blob: 5447f8af8c0c8319c066ccac087d48c09fcd5e7a [file] [log] [blame]
//
// Copyright (C) 2016 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include <algorithm>
#include <string>
#include <vector>
#include <android-base/logging.h>
#include <android-base/macros.h>
#include <gtest/gtest.h>
#include <hardware/nvram.h>
#include <openssl/sha.h>
#include "nvram/hal/tests/scoped_nvram_device.h"
namespace {
constexpr uint32_t kTestIndex1 = 0xDEAD0001;
constexpr uint32_t kTestIndex2 = 0xDEAD0002;
constexpr uint32_t kTestIndexNeverExists = 0xDEAD0003;
// Once we run a test that locks writing, that space is burned until reboot.
// This value is the base index from which to dynamically burn spaces.
constexpr uint32_t kTestIndexBurnBase = 0xDEAD0010;
constexpr uint32_t kTestIndexBurnMax = 0xDEAD00FF;
constexpr nvram_control_t kDefaultControls[] = {NV_CONTROL_BOOT_WRITE_LOCK,
NV_CONTROL_BOOT_READ_LOCK};
constexpr char kNoAuth[] = "";
// If using authorization with an index returned by GetNextBurnSpace use this
// as the value so the space can be cleaned up later.
constexpr char kBurnSpaceAuth[] = "hal_test_burn";
// Returns true if |target| contains |value|.
template <typename T>
bool Contains(T value, const std::vector<T>& target) {
return (std::find(target.begin(), target.end(), value) != target.end());
}
// Returns true if |target| contains all of |values|.
template <typename T>
bool ContainsAll(const std::vector<T>& values,
const std::vector<T>& target) {
return std::all_of(values.begin(), values.end(),
[target](T value) { return Contains(value, target); });
}
// Adds a few safety checks so tests don't get hardware into a state where it
// needs factory reset.
class SafeScopedNvramDevice : public nvram::ScopedNvramDevice {
public:
nvram_result_t CreateSpace(uint32_t index,
uint64_t size_in_bytes,
const std::vector<nvram_control_t>& control_list,
const std::string& authorization_value) override {
CHECK(!Contains(NV_CONTROL_PERSISTENT_WRITE_LOCK, control_list))
<< "Do not use NV_CONTROL_PERSISTENT_WRITE_LOCK in tests.";
CHECK(!Contains(NV_CONTROL_BOOT_WRITE_LOCK, control_list) ||
!Contains(NV_CONTROL_WRITE_AUTHORIZATION, control_list) ||
authorization_value == kNoAuth ||
authorization_value == kBurnSpaceAuth)
<< "Do not lock spaces with unknown authorization values.";
return nvram::ScopedNvramDevice::CreateSpace(
index, size_in_bytes, control_list, authorization_value);
}
nvram_result_t DisableCreate() override {
LOG(FATAL) << "Do not use DisableCreate in tests.";
return NV_RESULT_OPERATION_DISABLED;
}
};
class ScopedNvramSpace {
public:
ScopedNvramSpace(SafeScopedNvramDevice* device, uint32_t index, uint32_t size)
: ScopedNvramSpace(device,
index,
size,
std::vector<nvram_control_t>(
&kDefaultControls[0],
&kDefaultControls[arraysize(kDefaultControls)]),
kNoAuth) {}
ScopedNvramSpace(SafeScopedNvramDevice* device,
uint32_t index,
uint32_t size,
const std::vector<nvram_control_t>& control_list)
: ScopedNvramSpace(device,
index,
size,
control_list,
kNoAuth) {}
ScopedNvramSpace(SafeScopedNvramDevice* device,
uint32_t index,
uint32_t size,
const std::vector<nvram_control_t>& control_list,
const std::string& authorization_value)
: device_(device),
index_(index),
authorization_value_(authorization_value) {
Create(size, control_list);
}
~ScopedNvramSpace() { Delete(); }
private:
void Create(uint32_t size,
const std::vector<nvram_control_t>& control_list) {
ASSERT_EQ(
NV_RESULT_SUCCESS,
device_->CreateSpace(index_, size, control_list, authorization_value_));
}
void Delete() {
ASSERT_EQ(NV_RESULT_SUCCESS,
device_->DeleteSpace(index_, authorization_value_));
}
SafeScopedNvramDevice* device_;
uint32_t index_;
std::string authorization_value_;
};
// Remove all unlocked burn spaces. Returns false on failure.
