EX_ILLEGAL_ARGUMENT,
"Could not map hidl_memory");
}
uint8_t* data_in2 =
static_cast<uint8_t*>(static_cast<void*>(memory_in2->getPointer()));
memory_in2->update();
TwoMemory out;
sp<IAllocator> ashmem = IAllocator::getService("ashmem");
LOG_FATAL_IF(ashmem == nullptr);
// Map first output.
ashmem->allocate(size, [&](bool success, const hidl_memory& m) {
LOG_FATAL_IF(!success);
(void) success;
out.mem1 = m;
});
sp<IMemory> memory_out1 = mapMemory(out.mem1);
LOG_FATAL_IF(memory_out1 == nullptr);
uint8_t* data_out1 =
static_cast<uint8_t*>(static_cast<void*>(memory_out1->getPointer()));
// Map second output.
ashmem->allocate(size, [&](bool success, const hidl_memory& m) {
LOG_FATAL_IF(!success);
(void) success;
out.mem2 = m;
});
sp<IMemory> memory_out2 = mapMemory(out.mem2);
LOG_FATAL_IF(memory_out2 == nullptr);
uint8_t* data_out2 =
static_cast<uint8_t*>(static_cast<void*>(memory_out2->getPointer()));
for (size_t i = 0; i < size; ++i) {
data_out1[i] = data_in1[i] + data_in2[i];
data_out2[i] = data_in1[i] - data_in2[i];
}
memory_out1->commit();
memory_out2->commit();
_hidl_cb(out);
return Status::ok();
}
private:
hidl_memory mMemory;
};
using std::to_string;
static void usage(const char *me) {
fprintf(stderr, "%s [-c]lient | [-s]erver\n", me);
}
struct HidlEnvironment : public ::testing::Environment {
void SetUp() override {
}
void TearDown() override {
}
};
struct HidlTest : public ::testing::Test {
sp<IBaz> baz;
sp<ISafeUnion> safeunionInterface;
sp<IOtherInterface> otherInterface;
void SetUp() override {
using namespace ::android::hardware;
::android::hardware::details::waitForHwService(IBaz::descriptor, "default");
baz = IBaz::getService();
CHECK(baz != nullptr);
CHECK(baz->isRemote());
::android::hardware::details::waitForHwService(ISafeUnion::descriptor, "default");
safeunionInterface = ISafeUnion::getService();
CHECK(safeunionInterface != nullptr);
CHECK(safeunionInterface->isRemote());
::android::hardware::details::waitForHwService(IOtherInterface::descriptor, "default");
otherInterface = IOtherInterface::getService();
CHECK(otherInterface != nullptr);
CHECK(otherInterface->isRemote());
}
void TearDown() override {
}
};
template <typename T>
static void EXPECT_OK(const ::android::hardware::Return<T> &ret) {
EXPECT_TRUE(ret.isOk());
}
template<typename T, typename S>
static inline bool isArrayEqual(const T arr1, const S arr2, size_t size) {
for(size_t i = 0; i < size; i++)
if(arr1[i] != arr2[i])
return false;
return true;
}
TEST_F(HidlTest, GetDescriptorTest) {
EXPECT_OK(baz->interfaceDescriptor([&] (const auto &desc) {
EXPECT_EQ(desc, IBaz::descriptor);
}));
}
TEST_F(HidlTest, BazSomeBaseMethodTest) {
EXPECT_OK(baz->someBaseMethod());
}
TEST_F(HidlTest, BazSomeOtherBaseMethodTest) {
IBase::Foo foo;
foo.x = 1;
foo.y.z = 2.5;
// A valid UTF-8 string
foo.y.s = "Hello, world, \x46\x6F\x6F\x20\xC2\xA9\x20\x62\x61\x72\x20\xF0\x9D\x8C\x86\x20\x54\x72\x65\x62\x6C\x65\x20\xE2\x98\x83\x20\x72\x6F\x63\x6B\x73";
foo.aaa.resize(5);
for (size_t i = 0; i < foo.aaa.size(); ++i) {
foo.aaa[i].z = 1.0f + (float)i * 0.01f;
foo.aaa[i].s = ("Hello, world " + std::to_string(i)).c_str();
}
EXPECT_OK(
baz->someOtherBaseMethod(
foo,
[&](const auto &result) {
// Strings should have the same size as they did before
// marshaling. b/35038064
EXPECT_EQ(result.y.s.size(), foo.y.s.size());
EXPECT_EQ(foo, result);
}));
}
TEST_F(HidlTest, SomeOtherBaseMethodInvalidString) {
IBase::Foo foo {
.y = {
.s = "\xff",
}
};
auto ret = baz->someOtherBaseMethod(foo, [&](const auto&) {
