blob: f1441397d1b8fd8178f3aa1cc6562638b8bc8c72 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// THREAD-SAFETY
// -------------
// The methods in this file are called from multiple threads (from CommandListener, FwmarkServer
// and DnsProxyListener). So, all accesses to shared state are guarded by a lock.
//
// Public functions accessible by external callers should be thread-safe and are responsible for
// acquiring the lock. Private functions in this file should call xxxLocked() methods and access
// internal state directly.
#define LOG_TAG "Netd"
#include "NetworkController.h"
#include <android-base/strings.h>
#include <cutils/misc.h> // FIRST_APPLICATION_UID
#include <netd_resolv/resolv.h>
#include "log/log.h"
#include "Controllers.h"
#include "DummyNetwork.h"
#include "Fwmark.h"
#include "LocalNetwork.h"
#include "PhysicalNetwork.h"
#include "RouteController.h"
#include "TcUtils.h"
#include "UnreachableNetwork.h"
#include "VirtualNetwork.h"
#include "netdutils/DumpWriter.h"
#include "netdutils/Utils.h"
#include "netid_client.h"
#define DBG 0
using android::netdutils::DumpWriter;
using android::netdutils::getIfaceNames;
namespace android::net {
namespace {
// Keep these in sync with ConnectivityService.java.
const unsigned MIN_NET_ID = 100;
const unsigned MAX_NET_ID = 65535;
} // namespace
// All calls to methods here are made while holding a write lock on mRWLock.
// They are mostly not called directly from this class, but from methods in PhysicalNetwork.cpp.
// However, we're the only user of that class, so all calls to those methods come from here and are
// made under lock.
// For example, PhysicalNetwork::setPermission ends up calling addFallthrough and removeFallthrough,
// but it's only called from here under lock (specifically, from createPhysicalNetworkLocked and
// setPermissionForNetworks).
// TODO: use std::mutex and GUARDED_BY instead of manual inspection.
class NetworkController::DelegateImpl : public PhysicalNetwork::Delegate {
public:
explicit DelegateImpl(NetworkController* networkController);
virtual ~DelegateImpl();
[[nodiscard]] int modifyFallthrough(unsigned vpnNetId, const std::string& physicalInterface,
Permission permission, bool add);
private:
[[nodiscard]] int addFallthrough(const std::string& physicalInterface,
Permission permission) override;
[[nodiscard]] int removeFallthrough(const std::string& physicalInterface,
Permission permission) override;
[[nodiscard]] int modifyFallthrough(const std::string& physicalInterface, Permission permission,
bool add);
NetworkController* const mNetworkController;
};
NetworkController::DelegateImpl::DelegateImpl(NetworkController* networkController) :
mNetworkController(networkController) {
}
NetworkController::DelegateImpl::~DelegateImpl() {
}
int NetworkController::DelegateImpl::modifyFallthrough(unsigned vpnNetId,
const std::string& physicalInterface,
Permission permission, bool add) {
if (add) {
if (int ret = RouteController::addVirtualNetworkFallthrough(vpnNetId,
physicalInterface.c_str(),
permission)) {
ALOGE("failed to add fallthrough to %s for VPN netId %u", physicalInterface.c_str(),
vpnNetId);
return ret;
}
} else {
if (int ret = RouteController::removeVirtualNetworkFallthrough(vpnNetId,
physicalInterface.c_str(),
permission)) {
ALOGE("failed to remove fallthrough to %s for VPN netId %u", physicalInterface.c_str(),
vpnNetId);
return ret;
}
}
return 0;
}
int NetworkController::DelegateImpl::addFallthrough(const std::string& physicalInterface,
Permission permission) {
return modifyFallthrough(physicalInterface, permission, true);
}
int NetworkController::DelegateImpl::removeFallthrough(const std::string& physicalInterface,
Permission permission) {
return modifyFallthrough(physicalInterface, permission, false);
}
int NetworkController::DelegateImpl::modifyFallthrough(const std::string& physicalInterface,
Permission permission, bool add) {
for (const auto& entry : mNetworkController->mNetworks) {
if (entry.second->isVirtual()) {
if (int ret = modifyFallthrough(entry.first, physicalInterface, permission, add)) {
return ret;
}
}
}
return 0;
}
NetworkController::NetworkController() :
mDelegateImpl(new NetworkController::DelegateImpl(this)), mDefaultNetId(NETID_UNSET),
mProtectableUsers({AID_VPN}) {
gLog.info("enter NetworkController ctor");
mNetworks[LOCAL_NET_ID] = new LocalNetwork(LOCAL_NET_ID);
mNetworks[DUMMY_NET_ID] = new DummyNetwork(DUMMY_NET_ID);
mNetworks[UNREACHABLE_NET_ID] = new UnreachableNetwork(UNREACHABLE_NET_ID);
// Clear all clsact stubs on all interfaces.
