blob: 32fe353eda3334555439315d5dfd9b3d31df5f23 [file] [log] [blame]
// Copyright 2021, The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! This is the metrics store module of keystore. It does the following tasks:
//! 1. Processes the data about keystore events asynchronously, and
//! stores them in an in-memory store.
//! 2. Returns the collected metrics when requested by the statsd proxy.
use crate::error::get_error_code;
use crate::globals::DB;
use crate::key_parameter::KeyParameterValue as KsKeyParamValue;
use crate::operation::Outcome;
use crate::remote_provisioning::get_pool_status;
use android_hardware_security_keymint::aidl::android::hardware::security::keymint::{
Algorithm::Algorithm, BlockMode::BlockMode, Digest::Digest, EcCurve::EcCurve,
HardwareAuthenticatorType::HardwareAuthenticatorType, KeyOrigin::KeyOrigin,
KeyParameter::KeyParameter, KeyPurpose::KeyPurpose, PaddingMode::PaddingMode,
SecurityLevel::SecurityLevel,
};
use android_security_metrics::aidl::android::security::metrics::{
Algorithm::Algorithm as MetricsAlgorithm, AtomID::AtomID, EcCurve::EcCurve as MetricsEcCurve,
HardwareAuthenticatorType::HardwareAuthenticatorType as MetricsHardwareAuthenticatorType,
KeyCreationWithAuthInfo::KeyCreationWithAuthInfo,
KeyCreationWithGeneralInfo::KeyCreationWithGeneralInfo,
KeyCreationWithPurposeAndModesInfo::KeyCreationWithPurposeAndModesInfo,
KeyOperationWithGeneralInfo::KeyOperationWithGeneralInfo,
KeyOperationWithPurposeAndModesInfo::KeyOperationWithPurposeAndModesInfo,
KeyOrigin::KeyOrigin as MetricsKeyOrigin, Keystore2AtomWithOverflow::Keystore2AtomWithOverflow,
KeystoreAtom::KeystoreAtom, KeystoreAtomPayload::KeystoreAtomPayload,
Outcome::Outcome as MetricsOutcome, Purpose::Purpose as MetricsPurpose,
RkpError::RkpError as MetricsRkpError, RkpErrorStats::RkpErrorStats,
RkpPoolStats::RkpPoolStats, SecurityLevel::SecurityLevel as MetricsSecurityLevel,
Storage::Storage as MetricsStorage,
};
use anyhow::Result;
use lazy_static::lazy_static;
use std::collections::HashMap;
use std::sync::Mutex;
use std::time::{Duration, SystemTime, UNIX_EPOCH};
lazy_static! {
/// Singleton for MetricsStore.
pub static ref METRICS_STORE: MetricsStore = Default::default();
}
/// MetricsStore stores the <atom object, count> as <key, value> in the inner hash map,
/// indexed by the atom id, in the outer hash map.
/// There can be different atom objects with the same atom id based on the values assigned to the
/// fields of the atom objects. When an atom object with a particular combination of field values is
/// inserted, we first check if that atom object is in the inner hash map. If one exists, count
/// is inceremented. Otherwise, the atom object is inserted with count = 1. Note that count field
/// of the atom object itself is set to 0 while the object is stored in the hash map. When the atom
/// objects are queried by the atom id, the corresponding atom objects are retrieved, cloned, and
/// the count field of the cloned objects is set to the corresponding value field in the inner hash
/// map before the query result is returned.
#[derive(Default)]
pub struct MetricsStore {
metrics_store: Mutex<HashMap<AtomID, HashMap<KeystoreAtomPayload, i32>>>,
}
impl MetricsStore {
/// There are some atoms whose maximum cardinality exceeds the cardinality limits tolerated
/// by statsd. Statsd tolerates cardinality between 200-300. Therefore, the in-memory storage
/// limit for a single atom is set to 250. If the number of atom objects created for a
/// particular atom exceeds this limit, an overflow atom object is created to track the ID of
/// such atoms.
const SINGLE_ATOM_STORE_MAX_SIZE: usize = 250;
/// Return a vector of atom objects with the given atom ID, if one exists in the metrics_store.
