blob: 334991a41d6c9206747a70ae31ee184050f38b2b [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <netdb.h>
#include <spawn.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <array>
#include <cstdlib>
#include <regex>
#include <string>
#include <vector>
#define LOG_TAG "TetherController"
#include <android-base/scopeguard.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#include <cutils/properties.h>
#include <log/log.h>
#include <net/if.h>
#include <netdutils/DumpWriter.h>
#include <netdutils/StatusOr.h>
#include "Controllers.h"
#include "Fwmark.h"
#include "InterfaceController.h"
#include "NetdConstants.h"
#include "NetworkController.h"
#include "OffloadUtils.h"
#include "Permission.h"
#include "TetherController.h"
#include "android/net/TetherOffloadRuleParcel.h"
namespace android {
namespace net {
using android::base::Error;
using android::base::Join;
using android::base::Pipe;
using android::base::Result;
using android::base::StringAppendF;
using android::base::StringPrintf;
using android::base::unique_fd;
using android::net::TetherOffloadRuleParcel;
using android::netdutils::DumpWriter;
using android::netdutils::ScopedIndent;
using android::netdutils::statusFromErrno;
using android::netdutils::StatusOr;
namespace {
const char BP_TOOLS_MODE[] = "bp-tools";
const char IPV4_FORWARDING_PROC_FILE[] = "/proc/sys/net/ipv4/ip_forward";
const char IPV6_FORWARDING_PROC_FILE[] = "/proc/sys/net/ipv6/conf/all/forwarding";
const char SEPARATOR[] = "|";
constexpr const char kTcpBeLiberal[] = "/proc/sys/net/netfilter/nf_conntrack_tcp_be_liberal";
// Chosen to match AID_DNS_TETHER, as made "friendly" by fs_config_generator.py.
constexpr const char kDnsmasqUsername[] = "dns_tether";
// A value used by interface quota indicates there is no limit.
// Sync from frameworks/base/core/java/android/net/netstats/provider/NetworkStatsProvider.java
constexpr int64_t QUOTA_UNLIMITED = -1;
bool writeToFile(const char* filename, const char* value) {
int fd = open(filename, O_WRONLY | O_CLOEXEC);
if (fd < 0) {
ALOGE("Failed to open %s: %s", filename, strerror(errno));
return false;
}
const ssize_t len = strlen(value);
if (write(fd, value, len) != len) {
ALOGE("Failed to write %s to %s: %s", value, filename, strerror(errno));
close(fd);
return false;
}
close(fd);
return true;
}
// TODO: Consider altering TCP and UDP timeouts as well.
void configureForTethering(bool enabled) {
writeToFile(kTcpBeLiberal, enabled ? "1" : "0");
}
bool configureForIPv6Router(const char *interface) {
return (InterfaceController::setEnableIPv6(interface, 0) == 0)
&& (InterfaceController::setAcceptIPv6Ra(interface, 0) == 0)
&& (InterfaceController::setAcceptIPv6Dad(interface, 0) == 0)
&& (InterfaceController::setIPv6DadTransmits(interface, "0") == 0)
&& (InterfaceController::setEnableIPv6(interface, 1) == 0);
}
void configureForIPv6Client(const char *interface) {
InterfaceController::setAcceptIPv6Ra(interface, 1);
InterfaceController::setAcceptIPv6Dad(interface, 1);
InterfaceController::setIPv6DadTransmits(interface, "1");
InterfaceController::setEnableIPv6(interface, 0);
}
bool inBpToolsMode() {
// In BP tools mode, do not disable IP forwarding
char bootmode[PROPERTY_VALUE_MAX] = {0};
property_get("ro.bootmode", bootmode, "unknown");
return !strcmp(BP_TOOLS_MODE, bootmode);
}
} // namespace
auto TetherController::iptablesRestoreFunction = execIptablesRestoreWithOutput;
const std::string GET_TETHER_STATS_COMMAND = StringPrintf(
"*filter\n"
"-nvx -L %s\n"
"COMMIT\n", android::net::TetherController::LOCAL_TETHER_COUNTERS_CHAIN);
int TetherController::DnsmasqState::sendCmd(int daemonFd, const std::string& cmd) {
if (cmd.empty()) return 0;
gLog.log("Sending update msg to dnsmasq [%s]", cmd.c_str());
// Send the trailing \0 as well.
if (write(daemonFd, cmd.c_str(), cmd.size() + 1) < 0) {
gLog.error("Failed to send update command to dnsmasq (%s)", strerror(errno));
errno = EREMOTEIO;
return -1;
}
return 0;
}
void TetherController::DnsmasqState::clear() {
update_ifaces_cmd.clear();
update_dns_cmd.clear();
}
int TetherController::DnsmasqState::sendAllState(int daemonFd) const {
return sendCmd(daemonFd, update_ifaces_cmd) | sendCmd(daemonFd, update_dns_cmd);
}
TetherController::TetherController() {
if (inBpToolsMode()) {
enableForwarding(BP_TOOLS_MODE);
} else {
setIpFwdEnabled();
}
initMaps();
}
bool TetherController::setIpFwdEnabled() {
bool success = true;
bool disable = mForwardingRequests.empty();
const char* value = disable ? "0" : "1";
ALOGD("Setting IP forward enable = %s", value);
success &= writeToFile(IPV4_FORWARDING_PROC_FILE, value);
success &= writeToFile(IPV6_FORWARDING_PROC_FILE, value);
if (disable) {
// Turning off the forwarding sysconf in the kernel has the side effect
// of turning on ICMP redirect, which is a security hazard.
// Turn ICMP redirect back off immediately.
int rv = InterfaceController::disableIcmpRedirects();
success &= (rv == 0);
}
return success;
}
bool TetherController::enableForwarding(const char* requester) {
// Don't return an error if this requester already requested forwarding. Only return errors for
// things that the caller caller needs to care about, such as "couldn't write to the file to
// enable forwarding".
mForwardingRequests.insert(requester);
return setIpFwdEnabled();
}
bool TetherController::disableForwarding(const char* requester) {
mForwardingRequests.erase(requester);
return setIpFwdEnabled();
}
void TetherController::initMaps() {
// Open BPF maps, ignoring errors because the device might not support BPF offload.
