blob: cfef347342223e2d3d775b33b11d8bc09a28fe5e [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <nvram/messages/io.h>
extern "C" {
#include <string.h>
}
#include <nvram/messages/compiler.h>
namespace nvram {
namespace {
template <typename T>
T min(T x, T y) {
return x < y ? x : y;
}
template <typename T>
T max(T x, T y) {
return x > y ? x : y;
}
// Encodes |value| in varint format and writes the result to |stream|.
bool EncodeVarint(OutputStreamBuffer* stream, uint64_t value) {
do {
uint8_t byte = (value & 0x7f) | (((value >> 7) == 0) ? 0x00 : 0x80);
if (!stream->WriteByte(byte)) {
return false;
}
value >>= 7;
} while (value != 0);
return true;
}
// Read a varint-encoded number from stream, decode it and store the result in
// |value|.
bool DecodeVarint(InputStreamBuffer* stream_buffer, uint64_t* value) {
// Maximum number of bytes required to encode an |uint64_t| as varint. Each
// byte in a varint has 7 payload bytes, so encoding 64 bits yields at most 10
// bytes.
static constexpr int kMaxVarintBytes = 10;
*value = 0;
for (int i = 0; i < kMaxVarintBytes; ++i) {
uint8_t byte = 0;
if (!stream_buffer->ReadByte(&byte)) {
return false;
}
*value |= static_cast<uint64_t>(byte & 0x7f) << (i * 7);
if ((byte & 0x80) == 0) {
return true;
}
}
return false;
}
} // namespace
InputStreamBuffer::InputStreamBuffer(const void* data, size_t size)
: InputStreamBuffer(data, static_cast<const uint8_t*>(data) + size) {}
InputStreamBuffer::InputStreamBuffer(const void* start, const void* end)
: pos_(static_cast<const uint8_t*>(start)),
end_(static_cast<const uint8_t*>(end)) {
NVRAM_CHECK(pos_ <= end_);
}
bool InputStreamBuffer::Done() {
return pos_ >= end_ && !Advance();
}
bool InputStreamBuffer::Read(void* data, size_t size) {
uint8_t* buffer = static_cast<uint8_t*>(data);
NVRAM_CHECK(pos_ <= end_);
while (size > static_cast<size_t>(end_ - pos_)) {
memcpy(buffer, pos_, end_ - pos_);
buffer += end_ - pos_;
size -= end_ - pos_;
pos_ = end_;
if (!Advance()) {
return false;
}
NVRAM_CHECK(pos_ < end_);
}
memcpy(buffer, pos_, size);
pos_ += size;
return true;
}
bool InputStreamBuffer::ReadByte(uint8_t* byte) {
if (pos_ >= end_) {
if (!Advance()) {
return false;
}
NVRAM_CHECK(pos_ < end_);
}
*byte = *pos_;
++pos_;
return true;
}
bool InputStreamBuffer::Skip(size_t size) {
NVRAM_CHECK(pos_ <= end_);
while (size > static_cast<size_t>(end_ - pos_)) {
size -= end_ - pos_;
pos_ = end_;
if (!Advance()) {
return false;
}
NVRAM_CHECK(pos_ < end_);
}
pos_ += size;
return true;
}
bool InputStreamBuffer::Advance() {
return false;
}
NestedInputStreamBuffer::NestedInputStreamBuffer(InputStreamBuffer* delegate,
size_t size)
: InputStreamBuffer(delegate->pos_, ClampEnd(delegate, size)),
delegate_(delegate),
remaining_(size) {}
bool NestedInputStreamBuffer::Advance() {
remaining_ -= end_ - delegate_->pos_;
if (remaining_ == 0) {
delegate_->pos_ = end_;
return false;
}
bool status = delegate_->Advance();
pos_ = delegate_->pos_;
end_ = ClampEnd(delegate_, remaining_);
return status;
}
// static
const uint8_t* NestedInputStreamBuffer::ClampEnd(InputStreamBuffer* delegate,
size_t size) {
NVRAM_CHECK(delegate->pos_ <= delegate->end_);
return size < static_cast<size_t>(delegate->end_ - delegate->pos_)
? delegate->pos_ + size
: delegate->end_;
}
OutputStreamBuffer::OutputStreamBuffer(void* data, size_t size)
: OutputStreamBuffer(data, static_cast<uint8_t*>(data) + size) {}
OutputStreamBuffer::OutputStreamBuffer(void* start, void* end)
: pos_(static_cast<uint8_t*>(start)), end_(static_cast<uint8_t*>(end)) {
NVRAM_CHECK(pos_ <= end_);
}
bool OutputStreamBuffer::Done() {