/// If any atom object does not exist in the metrics_store for the given atom ID, return an
/// empty vector.
pub fn get_atoms(&self, atom_id: AtomID) -> Result<Vec<KeystoreAtom>> {
// StorageStats is an original pulled atom (i.e. not a pushed atom converted to a
// pulledd atom). Therefore, it is handled separately.
if AtomID::STORAGE_STATS == atom_id {
return pull_storage_stats();
}
// Process and return RKP pool stats.
if AtomID::RKP_POOL_STATS == atom_id {
return pull_attestation_pool_stats();
}
// It is safe to call unwrap here since the lock can not be poisoned based on its usage
// in this module and the lock is not acquired in the same thread before.
let metrics_store_guard = self.metrics_store.lock().unwrap();
metrics_store_guard.get(&atom_id).map_or(Ok(Vec::<KeystoreAtom>::new()), |atom_count_map| {
Ok(atom_count_map
.iter()
.map(|(atom, count)| KeystoreAtom { payload: atom.clone(), count: *count })
.collect())
})
}
/// Insert an atom object to the metrics_store indexed by the atom ID.
fn insert_atom(&self, atom_id: AtomID, atom: KeystoreAtomPayload) {
// It is ok to unwrap here since the mutex cannot be poisoned according to the way it is
// used in this module. And the lock is not acquired by this thread before.
let mut metrics_store_guard = self.metrics_store.lock().unwrap();
let atom_count_map = metrics_store_guard.entry(atom_id).or_insert_with(HashMap::new);
if atom_count_map.len() < MetricsStore::SINGLE_ATOM_STORE_MAX_SIZE {
let atom_count = atom_count_map.entry(atom).or_insert(0);
*atom_count += 1;
} else {
// Insert an overflow atom
let overflow_atom_count_map = metrics_store_guard
.entry(AtomID::KEYSTORE2_ATOM_WITH_OVERFLOW)
.or_insert_with(HashMap::new);
if overflow_atom_count_map.len() < MetricsStore::SINGLE_ATOM_STORE_MAX_SIZE {
let overflow_atom = Keystore2AtomWithOverflow { atom_id };
let atom_count = overflow_atom_count_map
.entry(KeystoreAtomPayload::Keystore2AtomWithOverflow(overflow_atom))
.or_insert(0);
*atom_count += 1;
} else {
// This is a rare case, if at all.
log::error!("In insert_atom: Maximum storage limit reached for overflow atom.")
}
}
}
}
/// Log key creation events to be sent to statsd.
pub fn log_key_creation_event_stats<U>(
sec_level: SecurityLevel,
key_params: &[KeyParameter],
result: &Result<U>,
) {
let (
key_creation_with_general_info,
key_creation_with_auth_info,
key_creation_with_purpose_and_modes_info,
) = process_key_creation_event_stats(sec_level, key_params, result);
METRICS_STORE
.insert_atom(AtomID::KEY_CREATION_WITH_GENERAL_INFO, key_creation_with_general_info);
METRICS_STORE.insert_atom(AtomID::KEY_CREATION_WITH_AUTH_INFO, key_creation_with_auth_info);
METRICS_STORE.insert_atom(
AtomID::KEY_CREATION_WITH_PURPOSE_AND_MODES_INFO,
key_creation_with_purpose_and_modes_info,
);
}
// Process the statistics related to key creations and return the three atom objects related to key
// creations: i) KeyCreationWithGeneralInfo ii) KeyCreationWithAuthInfo
// iii) KeyCreationWithPurposeAndModesInfo
fn process_key_creation_event_stats<U>(
sec_level: SecurityLevel,
key_params: &[KeyParameter],
result: &Result<U>,
) -> (KeystoreAtomPayload, KeystoreAtomPayload, KeystoreAtomPayload) {
// In the default atom objects, fields represented by bitmaps and i32 fields
// will take 0, except error_code which defaults to 1 indicating NO_ERROR and key_size,
// and auth_time_out which defaults to -1.
// The boolean fields are set to false by default.
// Some keymint enums do have 0 as an enum variant value. In such cases, the corresponding
// enum variant value in atoms.proto is incremented by 1, in order to have 0 as the reserved
// value for unspecified fields.
let mut key_creation_with_general_info = KeyCreationWithGeneralInfo {
algorithm: MetricsAlgorithm::ALGORITHM_UNSPECIFIED,
key_size: -1,
ec_curve: MetricsEcCurve::EC_CURVE_UNSPECIFIED,
key_origin: MetricsKeyOrigin::ORIGIN_UNSPECIFIED,
error_code: 1,
// Default for bool is false (for attestation_requested field).