// TODO: All of this logic should be moved to the tethering mainline module.
int fd = getTetherDownstream6MapFd();
if (fd >= 0) {
mBpfDownstream6Map.reset(fd);
mBpfDownstream6Map.clear();
}
fd = getTetherDownstream64MapFd();
if (fd >= 0) {
mBpfDownstream64Map.reset(fd);
mBpfDownstream64Map.clear();
}
fd = getTetherDownstream4MapFd();
if (fd >= 0) {
mBpfDownstream4Map.reset(fd);
mBpfDownstream4Map.clear();
}
fd = getTetherUpstream6MapFd();
if (fd >= 0) {
mBpfUpstream6Map.reset(fd);
mBpfUpstream6Map.clear();
}
fd = getTetherUpstream4MapFd();
if (fd >= 0) {
mBpfUpstream4Map.reset(fd);
mBpfUpstream4Map.clear();
}
fd = getTetherStatsMapFd();
if (fd >= 0) {
mBpfStatsMap.reset(fd);
mBpfStatsMap.clear();
}
fd = getTetherLimitMapFd();
if (fd >= 0) {
mBpfLimitMap.reset(fd);
mBpfLimitMap.clear();
}
}
const std::set<std::string>& TetherController::getIpfwdRequesterList() const {
return mForwardingRequests;
}
int TetherController::startTethering(bool usingLegacyDnsProxy, int num_addrs, char** dhcp_ranges) {
if (!usingLegacyDnsProxy && num_addrs == 0) {
// Both DHCP and DnsProxy are disabled, we don't need to start dnsmasq
configureForTethering(true);
mIsTetheringStarted = true;
return 0;
}
if (mIsTetheringStarted) {
ALOGE("Tethering already started");
errno = EBUSY;
return -errno;
}
ALOGD("Starting tethering services");
unique_fd pipeRead, pipeWrite;
if (!Pipe(&pipeRead, &pipeWrite, O_CLOEXEC)) {
int res = errno;
ALOGE("pipe2() failed (%s)", strerror(errno));
return -res;
}
// Set parameters
Fwmark fwmark;
fwmark.netId = NetworkController::LOCAL_NET_ID;
fwmark.explicitlySelected = true;
fwmark.protectedFromVpn = true;
fwmark.permission = PERMISSION_SYSTEM;
char markStr[UINT32_HEX_STRLEN];
snprintf(markStr, sizeof(markStr), "0x%x", fwmark.intValue);
std::vector<const std::string> argVector = {
"/system/bin/dnsmasq",
"--keep-in-foreground",
"--no-resolv",
"--no-poll",
"--dhcp-authoritative",
// TODO: pipe through metered status from ConnService
"--dhcp-option-force=43,ANDROID_METERED",
"--pid-file",
"--listen-mark",
markStr,
"--user",
kDnsmasqUsername,
};
if (!usingLegacyDnsProxy) {
argVector.push_back("--port=0");
}
// DHCP server will be disabled if num_addrs == 0 and no --dhcp-range is passed.
for (int addrIndex = 0; addrIndex < num_addrs; addrIndex += 2) {
argVector.push_back(StringPrintf("--dhcp-range=%s,%s,1h", dhcp_ranges[addrIndex],
dhcp_ranges[addrIndex + 1]));
}
std::vector<char*> args(argVector.size() + 1);
for (unsigned i = 0; i < argVector.size(); i++) {
args[i] = (char*)argVector[i].c_str();
}
/*
* TODO: Create a monitoring thread to handle and restart
* the daemon if it exits prematurely
*/
// Note that don't modify any memory between vfork and execv.
// Changing state of file descriptors would be fine. See posix_spawn_file_actions_add*
// dup2 creates fd without CLOEXEC, dnsmasq will receive commands through the
// duplicated fd.
posix_spawn_file_actions_t fa;
int res = posix_spawn_file_actions_init(&fa);
if (res) {
ALOGE("posix_spawn_file_actions_init failed (%s)", strerror(res));
return -res;
}
const android::base::ScopeGuard faGuard = [&] { posix_spawn_file_actions_destroy(&fa); };
res = posix_spawn_file_actions_adddup2(&fa, pipeRead.get(), STDIN_FILENO);
if (res) {
ALOGE("posix_spawn_file_actions_adddup2 failed (%s)", strerror(res));
return -res;
}
posix_spawnattr_t attr;
res = posix_spawnattr_init(&attr);
if (res) {
ALOGE("posix_spawnattr_init failed (%s)", strerror(res));
return -res;
}
const android::base::ScopeGuard attrGuard = [&] { posix_spawnattr_destroy(&attr); };
res = posix_spawnattr_setflags(&attr, POSIX_SPAWN_USEVFORK);
if (res) {
ALOGE("posix_spawnattr_setflags failed (%s)", strerror(res));
return -res;
}
pid_t pid;
res = posix_spawn(&pid, args[0], &fa, &attr, &args[0], nullptr);
if (res) {
ALOGE("posix_spawn failed (%s)", strerror(res));
return -res;
}
mDaemonPid = pid;
mDaemonFd = pipeWrite.release();
configureForTethering(true);
mIsTetheringStarted = true;
applyDnsInterfaces();
ALOGD("Tethering services running");
return 0;
}
std::vector<char*> TetherController::toCstrVec(const std::vector<std::string>& addrs) {
std::vector<char*> addrsCstrVec{};
addrsCstrVec.reserve(addrs.size());
for (const auto& addr : addrs) {
addrsCstrVec.push_back(const_cast<char*>(addr.data()));
}
return addrsCstrVec;
}
int TetherController::startTethering(bool usingLegacyDnsProxy,
const std::vector<std::string>& dhcpRanges) {
struct in_addr v4_addr;
for (const auto& dhcpRange : dhcpRanges) {
if (!inet_aton(dhcpRange.c_str(), &v4_addr)) {
return -EINVAL;
}
}
auto dhcp_ranges = toCstrVec(dhcpRanges);
return startTethering(usingLegacyDnsProxy, dhcp_ranges.size(), dhcp_ranges.data());
}
int TetherController::stopTethering() {
configureForTethering(false);
if (!mIsTetheringStarted) {
ALOGE("Tethering already stopped");
return 0;
}
mIsTetheringStarted = false;
// dnsmasq is not started
if (mDaemonPid == 0) {
return 0;
}
ALOGD("Stopping tethering services");
kill(mDaemonPid, SIGTERM);
waitpid(mDaemonPid, nullptr, 0);
mDaemonPid = 0;
close(mDaemonFd);
mDaemonFd = -1;
mDnsmasqState.clear();
ALOGD("Tethering services stopped");
return 0;
}
bool TetherController::isTetheringStarted() {
return mIsTetheringStarted;
}
// dnsmasq can't parse commands larger than this due to the fixed-size buffer
// in check_android_listeners(). The receiving buffer is 1024 bytes long, but
// dnsmasq reads up to 1023 bytes.