return pos_ >= end_ && !Advance();
}
bool OutputStreamBuffer::Write(const void* data, size_t size) {
const uint8_t* buffer = static_cast<const uint8_t*>(data);
NVRAM_CHECK(pos_ <= end_);
while (size > static_cast<size_t>(end_ - pos_)) {
memcpy(pos_, buffer, end_ - pos_);
buffer += end_ - pos_;
size -= end_ - pos_;
pos_ = end_;
if (!Advance()) {
return false;
}
NVRAM_CHECK(pos_ < end_);
}
memcpy(pos_, buffer, size);
pos_ += size;
return true;
}
bool OutputStreamBuffer::WriteByte(uint8_t byte) {
if (pos_ >= end_) {
if (!Advance()) {
return false;
}
NVRAM_CHECK(pos_ < end_);
}
*pos_ = byte;
++pos_;
return true;
}
bool OutputStreamBuffer::Advance() {
return false;
}
CountingOutputStreamBuffer::CountingOutputStreamBuffer()
: OutputStreamBuffer(scratch_space_, kScratchSpaceSize) {}
bool CountingOutputStreamBuffer::Advance() {
bytes_written_ += pos_ - scratch_space_;
pos_ = scratch_space_;
end_ = scratch_space_ + kScratchSpaceSize;
return true;
}
uint8_t CountingOutputStreamBuffer::scratch_space_[kScratchSpaceSize];
BlobOutputStreamBuffer::BlobOutputStreamBuffer(Blob* blob)
: OutputStreamBuffer(blob->data(), blob->size()), blob_(blob) {}
bool BlobOutputStreamBuffer::Advance() {
ptrdiff_t offset = pos_ - blob_->data();
if (!blob_->Resize(max<size_t>(blob_->size() * 2, 32))) {
return false;
}
pos_ = blob_->data() + offset;
end_ = blob_->data() + blob_->size();
return true;
}
bool BlobOutputStreamBuffer::Truncate() {
if (!blob_->Resize(pos_ - blob_->data())) {
return false;
}
end_ = blob_->data() + blob_->size();
pos_ = end_;
return true;
}
ProtoReader::ProtoReader(InputStreamBuffer* stream_buffer)
: stream_buffer_(stream_buffer) {}
bool ProtoReader::ReadWireTag() {
uint64_t wire_tag;
if (!DecodeVarint(stream_buffer_, &wire_tag)) {
return false;
}
wire_type_ = wire_tag & 0x7;
field_number_ = wire_tag >> 3;
switch (wire_type()) {
case WireType::kLengthDelimited: {
uint64_t size;
if (!DecodeVarint(stream_buffer_, &size)) {
return false;
}
field_size_ = static_cast<size_t>(size);
if (static_cast<uint64_t>(field_size_) != size) {
return false;
}
break;
}
case WireType::kFixed64:
field_size_ = sizeof(uint64_t);
break;
case WireType::kFixed32:
field_size_ = sizeof(uint32_t);
break;
case WireType::kVarint:
case WireType::kStartGroup:
case WireType::kEndGroup:
field_size_ = 0;
break;
}
return true;
}
bool ProtoReader::ReadVarint(uint64_t* value) {
NVRAM_CHECK(wire_type() == WireType::kVarint);
return DecodeVarint(stream_buffer_, value);
}
bool ProtoReader::ReadLengthDelimited(void* data, size_t size) {
NVRAM_CHECK(wire_type() == WireType::kLengthDelimited);
return stream_buffer_->Read(data, size);
}
bool ProtoReader::SkipField() {
if (wire_type() == WireType::kVarint) {
uint64_t dummy;
return DecodeVarint(stream_buffer_, &dummy);
} else if (field_size_ > 0) {
return stream_buffer_->Skip(field_size_);
}
return true;
}
ProtoWriter::ProtoWriter(OutputStreamBuffer* stream_buffer)
: stream_buffer_(stream_buffer) {}
bool ProtoWriter::WriteVarint(uint64_t value) {
return WriteWireTag(WireType::kVarint) &&
EncodeVarint(stream_buffer_, value);
}
bool ProtoWriter::WriteLengthDelimited(const void* data, size_t size) {
return WriteWireTag(WireType::kLengthDelimited) &&
EncodeVarint(stream_buffer_, size) &&
stream_buffer_->Write(data, size);
}
bool ProtoWriter::WriteLengthHeader(size_t size) {
return WriteWireTag(WireType::kLengthDelimited) &&
EncodeVarint(stream_buffer_, size);
}
bool ProtoWriter::WriteWireTag(WireType wire_type) {
return EncodeVarint(stream_buffer_,
(field_number_ << 3) | static_cast<uint64_t>(wire_type));
}
} // namespace nvram