..Default::default()
};
let mut key_creation_with_auth_info = KeyCreationWithAuthInfo {
user_auth_type: MetricsHardwareAuthenticatorType::AUTH_TYPE_UNSPECIFIED,
log10_auth_key_timeout_seconds: -1,
security_level: MetricsSecurityLevel::SECURITY_LEVEL_UNSPECIFIED,
};
let mut key_creation_with_purpose_and_modes_info = KeyCreationWithPurposeAndModesInfo {
algorithm: MetricsAlgorithm::ALGORITHM_UNSPECIFIED,
// Default for i32 is 0 (for the remaining bitmap fields).
..Default::default()
};
if let Err(ref e) = result {
key_creation_with_general_info.error_code = get_error_code(e);
}
key_creation_with_auth_info.security_level = process_security_level(sec_level);
for key_param in key_params.iter().map(KsKeyParamValue::from) {
match key_param {
KsKeyParamValue::Algorithm(a) => {
let algorithm = match a {
Algorithm::RSA => MetricsAlgorithm::RSA,
Algorithm::EC => MetricsAlgorithm::EC,
Algorithm::AES => MetricsAlgorithm::AES,
Algorithm::TRIPLE_DES => MetricsAlgorithm::TRIPLE_DES,
Algorithm::HMAC => MetricsAlgorithm::HMAC,
_ => MetricsAlgorithm::ALGORITHM_UNSPECIFIED,
};
key_creation_with_general_info.algorithm = algorithm;
key_creation_with_purpose_and_modes_info.algorithm = algorithm;
}
KsKeyParamValue::KeySize(s) => {
key_creation_with_general_info.key_size = s;
}
KsKeyParamValue::KeyOrigin(o) => {
key_creation_with_general_info.key_origin = match o {
KeyOrigin::GENERATED => MetricsKeyOrigin::GENERATED,
KeyOrigin::DERIVED => MetricsKeyOrigin::DERIVED,
KeyOrigin::IMPORTED => MetricsKeyOrigin::IMPORTED,
KeyOrigin::RESERVED => MetricsKeyOrigin::RESERVED,
KeyOrigin::SECURELY_IMPORTED => MetricsKeyOrigin::SECURELY_IMPORTED,
_ => MetricsKeyOrigin::ORIGIN_UNSPECIFIED,
}
}
KsKeyParamValue::HardwareAuthenticatorType(a) => {
key_creation_with_auth_info.user_auth_type = match a {
HardwareAuthenticatorType::NONE => MetricsHardwareAuthenticatorType::NONE,
HardwareAuthenticatorType::PASSWORD => {
MetricsHardwareAuthenticatorType::PASSWORD
}
HardwareAuthenticatorType::FINGERPRINT => {
MetricsHardwareAuthenticatorType::FINGERPRINT
}
HardwareAuthenticatorType::ANY => MetricsHardwareAuthenticatorType::ANY,
_ => MetricsHardwareAuthenticatorType::AUTH_TYPE_UNSPECIFIED,
}
}
KsKeyParamValue::AuthTimeout(t) => {
key_creation_with_auth_info.log10_auth_key_timeout_seconds =
f32::log10(t as f32) as i32;
}
KsKeyParamValue::PaddingMode(p) => {
compute_padding_mode_bitmap(
&mut key_creation_with_purpose_and_modes_info.padding_mode_bitmap,
p,
);
}
KsKeyParamValue::Digest(d) => {
// key_creation_with_purpose_and_modes_info.digest_bitmap =
compute_digest_bitmap(
&mut key_creation_with_purpose_and_modes_info.digest_bitmap,
d,
);
}
KsKeyParamValue::BlockMode(b) => {
compute_block_mode_bitmap(
&mut key_creation_with_purpose_and_modes_info.block_mode_bitmap,
b,
);
}
KsKeyParamValue::KeyPurpose(k) => {
compute_purpose_bitmap(
&mut key_creation_with_purpose_and_modes_info.purpose_bitmap,
k,
);
}
KsKeyParamValue::EcCurve(e) => {
key_creation_with_general_info.ec_curve = match e {
EcCurve::P_224 => MetricsEcCurve::P_224,
EcCurve::P_256 => MetricsEcCurve::P_256,
EcCurve::P_384 => MetricsEcCurve::P_384,
EcCurve::P_521 => MetricsEcCurve::P_521,
_ => MetricsEcCurve::EC_CURVE_UNSPECIFIED,
}
}
KsKeyParamValue::AttestationChallenge(_) => {
key_creation_with_general_info.attestation_requested = true;
}
_ => {}
}
}
if key_creation_with_general_info.algorithm == MetricsAlgorithm::EC {
// Do not record key sizes if Algorithm = EC, in order to reduce cardinality.