// TODO: perhaps only remove the clsact on the interface which is added by
// RouteController::addInterfaceToPhysicalNetwork. Currently, the netd only
// attach the clsact to the interface for the physical network.
const auto& ifaces = getIfaceNames();
if (isOk(ifaces)) {
for (const std::string& iface : ifaces.value()) {
if (int ifIndex = if_nametoindex(iface.c_str())) {
// Ignore the error because the interface might not have a clsact.
tcQdiscDelDevClsact(ifIndex);
}
}
}
gLog.info("leave NetworkController ctor");
}
unsigned NetworkController::getDefaultNetwork() const {
ScopedRLock lock(mRWLock);
return mDefaultNetId;
}
int NetworkController::setDefaultNetwork(unsigned netId) {
ScopedWLock lock(mRWLock);
if (netId == mDefaultNetId) {
return 0;
}
if (netId != NETID_UNSET) {
Network* network = getNetworkLocked(netId);
if (!network) {
ALOGE("no such netId %u", netId);
return -ENONET;
}
if (!network->isPhysical()) {
ALOGE("cannot set default to non-physical network with netId %u", netId);
return -EINVAL;
}
if (int ret = static_cast<PhysicalNetwork*>(network)->addAsDefault()) {
return ret;
}
}
if (mDefaultNetId != NETID_UNSET) {
Network* network = getNetworkLocked(mDefaultNetId);
if (!network || !network->isPhysical()) {
ALOGE("cannot find previously set default network with netId %u", mDefaultNetId);
return -ESRCH;
}
if (int ret = static_cast<PhysicalNetwork*>(network)->removeAsDefault()) {
return ret;
}
}
mDefaultNetId = netId;
return 0;
}
uint32_t NetworkController::getNetworkForDnsLocked(unsigned* netId, uid_t uid) const {
Fwmark fwmark;
fwmark.protectedFromVpn = true;
fwmark.permission = PERMISSION_SYSTEM;
Network* appDefaultNetwork = getPhysicalOrUnreachableNetworkForUserLocked(uid);
unsigned defaultNetId = appDefaultNetwork ? appDefaultNetwork->getNetId() : mDefaultNetId;
// Common case: there is no VPN that applies to the user, and the query did not specify a netId.
// Therefore, it is safe to set the explicit bit on this query and skip all the complex logic
// below. While this looks like a special case, it is actually the one that handles the vast
// majority of DNS queries.
// TODO: untangle this code.
if (*netId == NETID_UNSET && getVirtualNetworkForUserLocked(uid) == nullptr) {
*netId = defaultNetId;
fwmark.netId = *netId;
fwmark.explicitlySelected = true;
return fwmark.intValue;
}
if (checkUserNetworkAccessLocked(uid, *netId) == 0) {
// If a non-zero NetId was explicitly specified, and the user has permission for that
// network, use that network's DNS servers. (possibly falling through the to the default
// network if the VPN doesn't provide a route to them).
fwmark.explicitlySelected = true;
// If the network is a VPN and it doesn't have DNS servers, use the default network's DNS
// servers (through the default network). Otherwise, the query is guaranteed to fail.
// http://b/29498052
Network *network = getNetworkLocked(*netId);
if (network && network->isVirtual() && !resolv_has_nameservers(*netId)) {
*netId = defaultNetId;
}
} else {
// If the user is subject to a VPN and the VPN provides DNS servers, use those servers
// (possibly falling through to the default network if the VPN doesn't provide a route to
// them). Otherwise, use the default network's DNS servers.
// TODO: Consider if we should set the explicit bit here.
VirtualNetwork* virtualNetwork = getVirtualNetworkForUserLocked(uid);
if (virtualNetwork && resolv_has_nameservers(virtualNetwork->getNetId())) {
*netId = virtualNetwork->getNetId();
} else {
// TODO: return an error instead of silently doing the DNS lookup on the wrong network.