const size_t MAX_CMD_SIZE = 1023;
// TODO: Remove overload function and update this after NDC migration.
int TetherController::setDnsForwarders(unsigned netId, char **servers, int numServers) {
Fwmark fwmark;
fwmark.netId = netId;
fwmark.explicitlySelected = true;
fwmark.protectedFromVpn = true;
fwmark.permission = PERMISSION_SYSTEM;
std::string daemonCmd = StringPrintf("update_dns%s0x%x", SEPARATOR, fwmark.intValue);
mDnsForwarders.clear();
for (int i = 0; i < numServers; i++) {
ALOGD("setDnsForwarders(0x%x %d = '%s')", fwmark.intValue, i, servers[i]);
addrinfo *res, hints = { .ai_flags = AI_NUMERICHOST };
int ret = getaddrinfo(servers[i], nullptr, &hints, &res);
freeaddrinfo(res);
if (ret) {
ALOGE("Failed to parse DNS server '%s'", servers[i]);
mDnsForwarders.clear();
errno = EINVAL;
return -errno;
}
if (daemonCmd.size() + 1 + strlen(servers[i]) >= MAX_CMD_SIZE) {
ALOGE("Too many DNS servers listed");
break;
}
daemonCmd += SEPARATOR;
daemonCmd += servers[i];
mDnsForwarders.push_back(servers[i]);
}
mDnsNetId = netId;
mDnsmasqState.update_dns_cmd = std::move(daemonCmd);
if (mDaemonFd != -1) {
if (mDnsmasqState.sendAllState(mDaemonFd) != 0) {
mDnsForwarders.clear();
errno = EREMOTEIO;
return -errno;
}
}
return 0;
}
int TetherController::setDnsForwarders(unsigned netId, const std::vector<std::string>& servers) {
auto dnsServers = toCstrVec(servers);
return setDnsForwarders(netId, dnsServers.data(), dnsServers.size());
}
unsigned TetherController::getDnsNetId() {
return mDnsNetId;
}
const std::list<std::string> &TetherController::getDnsForwarders() const {
return mDnsForwarders;
}
bool TetherController::applyDnsInterfaces() {
std::string daemonCmd = "update_ifaces";
bool haveInterfaces = false;
for (const auto& ifname : mInterfaces) {
if (daemonCmd.size() + 1 + ifname.size() >= MAX_CMD_SIZE) {
ALOGE("Too many DNS servers listed");
break;
}
daemonCmd += SEPARATOR;
daemonCmd += ifname;
haveInterfaces = true;
}
if (!haveInterfaces) {
mDnsmasqState.update_ifaces_cmd.clear();
} else {
mDnsmasqState.update_ifaces_cmd = std::move(daemonCmd);
if (mDaemonFd != -1) return (mDnsmasqState.sendAllState(mDaemonFd) == 0);
}
return true;
}
int TetherController::tetherInterface(const char *interface) {
ALOGD("tetherInterface(%s)", interface);
if (!isIfaceName(interface)) {
errno = ENOENT;
return -errno;
}
if (!configureForIPv6Router(interface)) {
configureForIPv6Client(interface);
return -EREMOTEIO;
}
mInterfaces.push_back(interface);
if (!applyDnsInterfaces()) {
mInterfaces.pop_back();
configureForIPv6Client(interface);
return -EREMOTEIO;
} else {
return 0;
}
}
int TetherController::untetherInterface(const char *interface) {
ALOGD("untetherInterface(%s)", interface);
for (auto it = mInterfaces.cbegin(); it != mInterfaces.cend(); ++it) {
if (!strcmp(interface, it->c_str())) {
mInterfaces.erase(it);
configureForIPv6Client(interface);
return applyDnsInterfaces() ? 0 : -EREMOTEIO;
}
}
errno = ENOENT;
return -errno;
}
const std::list<std::string> &TetherController::getTetheredInterfaceList() const {
return mInterfaces;
}
int TetherController::setupIptablesHooks() {
int res;
res = setDefaults();
if (res < 0) {
return res;
}
// Used to limit downstream mss to the upstream pmtu so we don't end up fragmenting every large
// packet tethered devices send. This is IPv4-only, because in IPv6 we send the MTU in the RA.
// This is no longer optional and tethering will fail to start if it fails.
std::string mssRewriteCommand = StringPrintf(
"*mangle\n"
"-A %s -p tcp --tcp-flags SYN SYN -j TCPMSS --clamp-mss-to-pmtu\n"
"COMMIT\n", LOCAL_MANGLE_FORWARD);
// This is for tethering counters. This chain is reached via --goto, and then RETURNS.
