blob: 52661665226f54c44f52605fdfc0d9963c37d067 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "ResolverController"
#define DBG 0
#include <algorithm>
#include <cstdlib>
#include <map>
#include <mutex>
#include <set>
#include <string>
#include <thread>
#include <utility>
#include <vector>
#include <cutils/log.h>
#include <net/if.h>
#include <sys/socket.h>
#include <netdb.h>
#include <arpa/inet.h>
// NOTE: <resolv_netid.h> is a private C library header that provides
// declarations for _resolv_set_nameservers_for_net and
// _resolv_flush_cache_for_net
#include <resolv_netid.h>
#include <resolv_params.h>
#include <resolv_stats.h>
#include <android-base/strings.h>
#include <android/net/INetd.h>
#include "DumpWriter.h"
#include "NetdConstants.h"
#include "ResolverController.h"
#include "ResolverStats.h"
#include "dns/DnsTlsTransport.h"
namespace android {
namespace net {
namespace {
struct PrivateDnsServer {
PrivateDnsServer(const sockaddr_storage& ss) : ss(ss) {}
const sockaddr_storage ss;
// For now, the fingerprints are always SHA-256. This is the only digest algorithm
// that is mandatory to support (https://tools.ietf.org/html/rfc7858#section-4.2).
std::set<std::vector<uint8_t>> fingerprints;
};
// This comparison ignores ports and fingerprints.
bool operator<(const PrivateDnsServer& x, const PrivateDnsServer& y) {
if (x.ss.ss_family != y.ss.ss_family) {
return x.ss.ss_family < y.ss.ss_family;
}
// Same address family. Compare IP addresses.
if (x.ss.ss_family == AF_INET) {
const sockaddr_in& x_sin = reinterpret_cast<const sockaddr_in&>(x.ss);
const sockaddr_in& y_sin = reinterpret_cast<const sockaddr_in&>(y.ss);
return x_sin.sin_addr.s_addr < y_sin.sin_addr.s_addr;
} else if (x.ss.ss_family == AF_INET6) {
const sockaddr_in6& x_sin6 = reinterpret_cast<const sockaddr_in6&>(x.ss);
const sockaddr_in6& y_sin6 = reinterpret_cast<const sockaddr_in6&>(y.ss);
return std::memcmp(x_sin6.sin6_addr.s6_addr, y_sin6.sin6_addr.s6_addr, 16) < 0;
}
return false; // Unknown address type. This is an error.
}
bool parseServer(const char* server, in_port_t port, sockaddr_storage* parsed) {
sockaddr_in* sin = reinterpret_cast<sockaddr_in*>(parsed);
if (inet_pton(AF_INET, server, &(sin->sin_addr)) == 1) {
// IPv4 parse succeeded, so it's IPv4
sin->sin_family = AF_INET;
sin->sin_port = htons(port);
return true;
}
sockaddr_in6* sin6 = reinterpret_cast<sockaddr_in6*>(parsed);
if (inet_pton(AF_INET6, server, &(sin6->sin6_addr)) == 1){
// IPv6 parse succeeded, so it's IPv6.
sin6->sin6_family = AF_INET6;
sin6->sin6_port = htons(port);
return true;
}
if (DBG) {
ALOGW("Failed to parse server address: %s", server);
}
return false;
}
// Structure for tracking the entire set of known Private DNS servers.
std::mutex privateDnsLock;
typedef std::set<PrivateDnsServer> PrivateDnsSet;
PrivateDnsSet privateDnsServers;
// Structure for tracking the validation status of servers on a specific netid.
// Servers that fail validation are removed from the tracker, and can be retried.
enum class Validation : bool { in_process, success };
typedef std::map<PrivateDnsServer, Validation> PrivateDnsTracker;
std::map<unsigned, PrivateDnsTracker> privateDnsTransports;
PrivateDnsSet parseServers(const char** servers, int numservers, in_port_t port) {
PrivateDnsSet set;
for (int i = 0; i < numservers; ++i) {
sockaddr_storage parsed;
if (parseServer(servers[i], port, &parsed)) {
set.insert(parsed);
}
}
return set;
}
void checkPrivateDnsProviders(const unsigned netId, const char** servers, int numservers) {
if (DBG) {
ALOGD("checkPrivateDnsProviders(%u)", netId);
}
std::lock_guard<std::mutex> guard(privateDnsLock);
if (privateDnsServers.empty()) {
return;
}
// First compute the intersection of the servers to check with the
// servers that are permitted to use DNS over TLS. The intersection
// will contain the port number to be used for Private DNS.