// http://b/27560555
*netId = defaultNetId;
}
}
fwmark.netId = *netId;
return fwmark.intValue;
}
// Returns the NetId that a given UID would use if no network is explicitly selected. Specifically,
// the VPN that applies to the UID if any; Otherwise, the default network for UID; Otherwise the
// unreachable network that applies to the UID; lastly, the default network.
unsigned NetworkController::getNetworkForUser(uid_t uid) const {
ScopedRLock lock(mRWLock);
if (VirtualNetwork* virtualNetwork = getVirtualNetworkForUserLocked(uid)) {
return virtualNetwork->getNetId();
}
if (Network* network = getPhysicalOrUnreachableNetworkForUserLocked(uid)) {
return network->getNetId();
}
return mDefaultNetId;
}
// Returns the NetId that will be set when a socket connect()s. This is the bypassable VPN that
// applies to the user if any; otherwise, the default network that applies to user if any; lastly,
// the default network.
//
// In general, we prefer to always set the default network's NetId in connect(), so that if the VPN
// is a split-tunnel and disappears later, the socket continues working (since the default network's
// NetId is still valid). Secure VPNs will correctly grab the socket's traffic since they have a
// high-priority routing rule that doesn't care what NetId the socket has.
//
// But bypassable VPNs have a very low priority rule, so we need to mark the socket with the
// bypassable VPN's NetId if we expect it to get any traffic at all. If the bypassable VPN is a
// split-tunnel, that's okay, because we have fallthrough rules that will direct the fallthrough
// traffic to the default network. But it does mean that if the bypassable VPN goes away (and thus
// the fallthrough rules also go away), the socket that used to fallthrough to the default network
// will stop working.
//
// Per-app physical default networks behave the same as bypassable VPNs: when a socket is connected
// on one of these networks, we mark the socket with the netId of the network. This ensures that if
// the per-app default network changes, sockets established on the previous network are still
// routed to that network, assuming the network's UID ranges still apply to the UID. While this
// means that fallthrough to the default network does not work, physical networks not expected
// ever to be split tunnels.
unsigned NetworkController::getNetworkForConnectLocked(uid_t uid) const {
VirtualNetwork* virtualNetwork = getVirtualNetworkForUserLocked(uid);
if (virtualNetwork && !virtualNetwork->isSecure()) {
return virtualNetwork->getNetId();
}
if (Network* network = getPhysicalOrUnreachableNetworkForUserLocked(uid)) {
return network->getNetId();
}
return mDefaultNetId;
}
unsigned NetworkController::getNetworkForConnect(uid_t uid) const {
ScopedRLock lock(mRWLock);
return getNetworkForConnectLocked(uid);
}
void NetworkController::getNetworkContext(
unsigned netId, uid_t uid, struct android_net_context* netcontext) const {
ScopedRLock lock(mRWLock);
struct android_net_context nc = {
.app_netid = netId,
.app_mark = MARK_UNSET,
.dns_netid = netId,
.dns_mark = MARK_UNSET,
.uid = uid,
};
// |netId| comes directly (via dnsproxyd) from the value returned by netIdForResolv() in the
// client process. This value is nonzero iff.:
//
// 1. The app specified a netid/nethandle to a DNS resolution method such as:
// - [Java] android.net.Network#getAllByName()
// - [C/++] android_getaddrinfofornetwork()
// 2. The app specified a netid/nethandle to be used as a process default via:
// - [Java] android.net.ConnectivityManager#bindProcessToNetwork()
// - [C/++] android_setprocnetwork()
// 3. The app called android.net.ConnectivityManager#startUsingNetworkFeature().
//
// In all these cases (with the possible exception of #3), the right thing to do is to treat
// such cases as explicitlySelected.