bool CleanBurnSpaces(SafeScopedNvramDevice* device) {
// Burned spaces will only be available for cleanup after reboot so there's no
// sense in attempting cleanup more than once.
static bool cleaned = false;
if (cleaned) {
return true;
}
bool success = true;
cleaned = true;
std::vector<uint32_t> space_index_list;
if (device->GetSpaceList(&space_index_list) != NV_RESULT_SUCCESS) {
return false;
}
for (uint32_t index : space_index_list) {
if (index >= kTestIndexBurnBase && index <= kTestIndexBurnMax) {
int write_lock, read_lock;
if (device->IsSpaceLocked(index, &write_lock, &read_lock) !=
NV_RESULT_SUCCESS) {
success = false;
continue;
}
if (!write_lock) {
nvram_result_t result = device->DeleteSpace(index, kNoAuth);
if (result == NV_RESULT_ACCESS_DENIED) {
result = device->DeleteSpace(index, kBurnSpaceAuth);
}
if (result != NV_RESULT_SUCCESS) {
success = false;
continue;
}
}
}
}
return success;
}
// Returns the next available burn space index. If using authorization, the
// value MUST be kBurnSpaceAuth.
bool GetNextBurnSpace(SafeScopedNvramDevice* device, uint32_t* index) {
if (!CleanBurnSpaces(device)) {
return false;
}
std::vector<uint32_t> space_index_list;
if (device->GetSpaceList(&space_index_list) != NV_RESULT_SUCCESS) {
return false;
}
*index = kTestIndexBurnBase;
while (Contains(*index, space_index_list)) {
(*index)++;
}
if (*index >= kTestIndexBurnMax) {
return false;
}
return true;
}
std::string SHA256HashString(const std::string& input) {
uint8_t hash[SHA256_DIGEST_LENGTH];
SHA256(reinterpret_cast<const uint8_t*>(input.data()), input.size(), hash);
return std::string(reinterpret_cast<const char*>(hash), SHA256_DIGEST_LENGTH);
}
} // namespace
namespace nvram {
TEST(NVRAMModuleTest, TotalSize) {
SafeScopedNvramDevice device;
uint64_t total_size = 0;
ASSERT_EQ(NV_RESULT_SUCCESS, device.GetTotalSizeInBytes(&total_size));
EXPECT_LE(2048u, total_size);
};
TEST(NVRAMModuleTest, AvailableSize) {
SafeScopedNvramDevice device;
uint64_t available_size = 0;
ASSERT_EQ(NV_RESULT_SUCCESS, device.GetAvailableSizeInBytes(&available_size));
uint64_t total_size = 0;
ASSERT_EQ(NV_RESULT_SUCCESS, device.GetTotalSizeInBytes(&total_size));
EXPECT_LE(available_size, total_size);
}
TEST(NVRAMModuleTest, MaxSpaceSize) {
SafeScopedNvramDevice device;
uint64_t max_space_size = 0;
ASSERT_EQ(NV_RESULT_SUCCESS, device.GetMaxSpaceSizeInBytes(&max_space_size));
uint64_t total_size = 0;
ASSERT_EQ(NV_RESULT_SUCCESS, device.GetTotalSizeInBytes(&total_size));
EXPECT_LE(max_space_size, total_size);
EXPECT_GE(max_space_size, 32u);
}
TEST(NVRAMModuleTest, MaxSpaces) {
SafeScopedNvramDevice device;
uint32_t num_spaces = 0;
ASSERT_EQ(NV_RESULT_SUCCESS, device.GetMaxSpaces(&num_spaces));
EXPECT_LE(8u, num_spaces);
}
TEST(NVRAMModuleTest, SpaceList) {
SafeScopedNvramDevice device;
uint32_t max_spaces = 0;
ASSERT_EQ(NV_RESULT_SUCCESS, device.GetMaxSpaces(&max_spaces));
std::vector<uint32_t> space_index_list;
ASSERT_EQ(NV_RESULT_SUCCESS, device.GetSpaceList(&space_index_list));
ASSERT_LE(space_index_list.size(), max_spaces);
// Add a test space and check it gets reported.
