blob: 11811d9a3988f3a308f8516d3a6a4f5c883674c8 [file] [log] [blame]
// Copyright 2020, The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! This crate provides access control primitives for Keystore 2.0.
//! It provides high level functions for checking permissions in the keystore2 and keystore2_key
//! SELinux classes based on the keystore2_selinux backend.
//! It also provides KeystorePerm and KeyPerm as convenience wrappers for the SELinux permission
//! defined by keystore2 and keystore2_key respectively.
use android_system_keystore2::aidl::android::system::keystore2::{
Domain::Domain, KeyDescriptor::KeyDescriptor, KeyPermission::KeyPermission,
};
use std::cmp::PartialEq;
use std::convert::From;
use std::ffi::CStr;
use crate::error::Error as KsError;
use keystore2_selinux as selinux;
use anyhow::Context as AnyhowContext;
use selinux::Backend;
use lazy_static::lazy_static;
// Replace getcon with a mock in the test situation
#[cfg(not(test))]
use selinux::getcon;
#[cfg(test)]
use tests::test_getcon as getcon;
lazy_static! {
// Panicking here is allowed because keystore cannot function without this backend
// and it would happen early and indicate a gross misconfiguration of the device.
static ref KEYSTORE2_KEY_LABEL_BACKEND: selinux::KeystoreKeyBackend =
selinux::KeystoreKeyBackend::new().unwrap();
}
fn lookup_keystore2_key_context(namespace: i64) -> anyhow::Result<selinux::Context> {
KEYSTORE2_KEY_LABEL_BACKEND.lookup(&namespace.to_string())
}
/// ## Background
///
/// AIDL enums are represented as constants of the form:
/// ```
/// mod EnumName {
/// pub type EnumName = i32;
/// pub const Variant1: EnumName = <value1>;
/// pub const Variant2: EnumName = <value2>;
/// ...
/// }
///```
/// This macro wraps the enum in a new type, e.g., `MyPerm` and maps each variant to an SELinux
/// permission while providing the following interface:
/// * From<EnumName> and Into<EnumName> are implemented. Where the implementation of From maps
/// any variant not specified to the default.
/// * Every variant has a constructor with a name corresponding to its lower case SELinux string
/// representation.
/// * `MyPerm.to_selinux(&self)` returns the SELinux string representation of the
/// represented permission.
///
/// ## Special behavior
/// If the keyword `use` appears as an selinux name `use_` is used as identifier for the
/// constructor function (e.g. `MePerm::use_()`) but the string returned by `to_selinux` will
/// still be `"use"`.
///
/// ## Example
/// ```
///
/// implement_permission!(
/// /// MyPerm documentation.
/// #[derive(Clone, Copy, Debug, PartialEq)]
/// MyPerm from EnumName with default (None, none) {}
/// Variant1, selinux name: variant1;
/// Variant2, selinux name: variant1;
/// }
/// );
/// ```
macro_rules! implement_permission_aidl {
// This rule provides the public interface of the macro. And starts the preprocessing
// recursion (see below).
($(#[$m:meta])* $name:ident from $aidl_name:ident with default ($($def:tt)*)
{ $($element:tt)* })
=> {
implement_permission_aidl!(@replace_use $($m)*, $name, $aidl_name, ($($def)*), [],
$($element)*);
};
// The following three rules recurse through the elements of the form
// `<enum variant>, selinux name: <selinux_name>;`
// preprocessing the input.
// The first rule terminates the recursion and passes the processed arguments to the final
// rule that spills out the implementation.
(@replace_use $($m:meta)*, $name:ident, $aidl_name:ident, ($($def:tt)*), [$($out:tt)*], ) => {
implement_permission_aidl!(@end $($m)*, $name, $aidl_name, ($($def)*) { $($out)* } );
};
// The second rule is triggered if the selinux name of an element is literally `use`.
// It produces the tuple `<enum variant>, use_, use;`
// and appends it to the out list.
(@replace_use $($m:meta)*, $name:ident, $aidl_name:ident, ($($def:tt)*), [$($out:tt)*],
$e_name:ident, selinux name: use; $($element:tt)*)
=> {
implement_permission_aidl!(@replace_use $($m)*, $name, $aidl_name, ($($def)*),
[$($out)* $e_name, use_, use;], $($element)*);
};
// The third rule is the default rule which replaces every input tuple with
// `<enum variant>, <selinux_name>, <selinux_name>;`
// and appends the result to the out list.