ADD_FAILURE() << "Should not accept invalid UTF-8 String";
});
EXPECT_FALSE(ret.isOk());
EXPECT_OK(baz->ping());
}
TEST_F(HidlTest, BazSomeMethodWithFooArraysTest) {
hidl_array<IBase::Foo, 2> foo;
foo[0].x = 1;
foo[0].y.z = 2.5;
foo[0].y.s = "Hello, world";
foo[0].aaa.resize(5);
for (size_t i = 0; i < foo[0].aaa.size(); ++i) {
foo[0].aaa[i].z = 1.0f + (float)i * 0.01f;
foo[0].aaa[i].s = ("Hello, world " + std::to_string(i)).c_str();
}
foo[1].x = 2;
foo[1].y.z = -2.5;
foo[1].y.s = "Morituri te salutant";
foo[1].aaa.resize(3);
for (size_t i = 0; i < foo[1].aaa.size(); ++i) {
foo[1].aaa[i].z = 2.0f - (float)i * 0.01f;
foo[1].aaa[i].s = ("Alea iacta est: " + std::to_string(i)).c_str();
}
hidl_array<IBaz::Foo, 2> fooExpectedOutput;
fooExpectedOutput[0] = foo[1];
fooExpectedOutput[1] = foo[0];
EXPECT_OK(
baz->someMethodWithFooArrays(
foo,
[&](const auto &result) {
EXPECT_EQ(result, fooExpectedOutput);
}));
}
TEST_F(HidlTest, BazSomeMethodWithFooVectorsTest) {
hidl_vec<IBase::Foo> foo;
foo.resize(2);
foo[0].x = 1;
foo[0].y.z = 2.5;
foo[0].y.s = "Hello, world";
foo[0].aaa.resize(5);
for (size_t i = 0; i < foo[0].aaa.size(); ++i) {
foo[0].aaa[i].z = 1.0f + (float)i * 0.01f;
foo[0].aaa[i].s = ("Hello, world " + std::to_string(i)).c_str();
}
foo[1].x = 2;
foo[1].y.z = -2.5;
foo[1].y.s = "Morituri te salutant";
foo[1].aaa.resize(3);
for (size_t i = 0; i < foo[1].aaa.size(); ++i) {
foo[1].aaa[i].z = 2.0f - (float)i * 0.01f;
foo[1].aaa[i].s = ("Alea iacta est: " + std::to_string(i)).c_str();
}
hidl_vec<IBaz::Foo> fooExpectedOutput;
fooExpectedOutput.resize(2);
fooExpectedOutput[0] = foo[1];
fooExpectedOutput[1] = foo[0];
EXPECT_OK(
baz->someMethodWithFooVectors(
foo,
[&](const auto &result) {
EXPECT_EQ(result, fooExpectedOutput);
}));
}
TEST_F(HidlTest, BazSomeMethodWithVectorOfArray) {
IBase::VectorOfArray in, expectedOut;
in.addresses.resize(3);
expectedOut.addresses.resize(3);
size_t k = 0;
const size_t n = in.addresses.size();
for (size_t i = 0; i < n; ++i) {
for (size_t j = 0; j < 6; ++j, ++k) {
in.addresses[i][j] = k;
expectedOut.addresses[n - 1 - i][j] = k;
}
}
EXPECT_OK(
baz->someMethodWithVectorOfArray(
in,
[&](const auto &out) {
EXPECT_EQ(expectedOut, out);
}));
}
TEST_F(HidlTest, BazSomeMethodTakingAVectorOfArray) {
hidl_vec<hidl_array<uint8_t, 6> > in, expectedOut;
in.resize(3);
expectedOut.resize(3);
size_t k = 0;
const size_t n = in.size();
for (size_t i = 0; i < n; ++i) {
for (size_t j = 0; j < 6; ++j, ++k) {
in[i][j] = k;
expectedOut[n - 1 - i][j] = k;
}
}
EXPECT_OK(
baz->someMethodTakingAVectorOfArray(
in,
[&](const auto &out) {
EXPECT_EQ(expectedOut, out);
}));
}
static std::string numberToEnglish(int x) {
static const char *const kDigits[] = {
"zero",
"one",
"two",
"three",
"four",
"five",
"six",
"seven",
"eight",
"nine",
};
if (x < 0) {
return "negative " + numberToEnglish(-x);
}
if (x < 10) {
return kDigits[x];
}
if (x <= 15) {
static const char *const kSpecialTens[] = {
"ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen",
};
return kSpecialTens[x - 10];
}
if (x < 20) {
return std::string(kDigits[x % 10]) + "teen";
}
if (x < 100) {
static const char *const kDecades[] = {
"twenty", "thirty", "forty", "fifty", "sixty", "seventy",
"eighty", "ninety",
};
return std::string(kDecades[x / 10 - 2]) + kDigits[x % 10];
}
return "positively huge!";
}
TEST_F(HidlTest, BazTransposeTest) {
IBase::StringMatrix5x3 in;
IBase::StringMatrix3x5 expectedOut;
for (int i = 0; i < 5; ++i) {
for (int j = 0; j < 3; ++j) {