const bool explicitlySelected = (nc.app_netid != NETID_UNSET);
if (!explicitlySelected) {
nc.app_netid = getNetworkForConnectLocked(uid);
}
Fwmark fwmark;
fwmark.netId = nc.app_netid;
fwmark.explicitlySelected = explicitlySelected;
fwmark.protectedFromVpn = explicitlySelected && canProtectLocked(uid);
fwmark.permission = getPermissionForUserLocked(uid);
nc.app_mark = fwmark.intValue;
nc.dns_mark = getNetworkForDnsLocked(&(nc.dns_netid), uid);
if (DBG) {
ALOGD("app_netid:0x%x app_mark:0x%x dns_netid:0x%x dns_mark:0x%x uid:%d",
nc.app_netid, nc.app_mark, nc.dns_netid, nc.dns_mark, uid);
}
if (netcontext) {
*netcontext = nc;
}
}
unsigned NetworkController::getNetworkForInterfaceLocked(const char* interface) const {
for (const auto& entry : mNetworks) {
if (entry.second->hasInterface(interface)) {
return entry.first;
}
}
return NETID_UNSET;
}
unsigned NetworkController::getNetworkForInterface(const char* interface) const {
ScopedRLock lock(mRWLock);
return getNetworkForInterfaceLocked(interface);
}
bool NetworkController::isVirtualNetwork(unsigned netId) const {
ScopedRLock lock(mRWLock);
return isVirtualNetworkLocked(netId);
}
bool NetworkController::isVirtualNetworkLocked(unsigned netId) const {
Network* network = getNetworkLocked(netId);
return network && network->isVirtual();
}
int NetworkController::createPhysicalNetworkLocked(unsigned netId, Permission permission) {
if (!((MIN_NET_ID <= netId && netId <= MAX_NET_ID) ||
(MIN_OEM_ID <= netId && netId <= MAX_OEM_ID))) {
ALOGE("invalid netId %u", netId);
return -EINVAL;
}
if (isValidNetworkLocked(netId)) {
ALOGE("duplicate netId %u", netId);
return -EEXIST;
}
PhysicalNetwork* physicalNetwork = new PhysicalNetwork(netId, mDelegateImpl);
if (int ret = physicalNetwork->setPermission(permission)) {
ALOGE("inconceivable! setPermission cannot fail on an empty network");
delete physicalNetwork;
return ret;
}
mNetworks[netId] = physicalNetwork;
updateTcpSocketMonitorPolling();
return 0;
}
int NetworkController::createPhysicalNetwork(unsigned netId, Permission permission) {
ScopedWLock lock(mRWLock);
return createPhysicalNetworkLocked(netId, permission);
}
int NetworkController::createPhysicalOemNetwork(Permission permission, unsigned *pNetId) {
if (pNetId == nullptr) {
return -EINVAL;
}
ScopedWLock lock(mRWLock);
for (*pNetId = MIN_OEM_ID; *pNetId <= MAX_OEM_ID; (*pNetId)++) {
if (!isValidNetworkLocked(*pNetId)) {
break;
}
}
if (*pNetId > MAX_OEM_ID) {
ALOGE("No free network ID");
*pNetId = 0;
return -ENONET;
}
int ret = createPhysicalNetworkLocked(*pNetId, permission);
if (ret) {
*pNetId = 0;
}
return ret;
}
int NetworkController::createVirtualNetwork(unsigned netId, bool secure, NativeVpnType vpnType,
bool excludeLocalRoutes) {
ScopedWLock lock(mRWLock);
if (!(MIN_NET_ID <= netId && netId <= MAX_NET_ID)) {
ALOGE("invalid netId %u", netId);
return -EINVAL;
}
if (isValidNetworkLocked(netId)) {
ALOGE("duplicate netId %u", netId);
return -EEXIST;
}
if (vpnType < NativeVpnType::SERVICE || NativeVpnType::OEM < vpnType) {
ALOGE("invalid vpnType %d", static_cast<int>(vpnType));
return -EINVAL;
}
if (int ret = modifyFallthroughLocked(netId, true)) {
return ret;
}
mNetworks[netId] = new VirtualNetwork(netId, secure, excludeLocalRoutes);
return 0;
}
int NetworkController::destroyNetwork(unsigned netId) {
ScopedWLock lock(mRWLock);
if (netId == LOCAL_NET_ID || netId == UNREACHABLE_NET_ID) {
ALOGE("cannot destroy local or unreachable network");
return -EINVAL;
}
if (!isValidNetworkLocked(netId)) {
ALOGE("no such netId %u", netId);
return -ENONET;
}
// TODO: ioctl(SIOCKILLADDR, ...) to kill all sockets on the old network.