key_creation_with_general_info.key_size = -1;
}
(
KeystoreAtomPayload::KeyCreationWithGeneralInfo(key_creation_with_general_info),
KeystoreAtomPayload::KeyCreationWithAuthInfo(key_creation_with_auth_info),
KeystoreAtomPayload::KeyCreationWithPurposeAndModesInfo(
key_creation_with_purpose_and_modes_info,
),
)
}
/// Log key operation events to be sent to statsd.
pub fn log_key_operation_event_stats(
sec_level: SecurityLevel,
key_purpose: KeyPurpose,
op_params: &[KeyParameter],
op_outcome: &Outcome,
key_upgraded: bool,
) {
let (key_operation_with_general_info, key_operation_with_purpose_and_modes_info) =
process_key_operation_event_stats(
sec_level,
key_purpose,
op_params,
op_outcome,
key_upgraded,
);
METRICS_STORE
.insert_atom(AtomID::KEY_OPERATION_WITH_GENERAL_INFO, key_operation_with_general_info);
METRICS_STORE.insert_atom(
AtomID::KEY_OPERATION_WITH_PURPOSE_AND_MODES_INFO,
key_operation_with_purpose_and_modes_info,
);
}
// Process the statistics related to key operations and return the two atom objects related to key
// operations: i) KeyOperationWithGeneralInfo ii) KeyOperationWithPurposeAndModesInfo
fn process_key_operation_event_stats(
sec_level: SecurityLevel,
key_purpose: KeyPurpose,
op_params: &[KeyParameter],
op_outcome: &Outcome,
key_upgraded: bool,
) -> (KeystoreAtomPayload, KeystoreAtomPayload) {
let mut key_operation_with_general_info = KeyOperationWithGeneralInfo {
outcome: MetricsOutcome::OUTCOME_UNSPECIFIED,
error_code: 1,
security_level: MetricsSecurityLevel::SECURITY_LEVEL_UNSPECIFIED,
// Default for bool is false (for key_upgraded field).
..Default::default()
};
let mut key_operation_with_purpose_and_modes_info = KeyOperationWithPurposeAndModesInfo {
purpose: MetricsPurpose::KEY_PURPOSE_UNSPECIFIED,
// Default for i32 is 0 (for the remaining bitmap fields).
..Default::default()
};
key_operation_with_general_info.security_level = process_security_level(sec_level);
key_operation_with_general_info.key_upgraded = key_upgraded;
key_operation_with_purpose_and_modes_info.purpose = match key_purpose {
KeyPurpose::ENCRYPT => MetricsPurpose::ENCRYPT,
KeyPurpose::DECRYPT => MetricsPurpose::DECRYPT,
KeyPurpose::SIGN => MetricsPurpose::SIGN,
KeyPurpose::VERIFY => MetricsPurpose::VERIFY,
KeyPurpose::WRAP_KEY => MetricsPurpose::WRAP_KEY,
KeyPurpose::AGREE_KEY => MetricsPurpose::AGREE_KEY,
KeyPurpose::ATTEST_KEY => MetricsPurpose::ATTEST_KEY,
_ => MetricsPurpose::KEY_PURPOSE_UNSPECIFIED,
};
key_operation_with_general_info.outcome = match op_outcome {
Outcome::Unknown | Outcome::Dropped => MetricsOutcome::DROPPED,
Outcome::Success => MetricsOutcome::SUCCESS,
Outcome::Abort => MetricsOutcome::ABORT,
Outcome::Pruned => MetricsOutcome::PRUNED,
Outcome::ErrorCode(e) => {
key_operation_with_general_info.error_code = e.0;
MetricsOutcome::ERROR
}
};
for key_param in op_params.iter().map(KsKeyParamValue::from) {
match key_param {
KsKeyParamValue::PaddingMode(p) => {
compute_padding_mode_bitmap(
&mut key_operation_with_purpose_and_modes_info.padding_mode_bitmap,
p,