std::string defaultCommands = StringPrintf(
"*filter\n"
":%s -\n"
"COMMIT\n", LOCAL_TETHER_COUNTERS_CHAIN);
res = iptablesRestoreFunction(V4, mssRewriteCommand, nullptr);
if (res < 0) {
return res;
}
res = iptablesRestoreFunction(V4V6, defaultCommands, nullptr);
if (res < 0) {
return res;
}
mFwdIfaces.clear();
return 0;
}
int TetherController::setDefaults() {
std::string v4Cmd = StringPrintf(
"*filter\n"
":%s -\n"
"-A %s -j DROP\n"
"COMMIT\n"
"*nat\n"
":%s -\n"
"COMMIT\n", LOCAL_FORWARD, LOCAL_FORWARD, LOCAL_NAT_POSTROUTING);
std::string v6Cmd = StringPrintf(
"*filter\n"
":%s -\n"
"COMMIT\n"
"*raw\n"
":%s -\n"
"COMMIT\n",
LOCAL_FORWARD, LOCAL_RAW_PREROUTING);
int res = iptablesRestoreFunction(V4, v4Cmd, nullptr);
if (res < 0) {
return res;
}
res = iptablesRestoreFunction(V6, v6Cmd, nullptr);
if (res < 0) {
return res;
}
return 0;
}
int TetherController::enableNat(const char* intIface, const char* extIface) {
ALOGV("enableNat(intIface=<%s>, extIface=<%s>)",intIface, extIface);
if (!isIfaceName(intIface) || !isIfaceName(extIface)) {
return -ENODEV;
}
/* Bug: b/9565268. "enableNat wlan0 wlan0". For now we fail until java-land is fixed */
if (!strcmp(intIface, extIface)) {
ALOGE("Duplicate interface specified: %s %s", intIface, extIface);
return -EINVAL;
}
if (isForwardingPairEnabled(intIface, extIface)) {
return 0;
}
// add this if we are the first enabled nat for this upstream
bool firstDownstreamForThisUpstream = !isAnyForwardingEnabledOnUpstream(extIface);
if (firstDownstreamForThisUpstream) {
std::vector<std::string> v4Cmds = {
"*nat",
StringPrintf("-A %s -o %s -j MASQUERADE", LOCAL_NAT_POSTROUTING, extIface),
"COMMIT\n"
};
if (iptablesRestoreFunction(V4, Join(v4Cmds, '\n'), nullptr) || setupIPv6CountersChain() ||
setTetherGlobalAlertRule()) {
ALOGE("Error setting postroute rule: iface=%s", extIface);
if (!isAnyForwardingPairEnabled()) {
// unwind what's been done, but don't care about success - what more could we do?
setDefaults();
}
return -EREMOTEIO;
}
}
if (setForwardRules(true, intIface, extIface) != 0) {
ALOGE("Error setting forward rules");
if (!isAnyForwardingPairEnabled()) {
setDefaults();
}
return -ENODEV;
}
if (firstDownstreamForThisUpstream) startBpf(extIface, DOWNSTREAM);
startBpf(intIface, UPSTREAM);
return 0;
}
int TetherController::setTetherGlobalAlertRule() {
// Only add this if we are the first enabled nat
if (isAnyForwardingPairEnabled()) {
return 0;
}
const std::string cmds =
"*filter\n" +
StringPrintf("-I %s -j %s\n", LOCAL_FORWARD, BandwidthController::LOCAL_GLOBAL_ALERT) +
"COMMIT\n";
return iptablesRestoreFunction(V4V6, cmds, nullptr);
}
int TetherController::setupIPv6CountersChain() {
// Only add this if we are the first enabled nat
if (isAnyForwardingPairEnabled()) {
return 0;
}
/*
* IPv6 tethering doesn't need the state-based conntrack rules, so
* it unconditionally jumps to the tether counters chain all the time.
*/
const std::string v6Cmds =
"*filter\n" +
StringPrintf("-A %s -g %s\n", LOCAL_FORWARD, LOCAL_TETHER_COUNTERS_CHAIN) + "COMMIT\n";
return iptablesRestoreFunction(V6, v6Cmds, nullptr);
}
// Gets a pointer to the ForwardingDownstream for an interface pair in the map, or nullptr
TetherController::ForwardingDownstream* TetherController::findForwardingDownstream(
const std::string& intIface, const std::string& extIface) {
auto extIfaceMatches = mFwdIfaces.equal_range(extIface);
for (auto it = extIfaceMatches.first; it != extIfaceMatches.second; ++it) {
if (it->second.iface == intIface) {
return &(it->second);
}
}
return nullptr;
}
void TetherController::addForwardingPair(const std::string& intIface, const std::string& extIface) {
ForwardingDownstream* existingEntry = findForwardingDownstream(intIface, extIface);
if (existingEntry != nullptr) {
existingEntry->active = true;
return;
}
mFwdIfaces.insert(std::pair<std::string, ForwardingDownstream>(extIface, {
.iface = intIface,
.active = true
}));
}
void TetherController::markForwardingPairDisabled(
const std::string& intIface, const std::string& extIface) {
ForwardingDownstream* existingEntry = findForwardingDownstream(intIface, extIface);
if (existingEntry == nullptr) {
return;
}
existingEntry->active = false;
}
bool TetherController::isForwardingPairEnabled(
const std::string& intIface, const std::string& extIface) {
ForwardingDownstream* existingEntry = findForwardingDownstream(intIface, extIface);
return existingEntry != nullptr && existingEntry->active;
}
bool TetherController::isAnyForwardingEnabledOnUpstream(const std::string& extIface) {
auto extIfaceMatches = mFwdIfaces.equal_range(extIface);
for (auto it = extIfaceMatches.first; it != extIfaceMatches.second; ++it) {
if (it->second.active) {
return true;
}
}
return false;
}
bool TetherController::isAnyForwardingPairEnabled() {
for (auto& it : mFwdIfaces) {
if (it.second.active) {
return true;
}
}
return false;
}
bool TetherController::tetherCountingRuleExists(
const std::string& iface1, const std::string& iface2) {
// A counting rule exists if NAT was ever enabled for this interface pair, so if the pair
// is in the map regardless of its active status. Rules are added both ways so we check with
// the 2 combinations.
return findForwardingDownstream(iface1, iface2) != nullptr
|| findForwardingDownstream(iface2, iface1) != nullptr;
}
/* static */
std::string TetherController::makeTetherCountingRule(const char *if1, const char *if2) {
return StringPrintf("-A %s -i %s -o %s -j RETURN", LOCAL_TETHER_COUNTERS_CHAIN, if1, if2);
}
int TetherController::setForwardRules(bool add, const char *intIface, const char *extIface) {
const char *op = add ? "-A" : "-D";
std::string rpfilterCmd = StringPrintf(
"*raw\n"
"%s %s -i %s -m rpfilter --invert ! -s fe80::/64 -j DROP\n"
"COMMIT\n", op, LOCAL_RAW_PREROUTING, intIface);
if (iptablesRestoreFunction(V6, rpfilterCmd, nullptr) == -1 && add) {
return -EREMOTEIO;
}
std::vector<std::string> v4 = {
"*raw",
StringPrintf("%s %s -p tcp --dport 21 -i %s -j CT --helper ftp", op,
LOCAL_RAW_PREROUTING, intIface),
StringPrintf("%s %s -p tcp --dport 1723 -i %s -j CT --helper pptp", op,
LOCAL_RAW_PREROUTING, intIface),
"COMMIT",
"*filter",
StringPrintf("%s %s -i %s -o %s -m state --state ESTABLISHED,RELATED -g %s", op,
LOCAL_FORWARD, extIface, intIface, LOCAL_TETHER_COUNTERS_CHAIN),
StringPrintf("%s %s -i %s -o %s -m state --state INVALID -j DROP", op, LOCAL_FORWARD,
intIface, extIface),
StringPrintf("%s %s -i %s -o %s -g %s", op, LOCAL_FORWARD, intIface, extIface,
LOCAL_TETHER_COUNTERS_CHAIN),
};
std::vector<std::string> v6 = {
"*filter",
};
// We only ever add tethering quota rules so that they stick.