PrivateDnsSet serversToCheck = parseServers(servers, numservers, 53);
PrivateDnsSet intersection;
std::set_intersection(privateDnsServers.begin(), privateDnsServers.end(),
serversToCheck.begin(), serversToCheck.end(),
std::inserter(intersection, intersection.begin()));
if (intersection.empty()) {
return;
}
auto netPair = privateDnsTransports.find(netId);
if (netPair == privateDnsTransports.end()) {
// New netId
bool added;
std::tie(netPair, added) = privateDnsTransports.emplace(netId, PrivateDnsTracker());
if (!added) {
ALOGE("Memory error while checking private DNS for netId %d", netId);
return;
}
}
auto& tracker = netPair->second;
for (const auto& privateServer : intersection) {
if (tracker.count(privateServer) != 0) {
continue;
}
tracker[privateServer] = Validation::in_process;
std::thread validate_thread([privateServer, netId] {
// validateDnsTlsServer() is a blocking call that performs network operations.
// It can take milliseconds to minutes, up to the SYN retry limit.
bool success = validateDnsTlsServer(netId,
privateServer.ss, privateServer.fingerprints);
std::lock_guard<std::mutex> guard(privateDnsLock);
auto netPair = privateDnsTransports.find(netId);
if (netPair == privateDnsTransports.end()) {
ALOGW("netId %u was erased during private DNS validation", netId);
return;
}
auto& tracker = netPair->second;
if (privateDnsServers.count(privateServer) == 0) {
ALOGW("Server was removed during private DNS validation");
success = false;
}
if (success) {
tracker[privateServer] = Validation::success;
} else {
// Validation failure is expected if a user is on a captive portal.
// TODO: Trigger a second validation attempt after captive portal login
// succeeds.
tracker.erase(privateServer);
}
});
validate_thread.detach();
}
}
void clearPrivateDnsProviders(unsigned netId) {
if (DBG) {
ALOGD("clearPrivateDnsProviders(%u)", netId);
}
std::lock_guard<std::mutex> guard(privateDnsLock);
privateDnsTransports.erase(netId);
}
} // namespace
int ResolverController::setDnsServers(unsigned netId, const char* searchDomains,
const char** servers, int numservers, const __res_params* params) {
if (DBG) {
ALOGD("setDnsServers netId = %u\n", netId);
}
checkPrivateDnsProviders(netId, servers, numservers);
return -_resolv_set_nameservers_for_net(netId, servers, numservers, searchDomains, params);
}
bool ResolverController::shouldUseTls(unsigned netId, const sockaddr_storage& insecureServer,
sockaddr_storage* secureServer, std::set<std::vector<uint8_t>>* fingerprints) {
// This mutex is on the critical path of every DNS lookup that doesn't hit a local cache.
// If the overhead of mutex acquisition proves too high, we could reduce it by maintaining
// an atomic_int32_t counter of validated connections, and returning early if it's zero.
std::lock_guard<std::mutex> guard(privateDnsLock);
const auto netPair = privateDnsTransports.find(netId);
if (netPair == privateDnsTransports.end()) {
return false;
}
const auto& tracker = netPair->second;
const auto serverPair = tracker.find(insecureServer);
if (serverPair == tracker.end() || serverPair->second != Validation::success) {
return false;
}
const auto& validatedServer = serverPair->first;
*secureServer = validatedServer.ss;
*fingerprints = validatedServer.fingerprints;
return true;
}
int ResolverController::clearDnsServers(unsigned netId) {
_resolv_set_nameservers_for_net(netId, NULL, 0, "", NULL);
if (DBG) {
ALOGD("clearDnsServers netId = %u\n", netId);
}
clearPrivateDnsProviders(netId);
return 0;
}
int ResolverController::flushDnsCache(unsigned netId) {
if (DBG) {
ALOGD("flushDnsCache netId = %u\n", netId);
}
_resolv_flush_cache_for_net(netId);
return 0;
}
int ResolverController::getDnsInfo(unsigned netId, std::vector<std::string>* servers,
std::vector<std::string>* domains, __res_params* params,
std::vector<android::net::ResolverStats>* stats) {
using android::net::ResolverStats;
using android::net::INetd;
static_assert(ResolverStats::STATS_SUCCESSES == INetd::RESOLVER_STATS_SUCCESSES &&
ResolverStats::STATS_ERRORS == INetd::RESOLVER_STATS_ERRORS &&
ResolverStats::STATS_TIMEOUTS == INetd::RESOLVER_STATS_TIMEOUTS &&
ResolverStats::STATS_INTERNAL_ERRORS == INetd::RESOLVER_STATS_INTERNAL_ERRORS &&
ResolverStats::STATS_RTT_AVG == INetd::RESOLVER_STATS_RTT_AVG &&
ResolverStats::STATS_LAST_SAMPLE_TIME == INetd::RESOLVER_STATS_LAST_SAMPLE_TIME &&
ResolverStats::STATS_USABLE == INetd::RESOLVER_STATS_USABLE &&
ResolverStats::STATS_COUNT == INetd::RESOLVER_STATS_COUNT,
"AIDL and ResolverStats.h out of sync");
int nscount = -1;
sockaddr_storage res_servers[MAXNS];
int dcount = -1;
char res_domains[MAXDNSRCH][MAXDNSRCHPATH];
__res_stats res_stats[MAXNS];
servers->clear();
domains->clear();
*params = __res_params{};
stats->clear();
int revision_id = android_net_res_stats_get_info_for_net(netId, &nscount, res_servers, &dcount,
res_domains, params, res_stats);
// If the netId is unknown (which can happen for valid net IDs for which no DNS servers have
// yet been configured), there is no revision ID. In this case there is no data to return.