Network* network = getNetworkLocked(netId);
// If we fail to destroy a network, things will get stuck badly. Therefore, unlike most of the
// other network code, ignore failures and attempt to clear out as much state as possible, even
// if we hit an error on the way. Return the first error that we see.
int ret = network->clearInterfaces();
if (mDefaultNetId == netId) {
if (int err = static_cast<PhysicalNetwork*>(network)->removeAsDefault()) {
ALOGE("inconceivable! removeAsDefault cannot fail on an empty network");
if (!ret) {
ret = err;
}
}
mDefaultNetId = NETID_UNSET;
} else if (network->isVirtual()) {
if (int err = modifyFallthroughLocked(netId, false)) {
if (!ret) {
ret = err;
}
}
}
mNetworks.erase(netId);
delete network;
for (auto iter = mIfindexToLastNetId.begin(); iter != mIfindexToLastNetId.end();) {
if (iter->second == netId) {
iter = mIfindexToLastNetId.erase(iter);
} else {
++iter;
}
}
updateTcpSocketMonitorPolling();
return ret;
}
int NetworkController::addInterfaceToNetwork(unsigned netId, const char* interface) {
ScopedWLock lock(mRWLock);
if (!isValidNetworkLocked(netId)) {
ALOGE("no such netId %u", netId);
return -ENONET;
}
unsigned existingNetId = getNetworkForInterfaceLocked(interface);
if (existingNetId != NETID_UNSET && existingNetId != netId) {
ALOGE("interface %s already assigned to netId %u", interface, existingNetId);
return -EBUSY;
}
if (int ret = getNetworkLocked(netId)->addInterface(interface)) {
return ret;
}
// Only populate mIfindexToLastNetId for non-local networks, because for these getIfIndex will
// return 0. That's fine though, because that map is only used to prevent force-closing sockets
// when the same IP address is handed over from one interface to another interface that is in
// the same network but not in the same netId (for now this is done only on VPNs). That is not
// useful for the local network because IP addresses in the local network are always assigned by
// the device itself and never meaningful on any other network.
if (netId != LOCAL_NET_ID) {
int ifIndex = RouteController::getIfIndex(interface);
if (ifIndex) {
mIfindexToLastNetId[ifIndex] = netId;
} else {
// Cannot happen, since addInterface() above will have failed.
ALOGE("inconceivable! added interface %s with no index", interface);
}
}
return 0;
}
int NetworkController::removeInterfaceFromNetwork(unsigned netId, const char* interface) {
ScopedWLock lock(mRWLock);
if (!isValidNetworkLocked(netId)) {
ALOGE("no such netId %u", netId);
return -ENONET;
}
return getNetworkLocked(netId)->removeInterface(interface);
}
Permission NetworkController::getPermissionForUser(uid_t uid) const {
ScopedRLock lock(mRWLock);
return getPermissionForUserLocked(uid);
}
void NetworkController::setPermissionForUsers(Permission permission,
const std::vector<uid_t>& uids) {
ScopedWLock lock(mRWLock);
for (uid_t uid : uids) {
mUsers[uid] = permission;
}
}
int NetworkController::checkUserNetworkAccess(uid_t uid, unsigned netId) const {
ScopedRLock lock(mRWLock);
return checkUserNetworkAccessLocked(uid, netId);
}
int NetworkController::setPermissionForNetworks(Permission permission,
const std::vector<unsigned>& netIds) {
ScopedWLock lock(mRWLock);
for (unsigned netId : netIds) {
Network* network = getNetworkLocked(netId);
if (!network) {
ALOGE("no such netId %u", netId);
return -ENONET;
}
if (!network->isPhysical()) {
ALOGE("cannot set permissions on non-physical network with netId %u", netId);
return -EINVAL;
}
if (int ret = static_cast<PhysicalNetwork*>(network)->setPermission(permission)) {
return ret;
}
}
return 0;
}
namespace {
int isWrongNetworkForUidRanges(unsigned netId, Network* network) {
if (!network) {
ALOGE("no such netId %u", netId);
return -ENONET;
}
if (!network->canAddUsers()) {
ALOGE("cannot add/remove users to/from %s network %u", network->getTypeString().c_str(),
netId);
return -EINVAL;
}
return 0;
}
} // namespace
int NetworkController::addUsersToNetwork(unsigned netId, const UidRanges& uidRanges,
int32_t subPriority) {
ScopedWLock lock(mRWLock);