);
}
KsKeyParamValue::Digest(d) => {
compute_digest_bitmap(
&mut key_operation_with_purpose_and_modes_info.digest_bitmap,
d,
);
}
KsKeyParamValue::BlockMode(b) => {
compute_block_mode_bitmap(
&mut key_operation_with_purpose_and_modes_info.block_mode_bitmap,
b,
);
}
_ => {}
}
}
(
KeystoreAtomPayload::KeyOperationWithGeneralInfo(key_operation_with_general_info),
KeystoreAtomPayload::KeyOperationWithPurposeAndModesInfo(
key_operation_with_purpose_and_modes_info,
),
)
}
fn process_security_level(sec_level: SecurityLevel) -> MetricsSecurityLevel {
match sec_level {
SecurityLevel::SOFTWARE => MetricsSecurityLevel::SECURITY_LEVEL_SOFTWARE,
SecurityLevel::TRUSTED_ENVIRONMENT => {
MetricsSecurityLevel::SECURITY_LEVEL_TRUSTED_ENVIRONMENT
}
SecurityLevel::STRONGBOX => MetricsSecurityLevel::SECURITY_LEVEL_STRONGBOX,
SecurityLevel::KEYSTORE => MetricsSecurityLevel::SECURITY_LEVEL_KEYSTORE,
_ => MetricsSecurityLevel::SECURITY_LEVEL_UNSPECIFIED,
}
}
fn compute_padding_mode_bitmap(padding_mode_bitmap: &mut i32, padding_mode: PaddingMode) {
match padding_mode {
PaddingMode::NONE => {
*padding_mode_bitmap |= 1 << PaddingModeBitPosition::NONE_BIT_POSITION as i32;
}
PaddingMode::RSA_OAEP => {
*padding_mode_bitmap |= 1 << PaddingModeBitPosition::RSA_OAEP_BIT_POS as i32;
}
PaddingMode::RSA_PSS => {
*padding_mode_bitmap |= 1 << PaddingModeBitPosition::RSA_PSS_BIT_POS as i32;
}
PaddingMode::RSA_PKCS1_1_5_ENCRYPT => {
*padding_mode_bitmap |=
1 << PaddingModeBitPosition::RSA_PKCS1_1_5_ENCRYPT_BIT_POS as i32;
}
PaddingMode::RSA_PKCS1_1_5_SIGN => {
*padding_mode_bitmap |= 1 << PaddingModeBitPosition::RSA_PKCS1_1_5_SIGN_BIT_POS as i32;
}
PaddingMode::PKCS7 => {
*padding_mode_bitmap |= 1 << PaddingModeBitPosition::PKCS7_BIT_POS as i32;
}
_ => {}
}
}
fn compute_digest_bitmap(digest_bitmap: &mut i32, digest: Digest) {
match digest {
Digest::NONE => {
*digest_bitmap |= 1 << DigestBitPosition::NONE_BIT_POSITION as i32;
}
Digest::MD5 => {
*digest_bitmap |= 1 << DigestBitPosition::MD5_BIT_POS as i32;
}
Digest::SHA1 => {
*digest_bitmap |= 1 << DigestBitPosition::SHA_1_BIT_POS as i32;
}
Digest::SHA_2_224 => {
*digest_bitmap |= 1 << DigestBitPosition::SHA_2_224_BIT_POS as i32;
}
Digest::SHA_2_256 => {
*digest_bitmap |= 1 << DigestBitPosition::SHA_2_256_BIT_POS as i32;
}
Digest::SHA_2_384 => {
*digest_bitmap |= 1 << DigestBitPosition::SHA_2_384_BIT_POS as i32;
}
Digest::SHA_2_512 => {
*digest_bitmap |= 1 << DigestBitPosition::SHA_2_512_BIT_POS as i32;
}
_ => {}
}
}
fn compute_block_mode_bitmap(block_mode_bitmap: &mut i32, block_mode: BlockMode) {
match block_mode {
BlockMode::ECB => {
*block_mode_bitmap |= 1 << BlockModeBitPosition::ECB_BIT_POS as i32;
}
BlockMode::CBC => {
*block_mode_bitmap |= 1 << BlockModeBitPosition::CBC_BIT_POS as i32;
}
BlockMode::CTR => {
*block_mode_bitmap |= 1 << BlockModeBitPosition::CTR_BIT_POS as i32;
}
BlockMode::GCM => {
*block_mode_bitmap |= 1 << BlockModeBitPosition::GCM_BIT_POS as i32;
}
_ => {}
}
}
fn compute_purpose_bitmap(purpose_bitmap: &mut i32, purpose: KeyPurpose) {