(@replace_use $($m:meta)*, $name:ident, $aidl_name:ident, ($($def:tt)*), [$($out:tt)*],
$e_name:ident, selinux name: $e_str:ident; $($element:tt)*)
=> {
implement_permission_aidl!(@replace_use $($m)*, $name, $aidl_name, ($($def)*),
[$($out)* $e_name, $e_str, $e_str;], $($element)*);
};
(@end $($m:meta)*, $name:ident, $aidl_name:ident,
($def_name:ident, $def_selinux_name:ident) {
$($element_name:ident, $element_identifier:ident,
$selinux_name:ident;)*
})
=>
{
$(#[$m])*
pub struct $name(pub $aidl_name);
impl From<$aidl_name> for $name {
fn from (p: $aidl_name) -> Self {
match p {
$aidl_name::$def_name => Self($aidl_name::$def_name),
$($aidl_name::$element_name => Self($aidl_name::$element_name),)*
_ => Self($aidl_name::$def_name),
}
}
}
impl From<$name> for $aidl_name {
fn from(p: $name) -> $aidl_name {
p.0
}
}
impl $name {
/// Returns a string representation of the permission as required by
/// `selinux::check_access`.
pub fn to_selinux(self) -> &'static str {
match self {
Self($aidl_name::$def_name) => stringify!($def_selinux_name),
$(Self($aidl_name::$element_name) => stringify!($selinux_name),)*
_ => stringify!($def_selinux_name),
}
}
/// Creates an instance representing a permission with the same name.
pub const fn $def_selinux_name() -> Self { Self($aidl_name::$def_name) }
$(
/// Creates an instance representing a permission with the same name.
pub const fn $element_identifier() -> Self { Self($aidl_name::$element_name) }
)*
}
};
}
implement_permission_aidl!(
/// KeyPerm provides a convenient abstraction from the SELinux class `keystore2_key`.
/// At the same time it maps `KeyPermissions` from the Keystore 2.0 AIDL Grant interface to
/// the SELinux permissions. With the implement_permission macro, we conveniently
/// provide mappings between the wire type bit field values, the rust enum and the SELinux
/// string representation.
///
/// ## Example
///
/// In this access check `KeyPerm::get_info().to_selinux()` would return the SELinux representation
/// "info".
/// ```
/// selinux::check_access(source_context, target_context, "keystore2_key",
/// KeyPerm::get_info().to_selinux());
/// ```
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
KeyPerm from KeyPermission with default (NONE, none) {
CONVERT_STORAGE_KEY_TO_EPHEMERAL, selinux name: convert_storage_key_to_ephemeral;
DELETE, selinux name: delete;
GEN_UNIQUE_ID, selinux name: gen_unique_id;
GET_INFO, selinux name: get_info;
GRANT, selinux name: grant;
MANAGE_BLOB, selinux name: manage_blob;
REBIND, selinux name: rebind;
REQ_FORCED_OP, selinux name: req_forced_op;
UPDATE, selinux name: update;
USE, selinux name: use;
USE_DEV_ID, selinux name: use_dev_id;
}
);
/// This macro implements an enum with values mapped to SELinux permission names.
/// The below example wraps the enum MyPermission in the tuple struct `MyPerm` and implements
/// * From<i32> and Into<i32> are implemented. Where the implementation of From maps
/// any variant not specified to the default.
/// * Every variant has a constructor with a name corresponding to its lower case SELinux string
/// representation.
/// * `MyPerm.to_selinux(&self)` returns the SELinux string representation of the
/// represented permission.
///
/// ## Example
/// ```
/// implement_permission!(
/// /// MyPerm documentation.
/// #[derive(Clone, Copy, Debug, Eq, PartialEq)]
/// MyPerm with default (None = 0, none) {
/// Foo = 1, selinux name: foo;
/// Bar = 2, selinux name: bar;
/// }
/// );
/// ```
macro_rules! implement_permission {
// This rule provides the public interface of the macro. And starts the preprocessing
// recursion (see below).
($(#[$m:meta])* $name:ident with default
($def_name:ident = $def_val:expr, $def_selinux_name:ident)
{
$($(#[$element_meta:meta])*
$element_name:ident = $element_val:expr, selinux name: $selinux_name:ident;)*
})
=> {
$(#[$m])*
pub enum $name {
/// The default variant of an enum.
$def_name = $def_val,
$(
$(#[$element_meta])*
$element_name = $element_val,
)*
}
impl From<i32> for $name {
fn from (p: i32) -> Self {
match p {
$def_val => Self::$def_name,
$($element_val => Self::$element_name,)*
_ => Self::$def_name,
}
}
}
impl From<$name> for i32 {
fn from(p: $name) -> i32 {
p as i32
}
}
impl $name {
/// Returns a string representation of the permission as required by
/// `selinux::check_access`.
pub fn to_selinux(self) -> &'static str {
match self {
Self::$def_name => stringify!($def_selinux_name),
$(Self::$element_name => stringify!($selinux_name),)*
}
}
/// Creates an instance representing a permission with the same name.
pub const fn $def_selinux_name() -> Self { Self::$def_name }
$(
/// Creates an instance representing a permission with the same name.
pub const fn $selinux_name() -> Self { Self::$element_name }
)*
}
};
}
implement_permission!(
/// KeystorePerm provides a convenient abstraction from the SELinux class `keystore2`.