Network* network = getNetworkLocked(netId);
if (int ret = isWrongNetworkForUidRanges(netId, network)) {
return ret;
}
return network->addUsers(uidRanges, subPriority);
}
int NetworkController::removeUsersFromNetwork(unsigned netId, const UidRanges& uidRanges,
int32_t subPriority) {
ScopedWLock lock(mRWLock);
Network* network = getNetworkLocked(netId);
if (int ret = isWrongNetworkForUidRanges(netId, network)) {
return ret;
}
return network->removeUsers(uidRanges, subPriority);
}
int NetworkController::addRoute(unsigned netId, const char* interface, const char* destination,
const char* nexthop, bool legacy, uid_t uid, int mtu) {
return modifyRoute(netId, interface, destination, nexthop, ROUTE_ADD, legacy, uid, mtu);
}
int NetworkController::updateRoute(unsigned netId, const char* interface, const char* destination,
const char* nexthop, bool legacy, uid_t uid, int mtu) {
return modifyRoute(netId, interface, destination, nexthop, ROUTE_UPDATE, legacy, uid, mtu);
}
int NetworkController::removeRoute(unsigned netId, const char* interface, const char* destination,
const char* nexthop, bool legacy, uid_t uid) {
return modifyRoute(netId, interface, destination, nexthop, ROUTE_REMOVE, legacy, uid, 0);
}
void NetworkController::addInterfaceAddress(unsigned ifIndex, const char* address) {
ScopedWLock lock(mRWLock);
if (ifIndex == 0) {
ALOGE("Attempting to add address %s without ifindex", address);
return;
}
mAddressToIfindices[address].insert(ifIndex);
}
// Returns whether we should call SOCK_DESTROY on the removed address.
bool NetworkController::removeInterfaceAddress(unsigned ifindex, const char* address) {
ScopedWLock lock(mRWLock);
// First, update mAddressToIfindices map
auto ifindicesIter = mAddressToIfindices.find(address);
if (ifindicesIter == mAddressToIfindices.end()) {
ALOGE("Removing unknown address %s from ifindex %u", address, ifindex);
return true;
}
std::unordered_set<unsigned>& ifindices = ifindicesIter->second;
if (ifindices.erase(ifindex) > 0) {
if (ifindices.size() == 0) {
mAddressToIfindices.erase(ifindicesIter); // Invalidates ifindices
// The address is no longer configured on any interface.
return true;
}
} else {
ALOGE("No record of address %s on interface %u", address, ifindex);
return true;
}
// Then, check for VPN handover condition
if (mIfindexToLastNetId.find(ifindex) == mIfindexToLastNetId.end()) {
ALOGW("Interface index %u was never in a currently-connected non-local netId", ifindex);
return true;
}
unsigned lastNetId = mIfindexToLastNetId[ifindex];
for (unsigned idx : ifindices) {
unsigned activeNetId = mIfindexToLastNetId[idx];
// If this IP address is still assigned to another interface in the same network,
// then we don't need to destroy sockets on it because they are likely still valid.
// For now we do this only on VPNs.
// TODO: evaluate extending this to all network types.
if (lastNetId == activeNetId && isVirtualNetworkLocked(activeNetId)) {
return false;
}
}
return true;
}
bool NetworkController::canProtectLocked(uid_t uid) const {
return ((getPermissionForUserLocked(uid) & PERMISSION_SYSTEM) == PERMISSION_SYSTEM) ||
mProtectableUsers.find(uid) != mProtectableUsers.end();
}
bool NetworkController::canProtect(uid_t uid) const {
ScopedRLock lock(mRWLock);
return canProtectLocked(uid);
}
void NetworkController::allowProtect(const std::vector<uid_t>& uids) {
ScopedWLock lock(mRWLock);
mProtectableUsers.insert(uids.begin(), uids.end());
}
void NetworkController::denyProtect(const std::vector<uid_t>& uids) {
ScopedWLock lock(mRWLock);
for (uid_t uid : uids) {
mProtectableUsers.erase(uid);
}
}
void NetworkController::dump(DumpWriter& dw) {
ScopedRLock lock(mRWLock);
dw.incIndent();
dw.println("NetworkController");
dw.incIndent();
dw.println("Default network: %u", mDefaultNetId);
dw.blankline();
dw.println("Networks:");
dw.incIndent();
for (const auto& i : mNetworks) {
Network* network = i.second;
dw.println(network->toString());
if (network->isPhysical()) {
dw.incIndent();