{
ScopedNvramSpace space(&device, kTestIndex1, 32);
std::vector<uint32_t> space_index_list2;
ASSERT_EQ(NV_RESULT_SUCCESS, device.GetSpaceList(&space_index_list2));
ASSERT_EQ(space_index_list.size() + 1, space_index_list2.size());
EXPECT_TRUE(ContainsAll(space_index_list, space_index_list2));
EXPECT_TRUE(Contains(kTestIndex1, space_index_list2));
}
// Check we're back to the original list.
std::vector<uint32_t> space_index_list3;
ASSERT_EQ(NV_RESULT_SUCCESS, device.GetSpaceList(&space_index_list3));
ASSERT_EQ(space_index_list.size(), space_index_list3.size());
EXPECT_TRUE(ContainsAll(space_index_list, space_index_list3));
EXPECT_FALSE(Contains(kTestIndex1, space_index_list3));
}
TEST(NVRAMModuleTest, SpaceSize) {
SafeScopedNvramDevice device;
ScopedNvramSpace space(&device, kTestIndex1, 17);
ScopedNvramSpace space2(&device, kTestIndex2, 32);
uint64_t size = 0;
ASSERT_EQ(NV_RESULT_SUCCESS, device.GetSpaceSize(kTestIndex1, &size));
EXPECT_EQ(17u, size);
ASSERT_EQ(NV_RESULT_SUCCESS, device.GetSpaceSize(kTestIndex2, &size));
EXPECT_EQ(32u, size);
EXPECT_EQ(NV_RESULT_SPACE_DOES_NOT_EXIST,
device.GetSpaceSize(kTestIndexNeverExists, &size));
}
TEST(NVRAMModuleTest, SpaceControls) {
SafeScopedNvramDevice device;
ScopedNvramSpace space(&device, kTestIndex1, 32);
std::vector<nvram_control_t> expected_control_list(
&kDefaultControls[0], &kDefaultControls[arraysize(kDefaultControls)]);
std::vector<nvram_control_t> control_list;
ASSERT_EQ(NV_RESULT_SUCCESS,
device.GetSpaceControls(kTestIndex1, &control_list));
ASSERT_EQ(expected_control_list.size(), control_list.size());
EXPECT_TRUE(ContainsAll(expected_control_list, control_list));
EXPECT_EQ(NV_RESULT_SPACE_DOES_NOT_EXIST,
device.GetSpaceControls(kTestIndexNeverExists, &control_list));
}
TEST(NVRAMModuleTest, IsLocked) {
SafeScopedNvramDevice device;
ScopedNvramSpace space(&device, kTestIndex1, 32);
int write_lock, read_lock;
ASSERT_EQ(NV_RESULT_SUCCESS,
device.IsSpaceLocked(kTestIndex1, &write_lock, &read_lock));
EXPECT_FALSE(read_lock);
EXPECT_FALSE(write_lock);
ASSERT_EQ(NV_RESULT_SUCCESS, device.EnableReadLock(kTestIndex1, kNoAuth));
ASSERT_EQ(NV_RESULT_SUCCESS,
device.IsSpaceLocked(kTestIndex1, &write_lock, &read_lock));
EXPECT_TRUE(read_lock);
EXPECT_FALSE(write_lock);
EXPECT_EQ(
NV_RESULT_SPACE_DOES_NOT_EXIST,
device.IsSpaceLocked(kTestIndexNeverExists, &write_lock, &read_lock));
}
TEST(NVRAMModuleTest, CreateSmall) {
SafeScopedNvramDevice device;
ScopedNvramSpace space(&device, kTestIndex1, 1);
}
TEST(NVRAMModuleTest, CreateLarge) {
SafeScopedNvramDevice device;
uint64_t max_space_size = 0;
ASSERT_EQ(NV_RESULT_SUCCESS, device.GetMaxSpaceSizeInBytes(&max_space_size));
uint64_t available_size = 0;
ASSERT_EQ(NV_RESULT_SUCCESS, device.GetAvailableSizeInBytes(&available_size));
ScopedNvramSpace space(&device, kTestIndex1,
std::min(max_space_size, available_size));
}