if (revision_id < 0) {
return 0;
}
// Verify that the returned data is sane.
if (nscount < 0 || nscount > MAXNS || dcount < 0 || dcount > MAXDNSRCH) {
ALOGE("%s: nscount=%d, dcount=%d", __FUNCTION__, nscount, dcount);
return -ENOTRECOVERABLE;
}
// Determine which servers are considered usable by the resolver.
bool valid_servers[MAXNS];
std::fill_n(valid_servers, MAXNS, false);
android_net_res_stats_get_usable_servers(params, res_stats, nscount, valid_servers);
// Convert the server sockaddr structures to std::string.
stats->resize(nscount);
for (int i = 0 ; i < nscount ; ++i) {
char hbuf[NI_MAXHOST];
int rv = getnameinfo(reinterpret_cast<const sockaddr*>(&res_servers[i]),
sizeof(res_servers[i]), hbuf, sizeof(hbuf), nullptr, 0, NI_NUMERICHOST);
std::string server_str;
if (rv == 0) {
server_str.assign(hbuf);
} else {
ALOGE("getnameinfo() failed for server #%d: %s", i, gai_strerror(rv));
server_str.assign("<invalid>");
}
servers->push_back(std::move(server_str));
android::net::ResolverStats& cur_stats = (*stats)[i];
android_net_res_stats_aggregate(&res_stats[i], &cur_stats.successes, &cur_stats.errors,
&cur_stats.timeouts, &cur_stats.internal_errors, &cur_stats.rtt_avg,
&cur_stats.last_sample_time);
cur_stats.usable = valid_servers[i];
}
// Convert the stack-allocated search domain strings to std::string.
for (int i = 0 ; i < dcount ; ++i) {
domains->push_back(res_domains[i]);
}
return 0;
}
int ResolverController::setResolverConfiguration(int32_t netId,
const std::vector<std::string>& servers, const std::vector<std::string>& domains,
const std::vector<int32_t>& params) {
using android::net::INetd;
if (params.size() != INetd::RESOLVER_PARAMS_COUNT) {
ALOGE("%s: params.size()=%zu", __FUNCTION__, params.size());
return -EINVAL;
}
auto server_count = std::min<size_t>(MAXNS, servers.size());
std::vector<const char*> server_ptrs;
for (size_t i = 0 ; i < server_count ; ++i) {
server_ptrs.push_back(servers[i].c_str());
}
std::string domains_str;
if (!domains.empty()) {
domains_str = domains[0];
for (size_t i = 1 ; i < domains.size() ; ++i) {
domains_str += " " + domains[i];
}
}
__res_params res_params;
res_params.sample_validity = params[INetd::RESOLVER_PARAMS_SAMPLE_VALIDITY];
res_params.success_threshold = params[INetd::RESOLVER_PARAMS_SUCCESS_THRESHOLD];
res_params.min_samples = params[INetd::RESOLVER_PARAMS_MIN_SAMPLES];
res_params.max_samples = params[INetd::RESOLVER_PARAMS_MAX_SAMPLES];
return setDnsServers(netId, domains_str.c_str(), server_ptrs.data(), server_ptrs.size(),
&res_params);
}
int ResolverController::getResolverInfo(int32_t netId, std::vector<std::string>* servers,
std::vector<std::string>* domains, std::vector<int32_t>* params,
std::vector<int32_t>* stats) {
using android::net::ResolverStats;
using android::net::INetd;
__res_params res_params;
std::vector<ResolverStats> res_stats;
int ret = getDnsInfo(netId, servers, domains, &res_params, &res_stats);
if (ret != 0) {
return ret;
}
// Serialize the information for binder.