Permission permission = reinterpret_cast<PhysicalNetwork*>(network)->getPermission();
dw.println("Required permission: %s", permissionToName(permission));
dw.decIndent();
}
if (const auto& str = network->uidRangesToString(); !str.empty()) {
dw.incIndent();
dw.println(str);
dw.decIndent();
}
dw.blankline();
}
dw.decIndent();
dw.blankline();
dw.println("Interface <-> last network map:");
dw.incIndent();
for (const auto& i : mIfindexToLastNetId) {
dw.println("Ifindex: %u NetId: %u", i.first, i.second);
}
dw.decIndent();
dw.blankline();
dw.println("Interface addresses:");
dw.incIndent();
for (const auto& i : mAddressToIfindices) {
dw.println("address: %s ifindices: [%s]", i.first.c_str(),
android::base::Join(i.second, ", ").c_str());
}
dw.decIndent();
dw.blankline();
dw.println("Permission of users:");
dw.incIndent();
std::vector<uid_t> systemUids;
std::vector<uid_t> networkUids;
for (const auto& [uid, permission] : mUsers) {
if ((permission & PERMISSION_SYSTEM) == PERMISSION_SYSTEM) {
systemUids.push_back(uid);
} else if ((permission & PERMISSION_NETWORK) == PERMISSION_NETWORK) {
networkUids.push_back(uid);
}
}
dw.println("NETWORK: %s", android::base::Join(networkUids, ", ").c_str());
dw.println("SYSTEM: %s", android::base::Join(systemUids, ", ").c_str());
dw.decIndent();
dw.decIndent();
dw.decIndent();
}
bool NetworkController::isValidNetworkLocked(unsigned netId) const {
return getNetworkLocked(netId);
}
Network* NetworkController::getNetworkLocked(unsigned netId) const {
auto iter = mNetworks.find(netId);
return iter == mNetworks.end() ? nullptr : iter->second;
}
VirtualNetwork* NetworkController::getVirtualNetworkForUserLocked(uid_t uid) const {
int32_t subPriority;
for (const auto& [_, network] : mNetworks) {
if (network->isVirtual() && network->appliesToUser(uid, &subPriority)) {
return static_cast<VirtualNetwork*>(network);
}
}
return nullptr;
}
// Returns the default network with the highest subsidiary priority among physical and unreachable
// networks that applies to uid. For a single subsidiary priority, an uid should belong to only one
// network. If the uid apply to different network with the same priority at the same time, the
// behavior is undefined. That is a configuration error.
Network* NetworkController::getPhysicalOrUnreachableNetworkForUserLocked(uid_t uid) const {
Network* bestNetwork = nullptr;
// In this function, appliesToUser() is used to figure out if this network is the user's default
// network (not just if the user has access to this network). Rules at SUB_PRIORITY_NO_DEFAULT
// "apply to the user" but do not include a default network rule. Since their subpriority (999)
// is greater than SUB_PRIORITY_LOWEST (998), these rules never trump any subpriority that
// includes a default network rule (appliesToUser returns the "highest" (=lowest value)
// subPriority that includes the uid), and they get filtered out in the if-statement below.
int32_t bestSubPriority = UidRanges::SUB_PRIORITY_NO_DEFAULT;
for (const auto& [netId, network] : mNetworks) {
int32_t subPriority;
if (!network->isPhysical() && !network->isUnreachable()) continue;
if (!network->appliesToUser(uid, &subPriority)) continue;
if (subPriority == UidRanges::SUB_PRIORITY_NO_DEFAULT) continue;
if (subPriority < bestSubPriority) {
bestNetwork = network;
bestSubPriority = subPriority;
}
}
return bestNetwork;
}
Permission NetworkController::getPermissionForUserLocked(uid_t uid) const {
auto iter = mUsers.find(uid);
if (iter != mUsers.end()) {
return iter->second;
}
return uid < FIRST_APPLICATION_UID ? PERMISSION_SYSTEM : PERMISSION_NONE;
}
int NetworkController::checkUserNetworkAccessLocked(uid_t uid, unsigned netId) const {
Network* network = getNetworkLocked(netId);
if (!network) {
return -ENONET;
}
// If uid is INVALID_UID, this likely means that we were unable to retrieve the UID of the peer
// (using SO_PEERCRED). Be safe and deny access to the network, even if it's valid.
if (uid == INVALID_UID) {
return -EREMOTEIO;
}
// If the UID has PERMISSION_SYSTEM, it can use whatever network it wants.