TEST(NVRAMModuleTest, CreateWithCustomControls) {
const std::vector<nvram_control_t> kControlList{
NV_CONTROL_BOOT_WRITE_LOCK, NV_CONTROL_READ_AUTHORIZATION,
NV_CONTROL_WRITE_EXTEND};
SafeScopedNvramDevice device;
ScopedNvramSpace space(&device, kTestIndex1, 32, kControlList);
std::vector<nvram_control_t> control_list;
ASSERT_EQ(NV_RESULT_SUCCESS,
device.GetSpaceControls(kTestIndex1, &control_list));
ASSERT_EQ(kControlList.size(), control_list.size());
EXPECT_TRUE(ContainsAll(control_list, kControlList));
EXPECT_TRUE(ContainsAll(kControlList, control_list));
}
TEST(NVRAMModuleTest, CreateWithAuthorization) {
SafeScopedNvramDevice device;
std::string password = "hunter2";
ScopedNvramSpace space(
&device, kTestIndex1, 32,
{NV_CONTROL_WRITE_AUTHORIZATION, NV_CONTROL_READ_AUTHORIZATION},
password);
std::string data = "test";
std::string bad_password = "*******";
EXPECT_EQ(NV_RESULT_ACCESS_DENIED,
device.WriteSpace(kTestIndex1, data, bad_password));
EXPECT_EQ(NV_RESULT_SUCCESS, device.WriteSpace(kTestIndex1, data, password));
}
TEST(NVRAMModuleTest, CreateAlreadyExists) {
SafeScopedNvramDevice device;
ScopedNvramSpace space(&device, kTestIndex1, 32);
EXPECT_EQ(NV_RESULT_SPACE_ALREADY_EXISTS,
device.CreateSpace(kTestIndex1, 32, {}, kNoAuth));
}
TEST(NVRAMModuleTest, Delete) {
SafeScopedNvramDevice device;
{
ScopedNvramSpace space(&device, kTestIndex1, 32);
uint64_t size = 0;
EXPECT_EQ(NV_RESULT_SUCCESS, device.GetSpaceSize(kTestIndex1, &size));
}
// ScopedNvramSpace will call Delete when it falls out of scope. Now we can
// make sure that worked.
uint64_t size = 0;
EXPECT_EQ(NV_RESULT_SPACE_DOES_NOT_EXIST,
device.GetSpaceSize(kTestIndex1, &size));
}
TEST(NVRAMModuleTest, WriteLock) {
SafeScopedNvramDevice device;
uint32_t index;
ASSERT_TRUE(GetNextBurnSpace(&device, &index));
ASSERT_EQ(
NV_RESULT_SUCCESS,
device.CreateSpace(index, 32, {NV_CONTROL_BOOT_WRITE_LOCK}, kNoAuth));
int write_lock, read_lock;
EXPECT_EQ(NV_RESULT_SUCCESS,
device.IsSpaceLocked(index, &write_lock, &read_lock));
EXPECT_FALSE(write_lock);
EXPECT_FALSE(read_lock);
// It should be possible to delete if the space has not yet been locked.
ASSERT_EQ(NV_RESULT_SUCCESS, device.DeleteSpace(index, kNoAuth));
ASSERT_EQ(
NV_RESULT_SUCCESS,
device.CreateSpace(index, 32, {NV_CONTROL_BOOT_WRITE_LOCK}, kNoAuth));
EXPECT_EQ(NV_RESULT_SUCCESS, device.WriteSpace(index, "test", kNoAuth));
EXPECT_EQ(NV_RESULT_SUCCESS, device.EnableWriteLock(index, kNoAuth));
EXPECT_EQ(NV_RESULT_SUCCESS,
device.IsSpaceLocked(index, &write_lock, &read_lock));
EXPECT_TRUE(write_lock);
EXPECT_FALSE(read_lock);
EXPECT_EQ(NV_RESULT_OPERATION_DISABLED,
device.WriteSpace(index, "test2", kNoAuth));
EXPECT_EQ(NV_RESULT_OPERATION_DISABLED, device.DeleteSpace(index, kNoAuth));
std::string data;
EXPECT_EQ(NV_RESULT_SUCCESS, device.ReadSpace(index, 4, kNoAuth, &data));
EXPECT_EQ("test", data);
}
TEST(NVRAMModuleTest, ReadLock) {