/// Using the implement_permission macro we get the same features as `KeyPerm`.
#[derive(Clone, Copy, Debug, PartialEq)]
KeystorePerm with default (None = 0, none) {
/// Checked when a new auth token is installed.
AddAuth = 1, selinux name: add_auth;
/// Checked when an app is uninstalled or wiped.
ClearNs = 2, selinux name: clear_ns;
/// Checked when the user state is queried from Keystore 2.0.
GetState = 4, selinux name: get_state;
/// Checked when Keystore 2.0 is asked to list a namespace that the caller
/// does not have the get_info permission for.
List = 8, selinux name: list;
/// Checked when Keystore 2.0 gets locked.
Lock = 0x10, selinux name: lock;
/// Checked when Keystore 2.0 shall be reset.
Reset = 0x20, selinux name: reset;
/// Checked when Keystore 2.0 shall be unlocked.
Unlock = 0x40, selinux name: unlock;
/// Checked when user is added or removed.
ChangeUser = 0x80, selinux name: change_user;
/// Checked when password of the user is changed.
ChangePassword = 0x100, selinux name: change_password;
/// Checked when a UID is cleared.
ClearUID = 0x200, selinux name: clear_uid;
/// Checked when Credstore calls IKeystoreAuthorization to obtain auth tokens.
GetAuthToken = 0x400, selinux name: get_auth_token;
/// Checked when earlyBootEnded() is called.
EarlyBootEnded = 0x800, selinux name: early_boot_ended;
/// Checked when IKeystoreMaintenance::onDeviceOffBody is called.
ReportOffBody = 0x1000, selinux name: report_off_body;
/// Checked when IkeystoreMetrics::pullMetris is called.
PullMetrics = 0x2000, selinux name: pull_metrics;
}
);
/// Represents a set of `KeyPerm` permissions.
/// `IntoIterator` is implemented for this struct allowing the iteration through all the
/// permissions in the set.
/// It also implements a function `includes(self, other)` that checks if the permissions
/// in `other` are included in `self`.
///
/// KeyPermSet can be created with the macro `key_perm_set![]`.
///
/// ## Example
/// ```
/// let perms1 = key_perm_set![KeyPerm::use_(), KeyPerm::manage_blob(), KeyPerm::grant()];
/// let perms2 = key_perm_set![KeyPerm::use_(), KeyPerm::manage_blob()];
///
/// assert!(perms1.includes(perms2))
/// assert!(!perms2.includes(perms1))
///
/// let i = perms1.into_iter();
/// // iteration in ascending order of the permission's numeric representation.
/// assert_eq(Some(KeyPerm::manage_blob()), i.next());
/// assert_eq(Some(KeyPerm::grant()), i.next());
/// assert_eq(Some(KeyPerm::use_()), i.next());
/// assert_eq(None, i.next());
/// ```
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
pub struct KeyPermSet(pub i32);
mod perm {
use super::*;
pub struct IntoIter {
vec: KeyPermSet,
pos: u8,
}
impl IntoIter {
pub fn new(v: KeyPermSet) -> Self {
Self { vec: v, pos: 0 }
}
}
impl std::iter::Iterator for IntoIter {
type Item = KeyPerm;
fn next(&mut self) -> Option<Self::Item> {
loop {
if self.pos == 32 {
return None;
}
let p = self.vec.0 & (1 << self.pos);
self.pos += 1;
if p != 0 {
return Some(KeyPerm::from(KeyPermission(p)));
}
}
}
}
}
impl From<KeyPerm> for KeyPermSet {
fn from(p: KeyPerm) -> Self {
Self((p.0).0 as i32)
}
}
/// allow conversion from the AIDL wire type i32 to a permission set.
impl From<i32> for KeyPermSet {
fn from(p: i32) -> Self {
Self(p)
}
}
impl From<KeyPermSet> for i32 {
fn from(p: KeyPermSet) -> i32 {
p.0
}
}
impl KeyPermSet {
/// Returns true iff this permission set has all of the permissions that are in `other`.
pub fn includes<T: Into<KeyPermSet>>(&self, other: T) -> bool {
let o: KeyPermSet = other.into();
(self.0 & o.0) == o.0
}
}
/// This macro can be used to create a `KeyPermSet` from a list of `KeyPerm` values.