if (add && !tetherCountingRuleExists(intIface, extIface)) {
v4.push_back(makeTetherCountingRule(intIface, extIface));
v4.push_back(makeTetherCountingRule(extIface, intIface));
v6.push_back(makeTetherCountingRule(intIface, extIface));
v6.push_back(makeTetherCountingRule(extIface, intIface));
}
// Always make sure the drop rule is at the end.
// TODO: instead of doing this, consider just rebuilding LOCAL_FORWARD completely from scratch
// every time, starting with ":tetherctrl_FORWARD -\n". This would likely be a bit simpler.
if (add) {
v4.push_back(StringPrintf("-D %s -j DROP", LOCAL_FORWARD));
v4.push_back(StringPrintf("-A %s -j DROP", LOCAL_FORWARD));
}
v4.push_back("COMMIT\n");
v6.push_back("COMMIT\n");
// We only add IPv6 rules here, never remove them.
if (iptablesRestoreFunction(V4, Join(v4, '\n'), nullptr) == -1 ||
(add && iptablesRestoreFunction(V6, Join(v6, '\n'), nullptr) == -1)) {
// unwind what's been done, but don't care about success - what more could we do?
if (add) {
setForwardRules(false, intIface, extIface);
}
return -EREMOTEIO;
}
if (add) {
addForwardingPair(intIface, extIface);
} else {
markForwardingPairDisabled(intIface, extIface);
}
return 0;
}
int TetherController::disableNat(const char* intIface, const char* extIface) {
if (!isIfaceName(intIface) || !isIfaceName(extIface)) {
errno = ENODEV;
return -errno;
}
setForwardRules(false, intIface, extIface);
stopBpf(intIface);
if (!isAnyForwardingEnabledOnUpstream(extIface)) stopBpf(extIface);
if (!isAnyForwardingPairEnabled()) setDefaults();
return 0;
}
namespace {
Result<void> validateOffloadRule(const TetherOffloadRuleParcel& rule) {
struct ethhdr hdr;
if (rule.inputInterfaceIndex <= 0) {
return Error(ENODEV) << "Invalid input interface " << rule.inputInterfaceIndex;
}
if (rule.outputInterfaceIndex <= 0) {
return Error(ENODEV) << "Invalid output interface " << rule.inputInterfaceIndex;
}
if (rule.prefixLength != 128) {
return Error(EINVAL) << "Prefix length must be 128, not " << rule.prefixLength;
}
if (rule.destination.size() != sizeof(in6_addr)) {
return Error(EAFNOSUPPORT) << "Invalid IP address length " << rule.destination.size();
}
if (rule.srcL2Address.size() != sizeof(hdr.h_source)) {
return Error(ENXIO) << "Invalid L2 src address length " << rule.srcL2Address.size();
}
if (rule.dstL2Address.size() != sizeof(hdr.h_dest)) {
return Error(ENXIO) << "Invalid L2 dst address length " << rule.dstL2Address.size();
}
if (rule.pmtu < IPV6_MIN_MTU || rule.pmtu > 0xFFFF) {
return Error(EINVAL) << "Invalid IPv6 path mtu " << rule.pmtu;
}
return Result<void>();
}
} // namespace
Result<void> TetherController::addOffloadRule(const TetherOffloadRuleParcel& rule) {
Result<void> res = validateOffloadRule(rule);
if (!res.ok()) return res;
ethhdr hdr = {
.h_proto = htons(ETH_P_IPV6),
};
memcpy(&hdr.h_dest, rule.dstL2Address.data(), sizeof(hdr.h_dest));
memcpy(&hdr.h_source, rule.srcL2Address.data(), sizeof(hdr.h_source));
// Only downstream supported for now.
TetherDownstream6Key key = {
.iif = static_cast<uint32_t>(rule.inputInterfaceIndex),
.neigh6 = *(const in6_addr*)rule.destination.data(),
};
TetherDownstream6Value value = {
.oif = static_cast<uint32_t>(rule.outputInterfaceIndex),
.macHeader = hdr,
.pmtu = static_cast<uint16_t>(rule.pmtu),
};
return mBpfDownstream6Map.writeValue(key, value, BPF_ANY);
}
Result<void> TetherController::removeOffloadRule(const TetherOffloadRuleParcel& rule) {
Result<void> res = validateOffloadRule(rule);
if (!res.ok()) return res;
TetherDownstream6Key key = {
.iif = static_cast<uint32_t>(rule.inputInterfaceIndex),
.neigh6 = *(const in6_addr*)rule.destination.data(),
};
Result<void> ret = mBpfDownstream6Map.deleteValue(key);
// Silently return success if the rule did not exist.
if (!ret.ok() && ret.error().code() == ENOENT) return {};
return ret;
}
void TetherController::addStats(TetherStatsList& statsList, const TetherStats& stats) {
for (TetherStats& existing : statsList) {
if (existing.addStatsIfMatch(stats)) {
return;
}
}
// No match. Insert a new interface pair.