match purpose {
KeyPurpose::ENCRYPT => {
*purpose_bitmap |= 1 << KeyPurposeBitPosition::ENCRYPT_BIT_POS as i32;
}
KeyPurpose::DECRYPT => {
*purpose_bitmap |= 1 << KeyPurposeBitPosition::DECRYPT_BIT_POS as i32;
}
KeyPurpose::SIGN => {
*purpose_bitmap |= 1 << KeyPurposeBitPosition::SIGN_BIT_POS as i32;
}
KeyPurpose::VERIFY => {
*purpose_bitmap |= 1 << KeyPurposeBitPosition::VERIFY_BIT_POS as i32;
}
KeyPurpose::WRAP_KEY => {
*purpose_bitmap |= 1 << KeyPurposeBitPosition::WRAP_KEY_BIT_POS as i32;
}
KeyPurpose::AGREE_KEY => {
*purpose_bitmap |= 1 << KeyPurposeBitPosition::AGREE_KEY_BIT_POS as i32;
}
KeyPurpose::ATTEST_KEY => {
*purpose_bitmap |= 1 << KeyPurposeBitPosition::ATTEST_KEY_BIT_POS as i32;
}
_ => {}
}
}
fn pull_storage_stats() -> Result<Vec<KeystoreAtom>> {
let mut atom_vec: Vec<KeystoreAtom> = Vec::new();
let mut append = |stat| {
match stat {
Ok(s) => atom_vec.push(KeystoreAtom {
payload: KeystoreAtomPayload::StorageStats(s),
..Default::default()
}),
Err(error) => {
log::error!("pull_metrics_callback: Error getting storage stat: {}", error)
}
};
};
DB.with(|db| {
let mut db = db.borrow_mut();
append(db.get_storage_stat(MetricsStorage::DATABASE));
append(db.get_storage_stat(MetricsStorage::KEY_ENTRY));
append(db.get_storage_stat(MetricsStorage::KEY_ENTRY_ID_INDEX));
append(db.get_storage_stat(MetricsStorage::KEY_ENTRY_DOMAIN_NAMESPACE_INDEX));
append(db.get_storage_stat(MetricsStorage::BLOB_ENTRY));
append(db.get_storage_stat(MetricsStorage::BLOB_ENTRY_KEY_ENTRY_ID_INDEX));
append(db.get_storage_stat(MetricsStorage::KEY_PARAMETER));
append(db.get_storage_stat(MetricsStorage::KEY_PARAMETER_KEY_ENTRY_ID_INDEX));
append(db.get_storage_stat(MetricsStorage::KEY_METADATA));
append(db.get_storage_stat(MetricsStorage::KEY_METADATA_KEY_ENTRY_ID_INDEX));
append(db.get_storage_stat(MetricsStorage::GRANT));
append(db.get_storage_stat(MetricsStorage::AUTH_TOKEN));
append(db.get_storage_stat(MetricsStorage::BLOB_METADATA));
append(db.get_storage_stat(MetricsStorage::BLOB_METADATA_BLOB_ENTRY_ID_INDEX));
});
Ok(atom_vec)
}
fn pull_attestation_pool_stats() -> Result<Vec<KeystoreAtom>> {
let mut atoms = Vec::<KeystoreAtom>::new();
for sec_level in &[SecurityLevel::TRUSTED_ENVIRONMENT, SecurityLevel::STRONGBOX] {
let expired_by = SystemTime::now()
.duration_since(UNIX_EPOCH)
.unwrap_or_else(|_| Duration::new(0, 0))
.as_secs() as i64;
let result = get_pool_status(expired_by, *sec_level);
if let Ok(pool_status) = result {
let rkp_pool_stats = RkpPoolStats {
security_level: process_security_level(*sec_level),
expiring: pool_status.expiring,
unassigned: pool_status.unassigned,
attested: pool_status.attested,
total: pool_status.total,
};
atoms.push(KeystoreAtom {
payload: KeystoreAtomPayload::RkpPoolStats(rkp_pool_stats),
..Default::default()
});
} else {
log::error!(
concat!(
"In pull_attestation_pool_stats: Failed to retrieve pool status",
" for security level: {:?}"
),
sec_level
);
}
}
Ok(atoms)
}
/// Log error events related to Remote Key Provisioning (RKP).