///
/// ## Example
/// ```
/// let v = key_perm_set![Perm::delete(), Perm::manage_blob()];
/// ```
#[macro_export]
macro_rules! key_perm_set {
() => { KeyPermSet(0) };
($head:expr $(, $tail:expr)* $(,)?) => {
KeyPermSet(($head.0).0 $(| ($tail.0).0)*)
};
}
impl IntoIterator for KeyPermSet {
type Item = KeyPerm;
type IntoIter = perm::IntoIter;
fn into_iter(self) -> Self::IntoIter {
Self::IntoIter::new(self)
}
}
/// Uses `selinux::check_access` to check if the given caller context `caller_cxt` may access
/// the given permision `perm` of the `keystore2` security class.
pub fn check_keystore_permission(caller_ctx: &CStr, perm: KeystorePerm) -> anyhow::Result<()> {
let target_context = getcon().context("check_keystore_permission: getcon failed.")?;
selinux::check_access(caller_ctx, &target_context, "keystore2", perm.to_selinux())
}
/// Uses `selinux::check_access` to check if the given caller context `caller_cxt` has
/// all the permissions indicated in `access_vec` for the target domain indicated by the key
/// descriptor `key` in the security class `keystore2_key`.
///
/// Also checks if the caller has the grant permission for the given target domain.
///
/// Attempts to grant the grant permission are always denied.
///
/// The only viable target domains are
/// * `Domain::APP` in which case u:r:keystore:s0 is used as target context and
/// * `Domain::SELINUX` in which case the `key.nspace` parameter is looked up in
/// SELinux keystore key backend, and the result is used
/// as target context.
pub fn check_grant_permission(
caller_ctx: &CStr,
access_vec: KeyPermSet,
key: &KeyDescriptor,
) -> anyhow::Result<()> {
let target_context = match key.domain {
Domain::APP => getcon().context("check_grant_permission: getcon failed.")?,
Domain::SELINUX => lookup_keystore2_key_context(key.nspace)
.context("check_grant_permission: Domain::SELINUX: Failed to lookup namespace.")?,
_ => return Err(KsError::sys()).context(format!("Cannot grant {:?}.", key.domain)),
};
selinux::check_access(caller_ctx, &target_context, "keystore2_key", "grant")
.context("Grant permission is required when granting.")?;
if access_vec.includes(KeyPerm::grant()) {
return Err(selinux::Error::perm()).context("Grant permission cannot be granted.");
}
for p in access_vec.into_iter() {
selinux::check_access(caller_ctx, &target_context, "keystore2_key", p.to_selinux())
.context(format!(
concat!(
"check_grant_permission: check_access failed. ",
"The caller may have tried to grant a permission that they don't possess. {:?}"
),
p
))?
}
Ok(())
}
/// Uses `selinux::check_access` to check if the given caller context `caller_cxt`
/// has the permissions indicated by `perm` for the target domain indicated by the key
/// descriptor `key` in the security class `keystore2_key`.
///
/// The behavior differs slightly depending on the selected target domain:
/// * `Domain::APP` u:r:keystore:s0 is used as target context.
/// * `Domain::SELINUX` `key.nspace` parameter is looked up in the SELinux keystore key
/// backend, and the result is used as target context.
/// * `Domain::BLOB` Same as SELinux but the "manage_blob" permission is always checked additionally
/// to the one supplied in `perm`.
/// * `Domain::GRANT` Does not use selinux::check_access. Instead the `access_vector`
/// parameter is queried for permission, which must be supplied in this case.
///
/// ## Return values.
/// * Ok(()) If the requested permissions were granted.
/// * Err(selinux::Error::perm()) If the requested permissions were denied.
/// * Err(KsError::sys()) This error is produced if `Domain::GRANT` is selected but no `access_vec`
/// was supplied. It is also produced if `Domain::KEY_ID` was selected, and
/// on various unexpected backend failures.
pub fn check_key_permission(
caller_uid: u32,
caller_ctx: &CStr,
perm: KeyPerm,
key: &KeyDescriptor,
access_vector: &Option<KeyPermSet>,
) -> anyhow::Result<()> {
// If an access vector was supplied, the key is either accessed by GRANT or by KEY_ID.
// In the former case, key.domain was set to GRANT and we check the failure cases
// further below. If the access is requested by KEY_ID, key.domain would have been
// resolved to APP or SELINUX depending on where the key actually resides.
// Either way we can return here immediately if the access vector covers the requested
// permission. If it does not, we can still check if the caller has access by means of
// ownership.
if let Some(access_vector) = access_vector {
if access_vector.includes(perm) {
return Ok(());
}
}
let target_context = match key.domain {
// apps get the default keystore context
Domain::APP => {
if caller_uid as i64 != key.nspace {
return Err(selinux::Error::perm())
.context("Trying to access key without ownership.");
}
getcon().context("check_key_permission: getcon failed.")?