Permission userPermission = getPermissionForUserLocked(uid);
if ((userPermission & PERMISSION_SYSTEM) == PERMISSION_SYSTEM) {
return 0;
}
// If the UID wants to use a VPN, it can do so if and only if the VPN applies to the UID.
int32_t subPriority;
if (network->isVirtual()) {
return network->appliesToUser(uid, &subPriority) ? 0 : -EPERM;
}
// If a VPN applies to the UID, and the VPN is secure (i.e., not bypassable), then the UID can
// only select a different network if it has the ability to protect its sockets.
VirtualNetwork* virtualNetwork = getVirtualNetworkForUserLocked(uid);
if (virtualNetwork && virtualNetwork->isSecure() &&
mProtectableUsers.find(uid) == mProtectableUsers.end()) {
return -EPERM;
}
// If the UID wants to use a physical network and it has a UID range that includes the UID, the
// UID has permission to use it regardless of whether the permission bits match.
if (network->isPhysical() && network->appliesToUser(uid, &subPriority)) {
return 0;
}
// Only apps that are configured as "no default network" can use the unreachable network.
if (network->isUnreachable()) {
return network->appliesToUser(uid, &subPriority) ? 0 : -EPERM;
}
// Check whether the UID's permission bits are sufficient to use the network.
// Because the permission of the system default network is PERMISSION_NONE(0x0), apps can always
// pass the check here when using the system default network.
Permission networkPermission = static_cast<PhysicalNetwork*>(network)->getPermission();
return ((userPermission & networkPermission) == networkPermission) ? 0 : -EACCES;
}
int NetworkController::modifyRoute(unsigned netId, const char* interface, const char* destination,
const char* nexthop, enum RouteOperation op, bool legacy,
uid_t uid, int mtu) {
ScopedRLock lock(mRWLock);
if (!isValidNetworkLocked(netId)) {
ALOGE("no such netId %u", netId);
return -ENONET;
}
unsigned existingNetId = getNetworkForInterfaceLocked(interface);
if (existingNetId == NETID_UNSET) {
ALOGE("interface %s not assigned to any netId", interface);
return -ENODEV;
}
if (existingNetId != netId) {
ALOGE("interface %s assigned to netId %u, not %u", interface, existingNetId, netId);
return -ENOENT;
}
RouteController::TableType tableType;
if (netId == LOCAL_NET_ID) {
tableType = RouteController::LOCAL_NETWORK;
} else if (legacy) {
if ((getPermissionForUserLocked(uid) & PERMISSION_SYSTEM) == PERMISSION_SYSTEM) {
tableType = RouteController::LEGACY_SYSTEM;
} else {
tableType = RouteController::LEGACY_NETWORK;
}
} else {
tableType = RouteController::INTERFACE;
}
switch (op) {
case ROUTE_ADD:
return RouteController::addRoute(interface, destination, nexthop, tableType, mtu,
0 /* priority */);
case ROUTE_UPDATE:
return RouteController::updateRoute(interface, destination, nexthop, tableType, mtu);
case ROUTE_REMOVE:
return RouteController::removeRoute(interface, destination, nexthop, tableType,
0 /* priority */);
}
return -EINVAL;
}
int NetworkController::modifyFallthroughLocked(unsigned vpnNetId, bool add) {
if (mDefaultNetId == NETID_UNSET) {
return 0;
}
Network* network = getNetworkLocked(mDefaultNetId);
if (!network) {
ALOGE("cannot find previously set default network with netId %u", mDefaultNetId);
return -ESRCH;
}
if (!network->isPhysical()) {
ALOGE("inconceivable! default network must be a physical network");
return -EINVAL;
}
Permission permission = static_cast<PhysicalNetwork*>(network)->getPermission();
for (const auto& physicalInterface : network->getInterfaces()) {
if (int ret = mDelegateImpl->modifyFallthrough(vpnNetId, physicalInterface, permission,
add)) {
return ret;
}
}
return 0;
}
void NetworkController::updateTcpSocketMonitorPolling() {
bool physicalNetworkExists = false;
for (const auto& entry : mNetworks) {
const auto& network = entry.second;
if (network->isPhysical() && network->getNetId() >= MIN_NET_ID) {
physicalNetworkExists = true;
break;
}
}
if (physicalNetworkExists) {
android::net::gCtls->tcpSocketMonitor.resumePolling();
} else {
android::net::gCtls->tcpSocketMonitor.suspendPolling();
}
}
} // namespace android::net