in.s[i][j] = expectedOut.s[j][i] = numberToEnglish(3 * i + j + 1).c_str();
}
}
EXPECT_OK(baz->transpose(
in,
[&](const auto &out) {
EXPECT_EQ(expectedOut, out);
}));
}
TEST_F(HidlTest, BazTranspose2Test) {
hidl_array<hidl_string, 5, 3> in;
hidl_array<hidl_string, 3, 5> expectedOut;
for (int i = 0; i < 5; ++i) {
for (int j = 0; j < 3; ++j) {
in[i][j] = expectedOut[j][i] = numberToEnglish(3 * i + j + 1).c_str();
}
}
EXPECT_OK(baz->transpose2(
in,
[&](const auto &out) {
EXPECT_EQ(expectedOut, out);
}));
}
TEST_F(HidlTest, BazSomeBoolMethodTest) {
auto result = baz->someBoolMethod(true);
EXPECT_OK(result);
EXPECT_EQ(result, false);
}
TEST_F(HidlTest, BazSomeBoolArrayMethodTest) {
hidl_array<bool, 3> someBoolArray;
someBoolArray[0] = true;
someBoolArray[1] = false;
someBoolArray[2] = true;
hidl_array<bool, 4> expectedOut;
expectedOut[0] = false;
expectedOut[1] = true;
expectedOut[2] = false;
expectedOut[3] = true;
EXPECT_OK(
baz->someBoolArrayMethod(
someBoolArray,
[&](const auto &result) {
EXPECT_EQ(expectedOut, result);
}));
}
TEST_F(HidlTest, BazSomeBoolVectorMethodTest) {
hidl_vec<bool> someBoolVector, expected;
someBoolVector.resize(4);
expected.resize(4);
for (size_t i = 0; i < someBoolVector.size(); ++i) {
someBoolVector[i] = ((i & 1) == 0);
expected[i] = !someBoolVector[i];
}
EXPECT_OK(
baz->someBoolVectorMethod(
someBoolVector,
[&](const auto &result) {
EXPECT_EQ(expected, result);
}));
}
TEST_F(HidlTest, BazDoThisMethodTest) {
EXPECT_OK(baz->doThis(1.0f));
}
TEST_F(HidlTest, BazDoThatAndReturnSomethingMethodTest) {
auto result = baz->doThatAndReturnSomething(1);
EXPECT_OK(result);
EXPECT_EQ(result, 666);
}
TEST_F(HidlTest, BazDoQuiteABitMethodTest) {
auto result = baz->doQuiteABit(1, 2LL, 3.0f, 4.0);
EXPECT_OK(result);
EXPECT_EQ(result, 666.5);
}
TEST_F(HidlTest, BazDoSomethingElseMethodTest) {
hidl_array<int32_t, 15> param;
hidl_array<int32_t, 32> expected;
for (size_t i = 0; i < 15; ++i) {
param[i] = expected[15 + i] = i;
expected[i] = 2 * i;
}
expected[30] = 1;
expected[31] = 2;
EXPECT_OK(
baz->doSomethingElse(
param,
[&](const auto &result) {
EXPECT_EQ(expected, result);
}));
}
TEST_F(HidlTest, BazDoStuffAndReturnAStringMethodTest) {
std::string expected = "Hello, world!";
EXPECT_OK(
baz->doStuffAndReturnAString(
[&](const auto &result) {
EXPECT_EQ(expected, result);
}));
}
TEST_F(HidlTest, BazMapThisVectorMethodTest) {
hidl_vec<int32_t> vec_param, expected;
vec_param.resize(15);
expected.resize(15);
for (size_t i = 0; i < 15; ++i) {
vec_param[i] = i;
expected[i] = 2 * i;
}
EXPECT_OK(
baz->mapThisVector(
vec_param,
[&](const auto &result) {
EXPECT_EQ(expected, result);
}));
}
TEST_F(HidlTest, BazCallMeMethodTest) {
EXPECT_OK(baz->callMe(new BazCallback()));
}
TEST_F(HidlTest, BazCallMeLaterMethodTest) {
EXPECT_OK(baz->callMeLater(new BazCallback()));
EXPECT_OK(baz->iAmFreeNow());
}
TEST_F(HidlTest, BazUseAnEnumMethodTest) {
auto result = baz->useAnEnum(IBaz::SomeEnum::bar);
EXPECT_OK(result);
EXPECT_TRUE(result == IBaz::SomeEnum::quux);
}
TEST_F(HidlTest, BazHaveSomeStringsMethodTest) {
hidl_array<hidl_string, 3> string_params;
string_params[0] = "one";
string_params[1] = "two";
string_params[2] = "three";
hidl_array<hidl_string, 2> expected;
expected[0] = "Hello";
expected[1] = "World";
EXPECT_OK(
baz->haveSomeStrings(
string_params,
[&](const auto &result) {
EXPECT_EQ(expected, result);
}));
}
TEST_F(HidlTest, BazHaveAStringVecMethodTest) {
hidl_vec<hidl_string> string_vec{ "Uno", "Dos", "Tres", "Cuatro" };
hidl_vec<hidl_string> expected{"Hello", "World"};