}
Domain::SELINUX => lookup_keystore2_key_context(key.nspace)
.context("check_key_permission: Domain::SELINUX: Failed to lookup namespace.")?,
Domain::GRANT => {
match access_vector {
Some(_) => {
return Err(selinux::Error::perm())
.context(format!("\"{}\" not granted", perm.to_selinux()));
}
None => {
// If DOMAIN_GRANT was selected an access vector must be supplied.
return Err(KsError::sys()).context(
"Cannot check permission for Domain::GRANT without access vector.",
);
}
}
}
Domain::KEY_ID => {
// We should never be called with `Domain::KEY_ID. The database
// lookup should have converted this into one of `Domain::APP`
// or `Domain::SELINUX`.
return Err(KsError::sys()).context("Cannot check permission for Domain::KEY_ID.");
}
Domain::BLOB => {
let tctx = lookup_keystore2_key_context(key.nspace)
.context("Domain::BLOB: Failed to lookup namespace.")?;
// If DOMAIN_KEY_BLOB was specified, we check for the "manage_blob"
// permission in addition to the requested permission.
selinux::check_access(
caller_ctx,
&tctx,
"keystore2_key",
KeyPerm::manage_blob().to_selinux(),
)?;
tctx
}
_ => {
return Err(KsError::sys())
.context(format!("Unknown domain value: \"{:?}\".", key.domain))
}
};
selinux::check_access(caller_ctx, &target_context, "keystore2_key", perm.to_selinux())
}
#[cfg(test)]
mod tests {
use super::*;
use anyhow::anyhow;
use anyhow::Result;
use keystore2_selinux::*;
const ALL_PERMS: KeyPermSet = key_perm_set![
KeyPerm::manage_blob(),
KeyPerm::delete(),
KeyPerm::use_dev_id(),
KeyPerm::req_forced_op(),
KeyPerm::gen_unique_id(),
KeyPerm::grant(),
KeyPerm::get_info(),
KeyPerm::rebind(),
KeyPerm::update(),
KeyPerm::use_(),
KeyPerm::convert_storage_key_to_ephemeral(),
];
const SYSTEM_SERVER_PERMISSIONS_NO_GRANT: KeyPermSet = key_perm_set![
KeyPerm::delete(),
KeyPerm::use_dev_id(),
// No KeyPerm::grant()
KeyPerm::get_info(),
KeyPerm::rebind(),
KeyPerm::update(),
KeyPerm::use_(),
];
const NOT_GRANT_PERMS: KeyPermSet = key_perm_set![
KeyPerm::manage_blob(),
KeyPerm::delete(),
KeyPerm::use_dev_id(),
KeyPerm::req_forced_op(),
KeyPerm::gen_unique_id(),
// No KeyPerm::grant()
KeyPerm::get_info(),
KeyPerm::rebind(),
KeyPerm::update(),
KeyPerm::use_(),
KeyPerm::convert_storage_key_to_ephemeral(),
];
const UNPRIV_PERMS: KeyPermSet = key_perm_set![
KeyPerm::delete(),
KeyPerm::get_info(),
KeyPerm::rebind(),
KeyPerm::update(),
KeyPerm::use_(),
];
/// The su_key namespace as defined in su.te and keystore_key_contexts of the
/// SePolicy (system/sepolicy).
const SU_KEY_NAMESPACE: i32 = 0;
/// The shell_key namespace as defined in shell.te and keystore_key_contexts of the
/// SePolicy (system/sepolicy).
const SHELL_KEY_NAMESPACE: i32 = 1;
pub fn test_getcon() -> Result<Context> {
Context::new("u:object_r:keystore:s0")
}
// This macro evaluates the given expression and checks that
// a) evaluated to Result::Err() and that
// b) the wrapped error is selinux::Error::perm() (permission denied).
// We use a macro here because a function would mask which invocation caused the failure.
//
// TODO b/164121720 Replace this macro with a function when `track_caller` is available.
macro_rules! assert_perm_failed {
($test_function:expr) => {
let result = $test_function;
assert!(result.is_err(), "Permission check should have failed.");
assert_eq!(
Some(&selinux::Error::perm()),
result.err().unwrap().root_cause().downcast_ref::<selinux::Error>()
);
};
}
fn check_context() -> Result<(selinux::Context, i32, bool)> {
// Calling the non mocked selinux::getcon here intended.