pub fn log_rkp_error_stats(rkp_error: MetricsRkpError) {
let rkp_error_stats = KeystoreAtomPayload::RkpErrorStats(RkpErrorStats { rkpError: rkp_error });
METRICS_STORE.insert_atom(AtomID::RKP_ERROR_STATS, rkp_error_stats);
}
/// Enum defining the bit position for each padding mode. Since padding mode can be repeatable, it
/// is represented using a bitmap.
#[allow(non_camel_case_types)]
#[repr(i32)]
enum PaddingModeBitPosition {
///Bit position in the PaddingMode bitmap for NONE.
NONE_BIT_POSITION = 0,
///Bit position in the PaddingMode bitmap for RSA_OAEP.
RSA_OAEP_BIT_POS = 1,
///Bit position in the PaddingMode bitmap for RSA_PSS.
RSA_PSS_BIT_POS = 2,
///Bit position in the PaddingMode bitmap for RSA_PKCS1_1_5_ENCRYPT.
RSA_PKCS1_1_5_ENCRYPT_BIT_POS = 3,
///Bit position in the PaddingMode bitmap for RSA_PKCS1_1_5_SIGN.
RSA_PKCS1_1_5_SIGN_BIT_POS = 4,
///Bit position in the PaddingMode bitmap for RSA_PKCS7.
PKCS7_BIT_POS = 5,
}
/// Enum defining the bit position for each digest type. Since digest can be repeatable in
/// key parameters, it is represented using a bitmap.
#[allow(non_camel_case_types)]
#[repr(i32)]
enum DigestBitPosition {
///Bit position in the Digest bitmap for NONE.
NONE_BIT_POSITION = 0,
///Bit position in the Digest bitmap for MD5.
MD5_BIT_POS = 1,
///Bit position in the Digest bitmap for SHA1.
SHA_1_BIT_POS = 2,
///Bit position in the Digest bitmap for SHA_2_224.
SHA_2_224_BIT_POS = 3,
///Bit position in the Digest bitmap for SHA_2_256.
SHA_2_256_BIT_POS = 4,
///Bit position in the Digest bitmap for SHA_2_384.
SHA_2_384_BIT_POS = 5,
///Bit position in the Digest bitmap for SHA_2_512.
SHA_2_512_BIT_POS = 6,
}
/// Enum defining the bit position for each block mode type. Since block mode can be repeatable in
/// key parameters, it is represented using a bitmap.
#[allow(non_camel_case_types)]
#[repr(i32)]
enum BlockModeBitPosition {
///Bit position in the BlockMode bitmap for ECB.
ECB_BIT_POS = 1,
///Bit position in the BlockMode bitmap for CBC.
CBC_BIT_POS = 2,
///Bit position in the BlockMode bitmap for CTR.
CTR_BIT_POS = 3,
///Bit position in the BlockMode bitmap for GCM.
GCM_BIT_POS = 4,
}
/// Enum defining the bit position for each key purpose. Since key purpose can be repeatable in
/// key parameters, it is represented using a bitmap.
#[allow(non_camel_case_types)]
#[repr(i32)]
enum KeyPurposeBitPosition {
///Bit position in the KeyPurpose bitmap for Encrypt.
ENCRYPT_BIT_POS = 1,
///Bit position in the KeyPurpose bitmap for Decrypt.
DECRYPT_BIT_POS = 2,
///Bit position in the KeyPurpose bitmap for Sign.
SIGN_BIT_POS = 3,
///Bit position in the KeyPurpose bitmap for Verify.
VERIFY_BIT_POS = 4,
///Bit position in the KeyPurpose bitmap for Wrap Key.
WRAP_KEY_BIT_POS = 5,
///Bit position in the KeyPurpose bitmap for Agree Key.
AGREE_KEY_BIT_POS = 6,
///Bit position in the KeyPurpose bitmap for Attest Key.
ATTEST_KEY_BIT_POS = 7,
}