EXPECT_OK(
baz->haveAStringVec(
string_vec,
[&](const auto &result) {
EXPECT_EQ(expected, result);
}));
}
TEST_F(HidlTest, BazRepeatBitfieldVecTest) {
hidl_vec<uint8_t> vec{0 | IBaz::BitField::V1, 0 | IBaz::BitField::V2};
EXPECT_OK(baz->repeatBitfieldVec(vec, [&](const auto& result) { EXPECT_EQ(vec, result); }));
}
TEST_F(HidlTest, BazReturnABunchOfStringsMethodTest) {
std::string expectedA = "Eins";
std::string expectedB = "Zwei";
std::string expectedC = "Drei";
EXPECT_OK(
baz->returnABunchOfStrings(
[&](const auto &a, const auto &b, const auto &c) {
EXPECT_EQ(a, expectedA);
EXPECT_EQ(b, expectedB);
EXPECT_EQ(c, expectedC);
}));
}
TEST_F(HidlTest, BazTestArrays) {
IBase::LotsOfPrimitiveArrays in;
for (size_t i = 0; i < 128; ++i) {
in.byte1[i] = i;
in.boolean1[i] = (i & 4) != 0;
in.double1[i] = i;
}
size_t k = 0;
for (size_t i = 0; i < 8; ++i) {
for (size_t j = 0; j < 128; ++j, ++k) {
in.byte2[i][j] = k;
in.boolean2[i][j] = (k & 4) != 0;
in.double2[i][j] = k;
}
}
size_t m = 0;
for (size_t i = 0; i < 8; ++i) {
for (size_t j = 0; j < 16; ++j) {
for (size_t k = 0; k < 128; ++k, ++m) {
in.byte3[i][j][k] = m;
in.boolean3[i][j][k] = (m & 4) != 0;
in.double3[i][j][k] = m;
}
}
}
EXPECT_OK(
baz->testArrays(in,
[&](const auto &out) {
EXPECT_EQ(in, out);
}));
}
TEST_F(HidlTest, BazTestByteVecs) {
hidl_vec<IBase::ByteOneDim> in;
in.resize(8);
size_t k = 0;
for (size_t i = 0; i < in.size(); ++i) {
for (size_t j = 0; j < 128; ++j, ++k) {
in[i][j] = k;
}
}
EXPECT_OK(baz->testByteVecs(
in, [&](const auto &out) { EXPECT_EQ(in, out); }));
}
TEST_F(HidlTest, BazTestBooleanVecs) {
hidl_vec<IBase::BooleanOneDim> in;
in.resize(8);
size_t k = 0;
for (size_t i = 0; i < in.size(); ++i) {
for (size_t j = 0; j < 128; ++j, ++k) {
in[i][j] = (k & 4) != 0;
}
}
EXPECT_OK(baz->testBooleanVecs(
in, [&](const auto &out) { EXPECT_EQ(in, out); }));
}
TEST_F(HidlTest, BazTestDoubleVecs) {
hidl_vec<IBase::DoubleOneDim> in;
in.resize(8);
size_t k = 0;
for (size_t i = 0; i < in.size(); ++i) {
for (size_t j = 0; j < 128; ++j, ++k) {
in[i][j] = k;
}
}
EXPECT_OK(baz->testDoubleVecs(
in, [&](const auto &out) { EXPECT_EQ(in, out); }));
}
TEST_F(HidlTest, TwowayMethodOnewayEnabledTest) {
using ::android::hardware::IBinder;
using ::android::hardware::Parcel;
sp<IBinder> binder = ::android::hardware::toBinder(baz);
Parcel request, reply;
EXPECT_EQ(::android::OK, request.writeInterfaceToken(IBaz::descriptor));
EXPECT_EQ(::android::OK, request.writeInt64(1234));
// IBaz::doThatAndReturnSomething is two-way but we call it using FLAG_ONEWAY.
EXPECT_EQ(::android::OK, binder->transact(18 /*doThatAndReturnSomething*/, request, &reply,
IBinder::FLAG_ONEWAY));
::android::hardware::Status status;
EXPECT_EQ(::android::NOT_ENOUGH_DATA, ::android::hardware::readFromParcel(&status, reply));
EXPECT_EQ(::android::hardware::Status::EX_TRANSACTION_FAILED, status.exceptionCode());
EXPECT_OK(baz->ping()); // still works
}
TEST_F(HidlTest, OnewayMethodOnewayDisabledTest) {
using ::android::hardware::IBinder;
using ::android::hardware::Parcel;
sp<IBinder> binder = ::android::hardware::toBinder(baz);
Parcel request, reply;
EXPECT_EQ(::android::OK, request.writeInterfaceToken(IBaz::descriptor));
EXPECT_EQ(::android::OK, request.writeFloat(1.0f));
// IBaz::doThis is oneway but we call it without using FLAG_ONEWAY.
EXPECT_EQ(
// Expect UNKNOWN_ERROR because the JNI class JHwBinder always sets
// the reply to UNKNOWN_ERROR for two-way transactions if the
// transaction itself did not send a reply.