let context = selinux::getcon()?;
match context.to_str().unwrap() {
"u:r:su:s0" => Ok((context, SU_KEY_NAMESPACE, true)),
"u:r:shell:s0" => Ok((context, SHELL_KEY_NAMESPACE, false)),
c => Err(anyhow!(format!(
"This test must be run as \"su\" or \"shell\". Current context: \"{}\"",
c
))),
}
}
#[test]
fn check_keystore_permission_test() -> Result<()> {
let system_server_ctx = Context::new("u:r:system_server:s0")?;
assert!(check_keystore_permission(&system_server_ctx, KeystorePerm::add_auth()).is_ok());
assert!(check_keystore_permission(&system_server_ctx, KeystorePerm::clear_ns()).is_ok());
assert!(check_keystore_permission(&system_server_ctx, KeystorePerm::get_state()).is_ok());
assert!(check_keystore_permission(&system_server_ctx, KeystorePerm::lock()).is_ok());
assert!(check_keystore_permission(&system_server_ctx, KeystorePerm::reset()).is_ok());
assert!(check_keystore_permission(&system_server_ctx, KeystorePerm::unlock()).is_ok());
assert!(check_keystore_permission(&system_server_ctx, KeystorePerm::change_user()).is_ok());
assert!(
check_keystore_permission(&system_server_ctx, KeystorePerm::change_password()).is_ok()
);
assert!(check_keystore_permission(&system_server_ctx, KeystorePerm::clear_uid()).is_ok());
let shell_ctx = Context::new("u:r:shell:s0")?;
assert_perm_failed!(check_keystore_permission(&shell_ctx, KeystorePerm::add_auth()));
assert_perm_failed!(check_keystore_permission(&shell_ctx, KeystorePerm::clear_ns()));
assert!(check_keystore_permission(&shell_ctx, KeystorePerm::get_state()).is_ok());
assert_perm_failed!(check_keystore_permission(&shell_ctx, KeystorePerm::list()));
assert_perm_failed!(check_keystore_permission(&shell_ctx, KeystorePerm::lock()));
assert_perm_failed!(check_keystore_permission(&shell_ctx, KeystorePerm::reset()));
assert_perm_failed!(check_keystore_permission(&shell_ctx, KeystorePerm::unlock()));
assert_perm_failed!(check_keystore_permission(&shell_ctx, KeystorePerm::change_user()));
assert_perm_failed!(check_keystore_permission(&shell_ctx, KeystorePerm::change_password()));
assert_perm_failed!(check_keystore_permission(&shell_ctx, KeystorePerm::clear_uid()));
Ok(())
}
#[test]
fn check_grant_permission_app() -> Result<()> {
let system_server_ctx = Context::new("u:r:system_server:s0")?;
let shell_ctx = Context::new("u:r:shell:s0")?;
let key = KeyDescriptor { domain: Domain::APP, nspace: 0, alias: None, blob: None };
check_grant_permission(&system_server_ctx, SYSTEM_SERVER_PERMISSIONS_NO_GRANT, &key)
.expect("Grant permission check failed.");
// attempts to grant the grant permission must always fail even when privileged.
assert_perm_failed!(check_grant_permission(
&system_server_ctx,
KeyPerm::grant().into(),
&key
));
// unprivileged grant attempts always fail. shell does not have the grant permission.
assert_perm_failed!(check_grant_permission(&shell_ctx, UNPRIV_PERMS, &key));
Ok(())
}
#[test]
fn check_grant_permission_selinux() -> Result<()> {
let (sctx, namespace, is_su) = check_context()?;
let key = KeyDescriptor {
domain: Domain::SELINUX,
nspace: namespace as i64,
alias: None,
blob: None,
};
if is_su {
assert!(check_grant_permission(&sctx, NOT_GRANT_PERMS, &key).is_ok());
// attempts to grant the grant permission must always fail even when privileged.
assert_perm_failed!(check_grant_permission(&sctx, KeyPerm::grant().into(), &key));
} else {
// unprivileged grant attempts always fail. shell does not have the grant permission.
assert_perm_failed!(check_grant_permission(&sctx, UNPRIV_PERMS, &key));
}
Ok(())
}
#[test]
fn check_key_permission_domain_grant() -> Result<()> {
let key = KeyDescriptor { domain: Domain::GRANT, nspace: 0, alias: None, blob: None };
assert_perm_failed!(check_key_permission(
0,
&selinux::Context::new("ignored").unwrap(),
KeyPerm::grant(),
&key,
&Some(UNPRIV_PERMS)
));
check_key_permission(
0,
&selinux::Context::new("ignored").unwrap(),
KeyPerm::use_(),
&key,
&Some(ALL_PERMS),
)
}
#[test]
fn check_key_permission_domain_app() -> Result<()> {
let system_server_ctx = Context::new("u:r:system_server:s0")?;
let shell_ctx = Context::new("u:r:shell:s0")?;
let gmscore_app = Context::new("u:r:gmscore_app:s0")?;
let key = KeyDescriptor { domain: Domain::APP, nspace: 0, alias: None, blob: None };
assert!(check_key_permission(0, &system_server_ctx, KeyPerm::use_(), &key, &None).is_ok());
assert!(check_key_permission(0, &system_server_ctx, KeyPerm::delete(), &key, &None).is_ok());
assert!(
check_key_permission(0, &system_server_ctx, KeyPerm::get_info(), &key, &None).is_ok()
);