statsList.push_back(stats);
}
/*
* Parse the ptks and bytes out of:
* Chain tetherctrl_counters (4 references)
* pkts bytes target prot opt in out source destination
* 26 2373 RETURN all -- wlan0 rmnet0 0.0.0.0/0 0.0.0.0/0
* 27 2002 RETURN all -- rmnet0 wlan0 0.0.0.0/0 0.0.0.0/0
* 1040 107471 RETURN all -- bt-pan rmnet0 0.0.0.0/0 0.0.0.0/0
* 1450 1708806 RETURN all -- rmnet0 bt-pan 0.0.0.0/0 0.0.0.0/0
* or:
* Chain tetherctrl_counters (0 references)
* pkts bytes target prot opt in out source destination
* 0 0 RETURN all wlan0 rmnet_data0 ::/0 ::/0
* 0 0 RETURN all rmnet_data0 wlan0 ::/0 ::/0
*
*/
int TetherController::addForwardChainStats(TetherStatsList& statsList,
const std::string& statsOutput,
std::string &extraProcessingInfo) {
enum IndexOfIptChain {
ORIG_LINE,
PACKET_COUNTS,
BYTE_COUNTS,
HYPHEN,
IFACE0_NAME,
IFACE1_NAME,
SOURCE,
DESTINATION
};
TetherStats stats;
const TetherStats empty;
static const std::string NUM = "(\\d+)";
static const std::string IFACE = "([^\\s]+)";
static const std::string DST = "(0.0.0.0/0|::/0)";
static const std::string COUNTERS = "\\s*" + NUM + "\\s+" + NUM +
" RETURN all( -- | )" + IFACE + "\\s+" + IFACE +
"\\s+" + DST + "\\s+" + DST;
static const std::regex IP_RE(COUNTERS);
const std::vector<std::string> lines = base::Split(statsOutput, "\n");
int headerLine = 0;
for (const std::string& line : lines) {
// Skip headers.
if (headerLine < 2) {
if (line.empty()) {
ALOGV("Empty header while parsing tethering stats");
return -EREMOTEIO;
}
headerLine++;
continue;
}
if (line.empty()) continue;
extraProcessingInfo = line;
std::smatch matches;
if (!std::regex_search(line, matches, IP_RE)) return -EREMOTEIO;
// Here use IP_RE to distiguish IPv4 and IPv6 iptables.
// IPv4 has "--" indicating what to do with fragments...
// 26 2373 RETURN all -- wlan0 rmnet0 0.0.0.0/0 0.0.0.0/0
// ... but IPv6 does not.
// 26 2373 RETURN all wlan0 rmnet0 ::/0 ::/0
// TODO: Replace strtoXX() calls with ParseUint() /ParseInt()
int64_t packets = strtoul(matches[PACKET_COUNTS].str().c_str(), nullptr, 10);
int64_t bytes = strtoul(matches[BYTE_COUNTS].str().c_str(), nullptr, 10);
std::string iface0 = matches[IFACE0_NAME].str();
std::string iface1 = matches[IFACE1_NAME].str();
std::string rest = matches[SOURCE].str();
ALOGV("parse iface0=<%s> iface1=<%s> pkts=%" PRId64 " bytes=%" PRId64
" rest=<%s> orig line=<%s>",
iface0.c_str(), iface1.c_str(), packets, bytes, rest.c_str(), line.c_str());
/*
* The following assumes that the 1st rule has in:extIface out:intIface,
* which is what TetherController sets up.
* The 1st matches rx, and sets up the pair for the tx side.
*/
if (!stats.intIface[0]) {
ALOGV("0Filter RX iface_in=%s iface_out=%s rx_bytes=%" PRId64 " rx_packets=%" PRId64
" ", iface0.c_str(), iface1.c_str(), bytes, packets);
stats.intIface = iface0;
stats.extIface = iface1;
stats.txPackets = packets;
stats.txBytes = bytes;
} else if (stats.intIface == iface1 && stats.extIface == iface0) {
ALOGV("0Filter TX iface_in=%s iface_out=%s rx_bytes=%" PRId64 " rx_packets=%" PRId64
" ", iface0.c_str(), iface1.c_str(), bytes, packets);
stats.rxPackets = packets;
stats.rxBytes = bytes;
}
if (stats.rxBytes != -1 && stats.txBytes != -1) {
ALOGV("rx_bytes=%" PRId64" tx_bytes=%" PRId64, stats.rxBytes, stats.txBytes);
addStats(statsList, stats);
stats = empty;
}
}
/* It is always an error to find only one side of the stats. */
if (((stats.rxBytes == -1) != (stats.txBytes == -1))) {
return -EREMOTEIO;
}
return 0;
}
StatusOr<TetherController::TetherStatsList> TetherController::getTetherStats() {
TetherStatsList statsList;
std::string parsedIptablesOutput;
for (const IptablesTarget target : {V4, V6}) {
std::string statsString;
if (int ret = iptablesRestoreFunction(target, GET_TETHER_STATS_COMMAND, &statsString)) {
return statusFromErrno(-ret, StringPrintf("failed to fetch tether stats (%d): %d",
target, ret));
}
if (int ret = addForwardChainStats(statsList, statsString, parsedIptablesOutput)) {
return statusFromErrno(-ret, StringPrintf("failed to parse %s tether stats:\n%s",
target == V4 ? "IPv4": "IPv6",
parsedIptablesOutput.c_str()));
}
}
return statsList;
}
StatusOr<TetherController::TetherOffloadStatsList> TetherController::getTetherOffloadStats() {
TetherOffloadStatsList statsList;
const auto processTetherStats = [&statsList](const TetherStatsKey& key,
const TetherStatsValue& value,
const BpfMap<TetherStatsKey, TetherStatsValue>&) {
statsList.push_back({.ifIndex = static_cast<int>(key),
.rxBytes = static_cast<int64_t>(value.rxBytes),
.rxPackets = static_cast<int64_t>(value.rxPackets),
.txBytes = static_cast<int64_t>(value.txBytes),
.txPackets = static_cast<int64_t>(value.txPackets)});
return Result<void>();
};
auto ret = mBpfStatsMap.iterateWithValue(processTetherStats);
if (!ret.ok()) {
// Ignore error to return the remaining tether stats result.
ALOGE("Error processing tether stats from BPF maps: %s", ret.error().message().c_str());
}
return statsList;
}
// Use UINT64_MAX (~0uLL) for unlimited.