::android::UNKNOWN_ERROR,
binder->transact(17 /*doThis*/, request, &reply, 0 /* Not FLAG_ONEWAY */));
EXPECT_OK(baz->ping()); // still works
}
TEST_F(HidlTest, SafeUnionNoInitTest) {
EXPECT_OK(safeunionInterface->newLargeSafeUnion([&](const LargeSafeUnion& safeUnion) {
EXPECT_EQ(LargeSafeUnion::hidl_discriminator::noinit, safeUnion.getDiscriminator());
}));
}
TEST_F(HidlTest, SafeUnionSimpleTest) {
EXPECT_OK(safeunionInterface->newLargeSafeUnion([&](const LargeSafeUnion& safeUnion) {
EXPECT_OK(safeunionInterface->setA(safeUnion, -5, [&](const LargeSafeUnion& safeUnion) {
EXPECT_EQ(LargeSafeUnion::hidl_discriminator::a, safeUnion.getDiscriminator());
EXPECT_EQ(-5, safeUnion.a());
uint64_t max = std::numeric_limits<uint64_t>::max();
EXPECT_OK(
safeunionInterface->setD(safeUnion, max, [&](const LargeSafeUnion& safeUnion) {
EXPECT_EQ(LargeSafeUnion::hidl_discriminator::d, safeUnion.getDiscriminator());
EXPECT_EQ(max, safeUnion.d());
}));
}));
}));
}
TEST_F(HidlTest, SafeUnionArrayLikeTypesTest) {
const std::array<int64_t, 5> testArray{1, -2, 3, -4, 5};
const hidl_vec<uint64_t> testVector{std::numeric_limits<uint64_t>::max()};
EXPECT_OK(safeunionInterface->newLargeSafeUnion([&](const LargeSafeUnion& safeUnion) {
EXPECT_OK(
safeunionInterface->setF(safeUnion, testArray, [&](const LargeSafeUnion& safeUnion) {
EXPECT_EQ(LargeSafeUnion::hidl_discriminator::f, safeUnion.getDiscriminator());
for (size_t i = 0; i < testArray.size(); i++) {
EXPECT_EQ(testArray[i], safeUnion.f()[i]);
}
}));
EXPECT_OK(
safeunionInterface->setI(safeUnion, testVector, [&](const LargeSafeUnion& safeUnion) {
EXPECT_EQ(LargeSafeUnion::hidl_discriminator::i, safeUnion.getDiscriminator());
EXPECT_EQ(testVector, safeUnion.i());
}));
}));
}
TEST_F(HidlTest, SafeUnionStringTypeTest) {
const std::string testString =
"This is an inordinately long test string to exercise hidl_string types in safe unions.";
EXPECT_OK(safeunionInterface->newLargeSafeUnion([&](const LargeSafeUnion& safeUnion) {
EXPECT_OK(safeunionInterface->setG(
safeUnion, hidl_string(testString), [&](const LargeSafeUnion& safeUnion) {
EXPECT_EQ(LargeSafeUnion::hidl_discriminator::g, safeUnion.getDiscriminator());
EXPECT_EQ(testString, std::string(safeUnion.g()));
}));
}));
}
TEST_F(HidlTest, SafeUnionNestedTest) {
SmallSafeUnion smallSafeUnion;
smallSafeUnion.a(1);
EXPECT_OK(safeunionInterface->newLargeSafeUnion([&](const LargeSafeUnion& safeUnion) {
EXPECT_OK(safeunionInterface->setL(
safeUnion, smallSafeUnion, [&](const LargeSafeUnion& safeUnion) {
EXPECT_EQ(LargeSafeUnion::hidl_discriminator::l, safeUnion.getDiscriminator());
EXPECT_EQ(SmallSafeUnion::hidl_discriminator::a, safeUnion.l().getDiscriminator());
EXPECT_EQ(1, safeUnion.l().a());
}));
}));
}
// does not check for fd equality
static void checkNativeHandlesDataEquality(const native_handle_t* reference,
const native_handle_t* result) {
if (reference == nullptr || result == nullptr) {
EXPECT_EQ(reference == nullptr, result == nullptr);
return;
}
ASSERT_NE(reference, result);
ASSERT_EQ(reference->version, result->version);
EXPECT_EQ(reference->numFds, result->numFds);
EXPECT_EQ(reference->numInts, result->numInts);
int offset = reference->numFds;
int numInts = reference->numInts;
EXPECT_TRUE(isArrayEqual(&(reference->data[offset]), &(result->data[offset]), numInts));
}
TEST_F(HidlTest, SafeUnionInterfaceNullHandleTest) {
InterfaceTypeSafeUnion safeUnion;
EXPECT_OK(safeunionInterface->setInterfaceF(
safeUnion, hidl_handle(nullptr), [&](const InterfaceTypeSafeUnion& safeUnion) {
EXPECT_EQ(InterfaceTypeSafeUnion::hidl_discriminator::f,
safeUnion.getDiscriminator());
checkNativeHandlesDataEquality(nullptr, safeUnion.f().getNativeHandle());
}));
}
TEST_F(HidlTest, SafeUnionInterfaceTest) {
const std::array<int8_t, 7> testArray{-1, -2, -3, 0, 1, 2, 3};
const hidl_vec<hidl_string> testVector{"So", "Many", "Words"};
const std::string testStringA = "Hello";
const std::string testStringB = "World";