assert!(check_key_permission(0, &system_server_ctx, KeyPerm::rebind(), &key, &None).is_ok());
assert!(check_key_permission(0, &system_server_ctx, KeyPerm::update(), &key, &None).is_ok());
assert!(check_key_permission(0, &system_server_ctx, KeyPerm::grant(), &key, &None).is_ok());
assert!(
check_key_permission(0, &system_server_ctx, KeyPerm::use_dev_id(), &key, &None).is_ok()
);
assert!(
check_key_permission(0, &gmscore_app, KeyPerm::gen_unique_id(), &key, &None).is_ok()
);
assert!(check_key_permission(0, &shell_ctx, KeyPerm::use_(), &key, &None).is_ok());
assert!(check_key_permission(0, &shell_ctx, KeyPerm::delete(), &key, &None).is_ok());
assert!(check_key_permission(0, &shell_ctx, KeyPerm::get_info(), &key, &None).is_ok());
assert!(check_key_permission(0, &shell_ctx, KeyPerm::rebind(), &key, &None).is_ok());
assert!(check_key_permission(0, &shell_ctx, KeyPerm::update(), &key, &None).is_ok());
assert_perm_failed!(check_key_permission(0, &shell_ctx, KeyPerm::grant(), &key, &None));
assert_perm_failed!(check_key_permission(
0,
&shell_ctx,
KeyPerm::req_forced_op(),
&key,
&None
));
assert_perm_failed!(check_key_permission(
0,
&shell_ctx,
KeyPerm::manage_blob(),
&key,
&None
));
assert_perm_failed!(check_key_permission(
0,
&shell_ctx,
KeyPerm::use_dev_id(),
&key,
&None
));
assert_perm_failed!(check_key_permission(
0,
&shell_ctx,
KeyPerm::gen_unique_id(),
&key,
&None
));
// Also make sure that the permission fails if the caller is not the owner.
assert_perm_failed!(check_key_permission(
1, // the owner is 0
&system_server_ctx,
KeyPerm::use_(),
&key,
&None
));
// Unless there was a grant.
assert!(check_key_permission(
1,
&system_server_ctx,
KeyPerm::use_(),
&key,
&Some(key_perm_set![KeyPerm::use_()])
)
.is_ok());
// But fail if the grant did not cover the requested permission.
assert_perm_failed!(check_key_permission(
1,
&system_server_ctx,
KeyPerm::use_(),
&key,
&Some(key_perm_set![KeyPerm::get_info()])
));
Ok(())
}
#[test]
fn check_key_permission_domain_selinux() -> Result<()> {
let (sctx, namespace, is_su) = check_context()?;
let key = KeyDescriptor {
domain: Domain::SELINUX,
nspace: namespace as i64,
alias: None,
blob: None,
};
assert!(check_key_permission(0, &sctx, KeyPerm::use_(), &key, &None).is_ok());
assert!(check_key_permission(0, &sctx, KeyPerm::delete(), &key, &None).is_ok());
assert!(check_key_permission(0, &sctx, KeyPerm::get_info(), &key, &None).is_ok());
assert!(check_key_permission(0, &sctx, KeyPerm::rebind(), &key, &None).is_ok());
assert!(check_key_permission(0, &sctx, KeyPerm::update(), &key, &None).is_ok());
if is_su {
assert!(check_key_permission(0, &sctx, KeyPerm::grant(), &key, &None).is_ok());
assert!(check_key_permission(0, &sctx, KeyPerm::manage_blob(), &key, &None).is_ok());
assert!(check_key_permission(0, &sctx, KeyPerm::use_dev_id(), &key, &None).is_ok());
assert!(check_key_permission(0, &sctx, KeyPerm::gen_unique_id(), &key, &None).is_ok());
assert!(check_key_permission(0, &sctx, KeyPerm::req_forced_op(), &key, &None).is_ok());
} else {
assert_perm_failed!(check_key_permission(0, &sctx, KeyPerm::grant(), &key, &None));
assert_perm_failed!(check_key_permission(
0,
&sctx,
KeyPerm::req_forced_op(),
&key,
&None
));
assert_perm_failed!(check_key_permission(
0,
&sctx,
KeyPerm::manage_blob(),
&key,
&None
));
assert_perm_failed!(check_key_permission(0, &sctx, KeyPerm::use_dev_id(), &key, &None));
assert_perm_failed!(check_key_permission(
0,
&sctx,
KeyPerm::gen_unique_id(),
&key,
&None
));
}
Ok(())
}
#[test]
fn check_key_permission_domain_blob() -> Result<()> {
let (sctx, namespace, is_su) = check_context()?;
let key = KeyDescriptor {
domain: Domain::BLOB,
nspace: namespace as i64,
alias: None,
blob: None,
};
if is_su {
check_key_permission(0, &sctx, KeyPerm::use_(), &key, &None)
} else {
assert_perm_failed!(check_key_permission(0, &sctx, KeyPerm::use_(), &key, &None));
Ok(())
}
}
#[test]
fn check_key_permission_domain_key_id() -> Result<()> {
let key = KeyDescriptor { domain: Domain::KEY_ID, nspace: 0, alias: None, blob: None };
assert_eq!(
Some(&KsError::sys()),
check_key_permission(
0,
&selinux::Context::new("ignored").unwrap(),
KeyPerm::use_(),
&key,
&None
)
.err()
.unwrap()
.root_cause()
.downcast_ref::<KsError>()
);
Ok(())
}
#[test]
fn key_perm_set_all_test() {
let v = key_perm_set![
KeyPerm::manage_blob(),
KeyPerm::delete(),
KeyPerm::use_dev_id(),
KeyPerm::req_forced_op(),
KeyPerm::gen_unique_id(),
KeyPerm::grant(),
KeyPerm::get_info(),
KeyPerm::rebind(),
KeyPerm::update(),
KeyPerm::use_() // Test if the macro accepts missing comma at the end of the list.