Result<void> TetherController::setBpfLimit(uint32_t ifIndex, uint64_t limit) {
// The common case is an update, where the stats already exist,
// hence we read first, even though writing with BPF_NOEXIST
// first would make the code simpler.
uint64_t rxBytes, txBytes;
auto statsEntry = mBpfStatsMap.readValue(ifIndex);
if (statsEntry.ok()) {
// Ok, there was a stats entry.
rxBytes = statsEntry.value().rxBytes;
txBytes = statsEntry.value().txBytes;
} else if (statsEntry.error().code() == ENOENT) {
// No stats entry - create one with zeroes.
TetherStatsValue stats = {};
// This function is the *only* thing that can create entries.
auto ret = mBpfStatsMap.writeValue(ifIndex, stats, BPF_NOEXIST);
if (!ret.ok()) {
ALOGE("mBpfStatsMap.writeValue failure: %s", strerror(ret.error().code()));
return ret;
}
rxBytes = 0;
txBytes = 0;
} else {
// Other error while trying to get stats entry.
return statsEntry.error();
}
// rxBytes + txBytes won't overflow even at 5gbps for ~936 years.
uint64_t newLimit = rxBytes + txBytes + limit;
// if adding limit (e.g., if limit is UINT64_MAX) caused overflow: clamp to 'infinity'
if (newLimit < rxBytes + txBytes) newLimit = ~0uLL;
auto ret = mBpfLimitMap.writeValue(ifIndex, newLimit, BPF_ANY);
if (!ret.ok()) {
ALOGE("mBpfLimitMap.writeValue failure: %s", strerror(ret.error().code()));
return ret;
}
return {};
}
void TetherController::startBpf(const char* iface, bool downstream) {
const char* const downStr = downstream ? "DOWNSTREAM" : "UPSTREAM";
int ifIndex = if_nametoindex(iface);
if (!ifIndex) {
ALOGE("Fail to get index for interface %s", iface);
return;
}
auto isEthernet = android::net::isEthernet(iface);
if (!isEthernet.ok()) {
ALOGE("isEthernet(%s[%d]) failure: %s", iface, ifIndex,
isEthernet.error().message().c_str());
return;
}
int rv = getTether6TcProgFd(isEthernet.value(), downstream);
if (rv < 0) {
ALOGE("getTether6TcProgFd(%d, %s) failure: %s", isEthernet.value(), downStr, strerror(-rv));
return;
}
unique_fd tether6ProgFd(rv);
rv = getTether4TcProgFd(isEthernet.value(), downstream);
if (rv < 0) {
ALOGE("getTether4TcProgFd(%d, %s) failure: %s", isEthernet.value(), downStr, strerror(-rv));
return;
}
unique_fd tether4ProgFd(rv);
rv = tcFilterAddDevIngress6Tether(ifIndex, tether6ProgFd, isEthernet.value(), downstream);
if (rv) {
ALOGE("tcFilterAddDevIngress6Tether(%d[%s], %d, %s) failure: %s", ifIndex, iface,
isEthernet.value(), downStr, strerror(-rv));
return;
}
rv = tcFilterAddDevIngress4Tether(ifIndex, tether4ProgFd, isEthernet.value(), downstream);
if (rv) {
ALOGE("tcFilterAddDevIngress4Tether(%d[%s], %d, %s) failure: %s", ifIndex, iface,
isEthernet.value(), downStr, strerror(-rv));
return;
}
}
void TetherController::stopBpf(const char* iface) {
int ifIndex = if_nametoindex(iface);
if (!ifIndex) {
ALOGE("Fail to get index for interface %s", iface);
return;
}
int rv = tcFilterDelDevIngress4Tether(ifIndex);
if (rv < 0) {
ALOGE("tcFilterDelDevIngress4Tether(%d[%s]) failure: %s", ifIndex, iface, strerror(-rv));
}
rv = tcFilterDelDevIngress6Tether(ifIndex);
if (rv < 0) {
ALOGE("tcFilterDelDevIngress6Tether(%d[%s]) failure: %s", ifIndex, iface, strerror(-rv));
}
}
int TetherController::setTetherOffloadInterfaceQuota(int ifIndex, int64_t maxBytes) {
if (!mBpfStatsMap.isValid() || !mBpfLimitMap.isValid()) return -ENOTSUP;
if (ifIndex <= 0) return -ENODEV;
if (maxBytes < QUOTA_UNLIMITED) {
ALOGE("Invalid bytes value. Must be -1 (unlimited) or 0..max_int64.");
return -ERANGE;
}
// Note that a value of unlimited quota (-1) indicates simply max_uint64.
const auto res = setBpfLimit(static_cast<uint32_t>(ifIndex), static_cast<uint64_t>(maxBytes));
if (!res.ok()) {
ALOGE("Fail to set quota %" PRId64 " for interface index %d: %s", maxBytes, ifIndex,
strerror(res.error().code()));
return -res.error().code();
}
return 0;
}
Result<TetherController::TetherOffloadStats> TetherController::getAndClearTetherOffloadStats(
int ifIndex) {
if (!mBpfStatsMap.isValid() || !mBpfLimitMap.isValid()) return Error(ENOTSUP);
if (ifIndex <= 0) {
return Error(ENODEV) << "Invalid interface " << ifIndex;
}
// getAndClearTetherOffloadStats is called after all offload rules have already been deleted
// for the given upstream interface. Before starting to do cleanup stuff in this function, use
// synchronizeKernelRCU to make sure that all the current running eBPF programs are finished
// on all CPUs, especially the unfinished packet processing. After synchronizeKernelRCU
// returned, we can safely read or delete on the stats map or the limit map.
if (int res = bpf::synchronizeKernelRCU()) {
// Error log but don't return error. Do as much cleanup as possible.