const std::array<int, 6> testHandleData{2, -32, 10, -4329454, 11, 24};
native_handle_t* h = native_handle_create(0, testHandleData.size());
CHECK(sizeof(testHandleData) == testHandleData.size() * sizeof(int));
std::memcpy(h->data, testHandleData.data(), sizeof(testHandleData));
std::vector<hidl_handle> testHandlesVector(256);
for (size_t i = 0; i < testHandlesVector.size(); i++) {
testHandlesVector[i].setTo(native_handle_clone(h), true /* shouldOwn */);
}
EXPECT_OK(
safeunionInterface->newInterfaceTypeSafeUnion([&](const InterfaceTypeSafeUnion& safeUnion) {
EXPECT_EQ(InterfaceTypeSafeUnion::hidl_discriminator::noinit,
safeUnion.getDiscriminator());
EXPECT_OK(safeunionInterface->setInterfaceB(
safeUnion, testArray, [&](const InterfaceTypeSafeUnion& safeUnion) {
EXPECT_EQ(InterfaceTypeSafeUnion::hidl_discriminator::b,
safeUnion.getDiscriminator());
for (size_t i = 0; i < testArray.size(); i++) {
EXPECT_EQ(testArray[i], safeUnion.b()[i]);
}
}));
EXPECT_OK(safeunionInterface->setInterfaceD(
safeUnion, testStringA, [&](const InterfaceTypeSafeUnion& safeUnion) {
EXPECT_EQ(InterfaceTypeSafeUnion::hidl_discriminator::d,
safeUnion.getDiscriminator());
EXPECT_EQ(testStringA, safeUnion.d());
}));
EXPECT_OK(safeunionInterface->setInterfaceE(
safeUnion, testVector, [&](const InterfaceTypeSafeUnion& safeUnion) {
EXPECT_EQ(InterfaceTypeSafeUnion::hidl_discriminator::e,
safeUnion.getDiscriminator());
EXPECT_EQ(testVector, safeUnion.e());
}));
EXPECT_OK(safeunionInterface->setInterfaceF(
safeUnion, hidl_handle(h), [&](const InterfaceTypeSafeUnion& safeUnion) {
EXPECT_EQ(InterfaceTypeSafeUnion::hidl_discriminator::f,
safeUnion.getDiscriminator());
const native_handle_t* result = safeUnion.f().getNativeHandle();
checkNativeHandlesDataEquality(h, result);
}));
EXPECT_OK(safeunionInterface->setInterfaceG(
safeUnion, testHandlesVector, [&](const InterfaceTypeSafeUnion& safeUnion) {
EXPECT_EQ(InterfaceTypeSafeUnion::hidl_discriminator::g,
safeUnion.getDiscriminator());
for (size_t i = 0; i < testHandlesVector.size(); i++) {
checkNativeHandlesDataEquality(h, safeUnion.g()[i].getNativeHandle());
}
}));
}));
// Same-process interface calls are not supported in Java, so we use
// a safe_union instance bound to this (client) process instead of
// safeunionInterface to exercise this test-case. Ref: b/110957763.
InterfaceTypeSafeUnion safeUnion;
safeUnion.c(otherInterface);
EXPECT_EQ(InterfaceTypeSafeUnion::hidl_discriminator::c, safeUnion.getDiscriminator());
EXPECT_OK(safeUnion.c()->concatTwoStrings(
hidl_string(testStringA), hidl_string(testStringB), [&](const hidl_string& result) {
EXPECT_EQ(testStringA + testStringB, std::string(result));
}));
native_handle_delete(h);
}
TEST_F(HidlTest, SafeUnionNullHandleTest) {
HandleTypeSafeUnion safeUnion;
EXPECT_OK(safeunionInterface->setHandleA(
safeUnion, hidl_handle(nullptr), [&](const HandleTypeSafeUnion& safeUnion) {
EXPECT_EQ(HandleTypeSafeUnion::hidl_discriminator::a,
safeUnion.getDiscriminator());
checkNativeHandlesDataEquality(nullptr, safeUnion.a().getNativeHandle());
}));
}
TEST_F(HidlTest, SafeUnionSimpleHandleTest) {
const std::array<int, 6> testData{2, -32, 10, -4329454, 11, 24};
native_handle_t* h = native_handle_create(0, testData.size());
ASSERT_EQ(sizeof(testData), testData.size() * sizeof(int));
std::memcpy(h->data, testData.data(), sizeof(testData));
std::array<hidl_handle, 5> testArray;
for (size_t i = 0; i < testArray.size(); i++) {
testArray[i].setTo(native_handle_clone(h), true /* shouldOwn */);
}
std::vector<hidl_handle> testVector(256);
for (size_t i = 0; i < testVector.size(); i++) {
testVector[i].setTo(native_handle_clone(h), true /* shouldOwn */);
}
EXPECT_OK(
safeunionInterface->newHandleTypeSafeUnion([&](const HandleTypeSafeUnion& safeUnion) {
EXPECT_OK(safeunionInterface->setHandleA(
safeUnion, hidl_handle(h), [&](const HandleTypeSafeUnion& safeUnion) {
EXPECT_EQ(HandleTypeSafeUnion::hidl_discriminator::a,