];
let mut i = v.into_iter();
assert_eq!(i.next().unwrap().to_selinux(), "delete");
assert_eq!(i.next().unwrap().to_selinux(), "gen_unique_id");
assert_eq!(i.next().unwrap().to_selinux(), "get_info");
assert_eq!(i.next().unwrap().to_selinux(), "grant");
assert_eq!(i.next().unwrap().to_selinux(), "manage_blob");
assert_eq!(i.next().unwrap().to_selinux(), "rebind");
assert_eq!(i.next().unwrap().to_selinux(), "req_forced_op");
assert_eq!(i.next().unwrap().to_selinux(), "update");
assert_eq!(i.next().unwrap().to_selinux(), "use");
assert_eq!(i.next().unwrap().to_selinux(), "use_dev_id");
assert_eq!(None, i.next());
}
#[test]
fn key_perm_set_sparse_test() {
let v = key_perm_set![
KeyPerm::manage_blob(),
KeyPerm::req_forced_op(),
KeyPerm::gen_unique_id(),
KeyPerm::update(),
KeyPerm::use_(), // Test if macro accepts the comma at the end of the list.
];
let mut i = v.into_iter();
assert_eq!(i.next().unwrap().to_selinux(), "gen_unique_id");
assert_eq!(i.next().unwrap().to_selinux(), "manage_blob");
assert_eq!(i.next().unwrap().to_selinux(), "req_forced_op");
assert_eq!(i.next().unwrap().to_selinux(), "update");
assert_eq!(i.next().unwrap().to_selinux(), "use");
assert_eq!(None, i.next());
}
#[test]
fn key_perm_set_empty_test() {
let v = key_perm_set![];
let mut i = v.into_iter();
assert_eq!(None, i.next());
}
#[test]
fn key_perm_set_include_subset_test() {
let v1 = key_perm_set![
KeyPerm::manage_blob(),
KeyPerm::delete(),
KeyPerm::use_dev_id(),
KeyPerm::req_forced_op(),
KeyPerm::gen_unique_id(),
KeyPerm::grant(),
KeyPerm::get_info(),
KeyPerm::rebind(),
KeyPerm::update(),
KeyPerm::use_(),
];
let v2 = key_perm_set![
KeyPerm::manage_blob(),
KeyPerm::delete(),
KeyPerm::rebind(),
KeyPerm::update(),
KeyPerm::use_(),
];
assert!(v1.includes(v2));
assert!(!v2.includes(v1));
}
#[test]
fn key_perm_set_include_equal_test() {
let v1 = key_perm_set![
KeyPerm::manage_blob(),
KeyPerm::delete(),
KeyPerm::rebind(),
KeyPerm::update(),
KeyPerm::use_(),
];
let v2 = key_perm_set![
KeyPerm::manage_blob(),
KeyPerm::delete(),
KeyPerm::rebind(),
KeyPerm::update(),
KeyPerm::use_(),
];
assert!(v1.includes(v2));
assert!(v2.includes(v1));
}
#[test]
fn key_perm_set_include_overlap_test() {
let v1 = key_perm_set![
KeyPerm::manage_blob(),
KeyPerm::delete(),
KeyPerm::grant(), // only in v1
KeyPerm::rebind(),
KeyPerm::update(),
KeyPerm::use_(),
];
let v2 = key_perm_set![
KeyPerm::manage_blob(),
KeyPerm::delete(),
KeyPerm::req_forced_op(), // only in v2
KeyPerm::rebind(),
KeyPerm::update(),
KeyPerm::use_(),
];
assert!(!v1.includes(v2));
assert!(!v2.includes(v1));
}
#[test]
fn key_perm_set_include_no_overlap_test() {
let v1 = key_perm_set![KeyPerm::manage_blob(), KeyPerm::delete(), KeyPerm::grant(),];
let v2 = key_perm_set![
KeyPerm::req_forced_op(),
KeyPerm::rebind(),
KeyPerm::update(),
KeyPerm::use_(),
];
assert!(!v1.includes(v2));
assert!(!v2.includes(v1));
}
}