uint32_t index = kTestIndex1;
SafeScopedNvramDevice device;
ScopedNvramSpace space(&device, index, 32, {NV_CONTROL_BOOT_READ_LOCK});
int write_lock, read_lock;
EXPECT_EQ(NV_RESULT_SUCCESS,
device.IsSpaceLocked(index, &write_lock, &read_lock));
EXPECT_FALSE(write_lock);
EXPECT_FALSE(read_lock);
EXPECT_EQ(NV_RESULT_SUCCESS, device.WriteSpace(index, "test", kNoAuth));
std::string data;
EXPECT_EQ(NV_RESULT_SUCCESS, device.ReadSpace(index, 4, kNoAuth, &data));
EXPECT_EQ("test", data);
EXPECT_EQ(NV_RESULT_SUCCESS, device.EnableReadLock(index, kNoAuth));
EXPECT_EQ(NV_RESULT_SUCCESS,
device.IsSpaceLocked(index, &write_lock, &read_lock));
EXPECT_FALSE(write_lock);
EXPECT_TRUE(read_lock);
EXPECT_EQ(NV_RESULT_OPERATION_DISABLED,
device.ReadSpace(index, 4, kNoAuth, &data));
EXPECT_EQ(NV_RESULT_SUCCESS, device.WriteSpace(index, "test2", kNoAuth));
}
TEST(NVRAMModuleTest, WriteAuthorization) {
uint32_t index = kTestIndex1;
std::string password = "hunter2";
SafeScopedNvramDevice device;
ScopedNvramSpace space(&device, index, 32, {NV_CONTROL_WRITE_AUTHORIZATION},
password);
EXPECT_EQ(NV_RESULT_SUCCESS, device.WriteSpace(index, "test", password));
EXPECT_EQ(NV_RESULT_ACCESS_DENIED,
device.WriteSpace(index, "test2", kNoAuth));
EXPECT_EQ(NV_RESULT_ACCESS_DENIED,
device.WriteSpace(index, "test3", "bad_password"));
EXPECT_EQ(NV_RESULT_ACCESS_DENIED, device.DeleteSpace(index, kNoAuth));
EXPECT_EQ(NV_RESULT_ACCESS_DENIED, device.DeleteSpace(index, "bad"));
std::string data;
EXPECT_EQ(NV_RESULT_SUCCESS, device.ReadSpace(index, 4, kNoAuth, &data));
EXPECT_EQ("test", data);
EXPECT_EQ(NV_RESULT_SUCCESS, device.ReadSpace(index, 4, password, &data));
}
TEST(NVRAMModuleTest, ReadAuthorization) {
uint32_t index = kTestIndex1;
std::string password = "hunter2";
SafeScopedNvramDevice device;
ScopedNvramSpace space(&device, index, 32, {NV_CONTROL_READ_AUTHORIZATION},
password);
ASSERT_EQ(NV_RESULT_SUCCESS, device.WriteSpace(index, "test", password));
EXPECT_EQ(NV_RESULT_SUCCESS, device.WriteSpace(index, "test2", kNoAuth));
std::string data;
EXPECT_EQ(NV_RESULT_SUCCESS, device.ReadSpace(index, 4, password, &data));
EXPECT_EQ("test", data);
EXPECT_EQ(NV_RESULT_ACCESS_DENIED,
device.ReadSpace(index, 4, kNoAuth, &data));
EXPECT_EQ(NV_RESULT_ACCESS_DENIED,
device.ReadSpace(index, 4, "bad_password", &data));
}
TEST(NVRAMModuleTest, WriteLockAuthorization) {
SafeScopedNvramDevice device;
uint32_t index;
ASSERT_TRUE(GetNextBurnSpace(&device, &index));
ASSERT_EQ(NV_RESULT_SUCCESS,
device.CreateSpace(index, 32, {NV_CONTROL_BOOT_WRITE_LOCK,
NV_CONTROL_BOOT_READ_LOCK,
NV_CONTROL_WRITE_AUTHORIZATION},
kBurnSpaceAuth));
EXPECT_EQ(NV_RESULT_SUCCESS, device.EnableReadLock(index, kNoAuth));
EXPECT_EQ(NV_RESULT_ACCESS_DENIED, device.EnableWriteLock(index, kNoAuth));
EXPECT_EQ(NV_RESULT_ACCESS_DENIED, device.EnableWriteLock(index, "bad"));