safeUnion.getDiscriminator());
checkNativeHandlesDataEquality(h, safeUnion.a().getNativeHandle());
}));
EXPECT_OK(safeunionInterface->setHandleB(
safeUnion, testArray, [&](const HandleTypeSafeUnion& safeUnion) {
EXPECT_EQ(HandleTypeSafeUnion::hidl_discriminator::b,
safeUnion.getDiscriminator());
for (size_t i = 0; i < testArray.size(); i++) {
checkNativeHandlesDataEquality(h, safeUnion.b()[i].getNativeHandle());
}
}));
EXPECT_OK(safeunionInterface->setHandleC(
safeUnion, testVector, [&](const HandleTypeSafeUnion& safeUnion) {
EXPECT_EQ(HandleTypeSafeUnion::hidl_discriminator::c,
safeUnion.getDiscriminator());
for (size_t i = 0; i < testVector.size(); i++) {
checkNativeHandlesDataEquality(h, safeUnion.c()[i].getNativeHandle());
}
}));
}));
native_handle_delete(h);
}
TEST_F(HidlTest, SafeUnionVecOfHandlesWithOneFdTest) {
const std::vector<std::string> testStrings{"This ", "is ", "so ", "much ", "data!\n"};
const std::string testFileName = "/data/local/tmp/SafeUnionVecOfHandlesWithOneFdTest";
const std::array<int, 6> testData{2, -32, 10, -4329454, 11, 24};
ASSERT_EQ(sizeof(testData), testData.size() * sizeof(int));
const std::string goldenResult = std::accumulate(testStrings.begin(),
testStrings.end(),
std::string());
int fd = open(testFileName.c_str(), (O_RDWR | O_TRUNC | O_CREAT), (S_IRUSR | S_IWUSR));
ASSERT_TRUE(fd >= 0);
native_handle* h = native_handle_create(1 /* numFds */, testData.size() /* numInts */);
std::memcpy(&(h->data[1]), testData.data(), sizeof(testData));
h->data[0] = fd;
hidl_vec<hidl_handle> testHandles(testStrings.size());
for (size_t i = 0; i < testHandles.size(); i++) {
testHandles[i].setTo(native_handle_clone(h), true /* shouldOwn */);
}
EXPECT_OK(
safeunionInterface->newHandleTypeSafeUnion([&](const HandleTypeSafeUnion& safeUnion) {
EXPECT_OK(safeunionInterface->setHandleC(
safeUnion, testHandles, [&](const HandleTypeSafeUnion& safeUnion) {
EXPECT_EQ(HandleTypeSafeUnion::hidl_discriminator::c,
safeUnion.getDiscriminator());
for (size_t i = 0; i < safeUnion.c().size(); i++) {
const native_handle_t* reference = testHandles[i].getNativeHandle();
const native_handle_t* result = safeUnion.c()[i].getNativeHandle();
checkNativeHandlesDataEquality(reference, result);
// Original FDs should be dup'd
int resultFd = result->data[0];
EXPECT_NE(reference->data[0], resultFd);
EXPECT_TRUE(android::base::WriteStringToFd(testStrings[i], resultFd));
EXPECT_EQ(0, fsync(resultFd));
}
}));
}));
std::string result;
lseek(fd, 0, SEEK_SET);
EXPECT_TRUE(android::base::ReadFdToString(fd, &result));
EXPECT_EQ(goldenResult, result);
native_handle_delete(h);
EXPECT_EQ(0, close(fd));
EXPECT_EQ(0, remove(testFileName.c_str()));
}
TEST_F(HidlTest, SafeUnionHandleWithMultipleFdsTest) {
const std::vector<std::string> testStrings{"This ", "is ", "so ", "much ", "data!\n"};
const std::string testFileName = "/data/local/tmp/SafeUnionHandleWithMultipleFdsTest";
const std::array<int, 6> testData{2, -32, 10, -4329454, 11, 24};
ASSERT_EQ(sizeof(testData), testData.size() * sizeof(int));
const std::string goldenResult = std::accumulate(testStrings.begin(),
testStrings.end(),
std::string());
int fd = open(testFileName.c_str(), (O_RDWR | O_TRUNC | O_CREAT), (S_IRUSR | S_IWUSR));
ASSERT_TRUE(fd >= 0);
const int numFds = testStrings.size();
native_handle* h = native_handle_create(numFds, testData.size() /* numInts */);
std::memcpy(&(h->data[numFds]), testData.data(), sizeof(testData));
for (size_t i = 0; i < numFds; i++) {
h->data[i] = fd;
}
hidl_handle testHandle;
testHandle.setTo(h, false /* shouldOwn */);
EXPECT_OK(
safeunionInterface->newHandleTypeSafeUnion([&](const HandleTypeSafeUnion& safeUnion) {
EXPECT_OK(safeunionInterface->setHandleA(
safeUnion, testHandle, [&](const HandleTypeSafeUnion& safeUnion) {
EXPECT_EQ(HandleTypeSafeUnion::hidl_discriminator::a,
safeUnion.getDiscriminator());
const native_handle_t* result = safeUnion.a().getNativeHandle();
checkNativeHandlesDataEquality(h, result);