ALOGE("synchronize_rcu() failed: %s", strerror(-res));
}
const auto stats = mBpfStatsMap.readValue(ifIndex);
if (!stats.ok()) {
return Error(stats.error().code()) << "Fail to get stats for interface index " << ifIndex;
}
auto res = mBpfStatsMap.deleteValue(ifIndex);
if (!res.ok()) {
return Error(res.error().code()) << "Fail to delete stats for interface index " << ifIndex;
}
res = mBpfLimitMap.deleteValue(ifIndex);
if (!res.ok()) {
return Error(res.error().code()) << "Fail to delete limit for interface index " << ifIndex;
}
return TetherOffloadStats{.ifIndex = static_cast<int>(ifIndex),
.rxBytes = static_cast<int64_t>(stats.value().rxBytes),
.rxPackets = static_cast<int64_t>(stats.value().rxPackets),
.txBytes = static_cast<int64_t>(stats.value().txBytes),
.txPackets = static_cast<int64_t>(stats.value().txPackets)};
}
void TetherController::dumpIfaces(DumpWriter& dw) {
dw.println("Interface pairs:");
ScopedIndent ifaceIndent(dw);
for (const auto& it : mFwdIfaces) {
dw.println("%s -> %s %s", it.first.c_str(), it.second.iface.c_str(),
(it.second.active ? "ACTIVE" : "DISABLED"));
}
}
namespace {
std::string l2ToString(const uint8_t* addr, size_t len) {
std::string str;
if (len == 0) return str;
StringAppendF(&str, "%02x", addr[0]);
for (size_t i = 1; i < len; i++) {
StringAppendF(&str, ":%02x", addr[i]);
}
return str;
}
} // namespace
void TetherController::dumpBpf(DumpWriter& dw) {
if (!mBpfDownstream6Map.isValid() || !mBpfDownstream64Map.isValid() ||
!mBpfDownstream4Map.isValid() || !mBpfUpstream6Map.isValid() ||
!mBpfUpstream4Map.isValid() || !mBpfStatsMap.isValid() || !mBpfLimitMap.isValid()) {
dw.println("BPF not supported");
return;
}
dw.println(
"BPF downstream ipv6 map: iif(iface) v6addr -> oif(iface) srcmac dstmac ethertype "
"[pmtu]");
const auto printDownstream6Map =
[&dw](const TetherDownstream6Key& key, const TetherDownstream6Value& value,
const BpfMap<TetherDownstream6Key, TetherDownstream6Value>&) {
char addr[INET6_ADDRSTRLEN];
std::string src =
l2ToString(value.macHeader.h_source, sizeof(value.macHeader.h_source));
std::string dst =
l2ToString(value.macHeader.h_dest, sizeof(value.macHeader.h_dest));
inet_ntop(AF_INET6, &key.neigh6, addr, sizeof(addr));
char iifStr[IFNAMSIZ] = "?";
char oifStr[IFNAMSIZ] = "?";
if_indextoname(key.iif, iifStr);
if_indextoname(value.oif, oifStr);
dw.println("%u(%s) %s -> %u(%s) %s %s %04x [%u]", key.iif, iifStr, addr, value.oif,
oifStr, src.c_str(), dst.c_str(), ntohs(value.macHeader.h_proto),
value.pmtu);
return Result<void>();
};
dw.incIndent();
auto ret = mBpfDownstream6Map.iterateWithValue(printDownstream6Map);
if (!ret.ok()) {
dw.println("Error printing BPF downstream ipv6 map: %s", ret.error().message().c_str());
}
dw.decIndent();
dw.println("BPF upstream ipv6 map: iif(iface) -> oif(iface) srcmac dstmac ethertype [pmtu]");
const auto printUpstream6Map = [&dw](const TetherUpstream6Key& key,
const TetherUpstream6Value& value,
const BpfMap<TetherUpstream6Key, TetherUpstream6Value>&) {
std::string src = l2ToString(value.macHeader.h_source, sizeof(value.macHeader.h_source));
std::string dst = l2ToString(value.macHeader.h_dest, sizeof(value.macHeader.h_dest));
char iifStr[IFNAMSIZ] = "?";
char oifStr[IFNAMSIZ] = "?";
if_indextoname(key.iif, iifStr);
if_indextoname(value.oif, oifStr);
dw.println("%u(%s) -> %u(%s) %s %s %04x [%u]", key.iif, iifStr, value.oif, oifStr,
src.c_str(), dst.c_str(), ntohs(value.macHeader.h_proto), value.pmtu);
return Result<void>();
};
dw.incIndent();
ret = mBpfUpstream6Map.iterateWithValue(printUpstream6Map);
if (!ret.ok()) {
dw.println("Error printing BPF upstream ipv6 map: %s", ret.error().message().c_str());
}
dw.decIndent();
dw.println(
"BPF stats: iif(iface) -> downlink.packets/bytes/errors uplink.packets/bytes/errors");
const auto printStatsMap = [&dw](const TetherStatsKey& key, const TetherStatsValue& value,
const BpfMap<TetherStatsKey, TetherStatsValue>&) {
char iifStr[IFNAMSIZ] = "?";
if_indextoname(key, iifStr);
dw.println("%u(%s) -> %" PRIu64 " %" PRIu64 " %" PRIu64 " %" PRIu64 " %" PRIu64 " %" PRIu64,
key, iifStr, value.rxPackets, value.rxBytes, value.rxErrors, value.txPackets,
value.txBytes, value.txErrors);
return Result<void>();
};
dw.incIndent();
ret = mBpfStatsMap.iterateWithValue(printStatsMap);
if (!ret.ok()) {
dw.println("Error printing BPF stats map: %s", ret.error().message().c_str());
}
dw.decIndent();
dw.println("BPF limit: iif(iface) -> bytes");
const auto printLimitMap = [&dw](const TetherLimitKey& key, const TetherLimitValue& value,
const BpfMap<TetherLimitKey, TetherLimitValue>&) {
char iifStr[IFNAMSIZ] = "?";
if_indextoname(key, iifStr);
dw.println("%u(%s) -> %" PRIu64, key, iifStr, value);
return Result<void>();
};
dw.incIndent();
ret = mBpfLimitMap.iterateWithValue(printLimitMap);
if (!ret.ok()) {
dw.println("Error printing BPF limit map: %s", ret.error().message().c_str());
}
dw.decIndent();
}
void TetherController::dump(DumpWriter& dw) {
std::lock_guard guard(lock);
ScopedIndent tetherControllerIndent(dw);
dw.println("TetherController");
dw.incIndent();
dw.println("Forwarding requests: " + Join(mForwardingRequests, ' '));
if (mDnsNetId != 0) {
dw.println(StringPrintf("DNS: netId %d servers [%s]", mDnsNetId,
Join(mDnsForwarders, ", ").c_str()));
}
if (mDaemonPid != 0) {
dw.println("dnsmasq PID: %d", mDaemonPid);
}
dumpIfaces(dw);
dw.println("");
dumpBpf(dw);
}
} // namespace net
} // namespace android