ResolverStats::encodeAll(res_stats, stats);
params->resize(INetd::RESOLVER_PARAMS_COUNT);
(*params)[INetd::RESOLVER_PARAMS_SAMPLE_VALIDITY] = res_params.sample_validity;
(*params)[INetd::RESOLVER_PARAMS_SUCCESS_THRESHOLD] = res_params.success_threshold;
(*params)[INetd::RESOLVER_PARAMS_MIN_SAMPLES] = res_params.min_samples;
(*params)[INetd::RESOLVER_PARAMS_MAX_SAMPLES] = res_params.max_samples;
return 0;
}
void ResolverController::dump(DumpWriter& dw, unsigned netId) {
// No lock needed since Bionic's resolver locks all accessed data structures internally.
using android::net::ResolverStats;
std::vector<std::string> servers;
std::vector<std::string> domains;
__res_params params;
std::vector<ResolverStats> stats;
time_t now = time(nullptr);
int rv = getDnsInfo(netId, &servers, &domains, &params, &stats);
dw.incIndent();
if (rv != 0) {
dw.println("getDnsInfo() failed for netid %u", netId);
} else {
if (servers.empty()) {
dw.println("No DNS servers defined");
} else {
dw.println("DNS servers: # IP (total, successes, errors, timeouts, internal errors, "
"RTT avg, last sample)");
dw.incIndent();
for (size_t i = 0 ; i < servers.size() ; ++i) {
if (i < stats.size()) {
const ResolverStats& s = stats[i];
int total = s.successes + s.errors + s.timeouts + s.internal_errors;
if (total > 0) {
int time_delta = (s.last_sample_time > 0) ? now - s.last_sample_time : -1;
dw.println("%s (%d, %d, %d, %d, %d, %dms, %ds)%s", servers[i].c_str(),
total, s.successes, s.errors, s.timeouts, s.internal_errors,
s.rtt_avg, time_delta, s.usable ? "" : " BROKEN");
} else {
dw.println("%s <no data>", servers[i].c_str());
}
} else {
dw.println("%s <no stats>", servers[i].c_str());
}
}
dw.decIndent();
}
if (domains.empty()) {
dw.println("No search domains defined");
} else {
std::string domains_str = android::base::Join(domains, ", ");
dw.println("search domains: %s", domains_str.c_str());
}
if (params.sample_validity != 0) {
dw.println("DNS parameters: sample validity = %us, success threshold = %u%%, "
"samples (min, max) = (%u, %u)", params.sample_validity,
static_cast<unsigned>(params.success_threshold),
static_cast<unsigned>(params.min_samples),
static_cast<unsigned>(params.max_samples));
}
}
dw.decIndent();
}
int ResolverController::addPrivateDnsServer(const std::string& server, int32_t port,
const std::string& fingerprintAlgorithm,
const std::set<std::vector<uint8_t>>& fingerprints) {
using android::net::INetd;
if (fingerprintAlgorithm.empty()) {
if (!fingerprints.empty()) {
return INetd::PRIVATE_DNS_BAD_FINGERPRINT;
}
} else if (fingerprintAlgorithm.compare("SHA-256") == 0) {
if (fingerprints.empty()) {
return INetd::PRIVATE_DNS_BAD_FINGERPRINT;
}
for (const auto& fingerprint : fingerprints) {
if (fingerprint.size() != SHA256_SIZE) {
return INetd::PRIVATE_DNS_BAD_FINGERPRINT;
}
}
} else {
return INetd::PRIVATE_DNS_UNKNOWN_ALGORITHM;
}
if (port <= 0 || port > 0xFFFF) {
return INetd::PRIVATE_DNS_BAD_PORT;
}
sockaddr_storage parsed;
if (!parseServer(server.c_str(), port, &parsed)) {
return INetd::PRIVATE_DNS_BAD_ADDRESS;
}
PrivateDnsServer privateServer(parsed);
privateServer.fingerprints = fingerprints;
std::lock_guard<std::mutex> guard(privateDnsLock);
// Ensure we overwrite any previous matching server. This is necessary because equality is
// based only on the IP address, not the port or fingerprints.
privateDnsServers.erase(privateServer);
privateDnsServers.insert(privateServer);
return INetd::PRIVATE_DNS_SUCCESS;
}
int ResolverController::removePrivateDnsServer(const std::string& server) {
using android::net::INetd;
sockaddr_storage parsed;
if (!parseServer(server.c_str(), 0, &parsed)) {
return INetd::PRIVATE_DNS_BAD_ADDRESS;
}
std::lock_guard<std::mutex> guard(privateDnsLock);
privateDnsServers.erase(parsed);
for (auto& pair : privateDnsTransports) {
pair.second.erase(parsed);
}
return INetd::PRIVATE_DNS_SUCCESS;
}
} // namespace net
} // namespace android