EXPECT_EQ(NV_RESULT_SUCCESS, device.EnableWriteLock(index, kBurnSpaceAuth));
}
TEST(NVRAMModuleTest, ReadLockAuthorization) {
uint32_t index = kTestIndex1;
std::string password = "hunter2";
SafeScopedNvramDevice device;
ScopedNvramSpace space(&device, index, 32,
{NV_CONTROL_BOOT_WRITE_LOCK, NV_CONTROL_BOOT_READ_LOCK,
NV_CONTROL_READ_AUTHORIZATION},
password);
EXPECT_EQ(NV_RESULT_ACCESS_DENIED, device.EnableReadLock(index, kNoAuth));
EXPECT_EQ(NV_RESULT_ACCESS_DENIED, device.EnableReadLock(index, "bad"));
EXPECT_EQ(NV_RESULT_SUCCESS, device.EnableReadLock(index, password));
}
TEST(NVRAMModuleTest, WriteExtend) {
uint32_t index = kTestIndex1;
SafeScopedNvramDevice device;
ScopedNvramSpace space(&device, index, 32, {NV_CONTROL_WRITE_EXTEND});
ASSERT_EQ(NV_RESULT_SUCCESS, device.WriteSpace(index, "test", kNoAuth));
std::string data;
EXPECT_EQ(NV_RESULT_SUCCESS, device.ReadSpace(index, 32, kNoAuth, &data));
std::string hash1 = SHA256HashString(std::string(32, 0) + "test");
EXPECT_EQ(hash1, data);
EXPECT_EQ(NV_RESULT_SUCCESS, device.WriteSpace(index, "test2", kNoAuth));
EXPECT_EQ(NV_RESULT_SUCCESS, device.ReadSpace(index, 32, kNoAuth, &data));
std::string hash2 = SHA256HashString(hash1 + "test2");
EXPECT_EQ(hash2, data);
}
TEST(NVRAMModuleTest, WriteExtendTooShort) {
uint32_t index = kTestIndex1;
SafeScopedNvramDevice device;
// Only SHA-256 is supported. Try 20 which is SHA-1 output.
EXPECT_EQ(
NV_RESULT_INVALID_PARAMETER,
device.CreateSpace(index, 20, {NV_CONTROL_WRITE_EXTEND}, kNoAuth));
EXPECT_EQ(NV_RESULT_SPACE_DOES_NOT_EXIST,
device.WriteSpace(index, "test", kNoAuth));
}
TEST(NVRAMModuleTest, WriteExtendTooLong) {
uint32_t index = kTestIndex1;
SafeScopedNvramDevice device;
uint64_t max_space_size = 0;
ASSERT_EQ(NV_RESULT_SUCCESS, device.GetMaxSpaceSizeInBytes(&max_space_size));
if (max_space_size > 32) {
// Only SHA-256 is supported. Try 64 which is SHA-512 output.
EXPECT_EQ(NV_RESULT_INVALID_PARAMETER,
device.CreateSpace(index, std::min<uint64_t>(max_space_size, 64),
{NV_CONTROL_WRITE_EXTEND}, kNoAuth));
EXPECT_EQ(NV_RESULT_SPACE_DOES_NOT_EXIST,
device.WriteSpace(index, "test", kNoAuth));
}
}
TEST(NVRAMModuleTest, InitialValue) {
uint32_t index = kTestIndex1;
SafeScopedNvramDevice device;
ScopedNvramSpace space(&device, index, 32);
std::string data;
ASSERT_EQ(NV_RESULT_SUCCESS, device.ReadSpace(index, 32, kNoAuth, &data));
EXPECT_EQ(std::string(32, 0), data);
}
TEST(NVRAMModuleTest, ReadWriteSpaceDoesNotExist) {
uint32_t index = kTestIndexNeverExists;
SafeScopedNvramDevice device;
EXPECT_EQ(NV_RESULT_SPACE_DOES_NOT_EXIST,
device.WriteSpace(index, "test", kNoAuth));
std::string data;
EXPECT_EQ(NV_RESULT_SPACE_DOES_NOT_EXIST,
device.ReadSpace(index, 1, kNoAuth, &data));
EXPECT_EQ(NV_RESULT_SPACE_DOES_NOT_EXIST,
device.EnableWriteLock(index, kNoAuth));
EXPECT_EQ(NV_RESULT_SPACE_DOES_NOT_EXIST,
device.EnableReadLock(index, kNoAuth));
}
} // namespace nvram