for (size_t i = 0; i < result->numFds; i++) {
// Original FDs should be dup'd
int resultFd = result->data[i];
EXPECT_NE(h->data[i], resultFd);
EXPECT_TRUE(android::base::WriteStringToFd(testStrings[i], resultFd));
EXPECT_EQ(0, fsync(resultFd));
}
}));
}));
std::string result;
lseek(fd, 0, SEEK_SET);
EXPECT_TRUE(android::base::ReadFdToString(fd, &result));
EXPECT_EQ(goldenResult, result);
native_handle_delete(h);
EXPECT_EQ(0, close(fd));
EXPECT_EQ(0, remove(testFileName.c_str()));
}
TEST_F(HidlTest, SafeUnionEqualityTest) {
EXPECT_OK(safeunionInterface->newLargeSafeUnion([&](const LargeSafeUnion& one) {
EXPECT_OK(safeunionInterface->newLargeSafeUnion([&](const LargeSafeUnion& two) {
EXPECT_TRUE(one == two);
EXPECT_FALSE(one != two);
}));
EXPECT_OK(safeunionInterface->setA(one, 1, [&](const LargeSafeUnion& one) {
EXPECT_OK(safeunionInterface->newLargeSafeUnion([&](const LargeSafeUnion& two) {
EXPECT_FALSE(one == two);
EXPECT_TRUE(one != two);
}));
EXPECT_OK(safeunionInterface->newLargeSafeUnion([&](const LargeSafeUnion& two) {
EXPECT_OK(safeunionInterface->setB(two, 1, [&](const LargeSafeUnion& two) {
EXPECT_FALSE(one == two);
EXPECT_TRUE(one != two);
}));
}));
EXPECT_OK(safeunionInterface->newLargeSafeUnion([&](const LargeSafeUnion& two) {
EXPECT_OK(safeunionInterface->setA(two, 2, [&](const LargeSafeUnion& two) {
EXPECT_FALSE(one == two);
EXPECT_TRUE(one != two);
}));
}));
EXPECT_OK(safeunionInterface->newLargeSafeUnion([&](const LargeSafeUnion& two) {
EXPECT_OK(safeunionInterface->setA(two, 1, [&](const LargeSafeUnion& two) {
EXPECT_TRUE(one == two);
EXPECT_FALSE(one != two);
}));
}));
}));
}));
}
template <typename T, size_t start, size_t end>
void expectRangeEqual(const T* t, uint8_t byte) {
static_assert(start < sizeof(T));
static_assert(end <= sizeof(T));
const uint8_t* buf = reinterpret_cast<const uint8_t*>(t);
for (size_t i = start; i < end; i++) {
EXPECT_EQ(byte, buf[i]) << i;
}
}
TEST_F(HidlTest, UninitTest) {
IBase::Foo foo;
foo.x = 1;
foo.y = {0, ""};
static_assert(offsetof(IBase::Foo, x) == 0);
static_assert(sizeof(foo.x) == 4);
static_assert(offsetof(IBase::Foo, aaa) == 8);
uint8_t* buf = reinterpret_cast<uint8_t*>(&foo);
memset(buf + 4, 0xFF, 4);
// this should not affect the result for remote Java (but would for remote C++)
expectRangeEqual<IBase::Foo, 4, 8>(&foo, 0xFF);
// run many times, if this error case is hit, it will only be hit
// sometimes.
for (size_t i = 0; i < 100; i++) {
EXPECT_OK(baz->someOtherBaseMethod(
foo, [](const IBase::Foo& foo) { expectRangeEqual<IBase::Foo, 4, 8>(&foo, 0); }));
}
}
int main(int argc, char **argv) {
setenv("TREBLE_TESTING_OVERRIDE", "true", true);
using namespace android::hardware;
const char *me = argv[0];
bool wantClient = false;
bool wantServer = false;
int res;
while ((res = getopt(argc, argv, "chs")) >= 0) {
switch (res) {
case 'c':
{
wantClient = true;
break;
}
case 's':
{
wantServer = true;
break;
}
case '?':
case 'h':
default:
{
usage(me);
exit(1);
break;
}
}
}
if ((!wantClient && !wantServer) || (wantClient && wantServer)) {
usage(me);
exit(1);
}
if (wantClient) {
::testing::AddGlobalTestEnvironment(new HidlEnvironment);
::testing::InitGoogleTest(&argc, argv);
int status = RUN_ALL_TESTS();
return status;
}
::android::status_t status;
configureRpcThreadpool(1, true);
status = registerPassthroughServiceImplementation<IBaz>();
CHECK(status == ::android::OK) << "IBaz didn't register";
status = registerPassthroughServiceImplementation<ISafeUnion>();
CHECK(status == ::android::OK) << "ISafeUnion didn't register";
sp<IOtherInterface> otherInterface = new OtherInterface();
status = otherInterface->registerAsService();
CHECK(status == ::android::OK) << "IOtherInterface didn't register";
sp<IMemoryInterface> memoryInterface = new MemoryInterface();
status = memoryInterface->registerAsService();
CHECK(status == ::android::OK) << "IMemoryInterface didn't register";
joinRpcThreadpool();
return 0;
}