blob: a63788d2e4f16bdb2aa98c169b5e7f07181f64a3 [file] [log] [blame]
/*
* Copyright 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* binder_test.cpp - unit tests for netd binder RPCs.
*/
#include <cerrno>
#include <chrono>
#include <cinttypes>
#include <condition_variable>
#include <cstdint>
#include <cstdlib>
#include <iostream>
#include <mutex>
#include <numeric>
#include <regex>
#include <set>
#include <string>
#include <vector>
#include <dirent.h>
#include <fcntl.h>
#include <ifaddrs.h>
#include <linux/if.h>
#include <linux/if_tun.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <netdb.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <openssl/base64.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <android-base/file.h>
#include <android-base/format.h>
#include <android-base/macros.h>
#include <android-base/scopeguard.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android/multinetwork.h>
#include <binder/IPCThreadState.h>
#include <bpf/BpfMap.h>
#include <bpf/BpfUtils.h>
#include <com/android/internal/net/BnOemNetdUnsolicitedEventListener.h>
#include <com/android/internal/net/IOemNetd.h>
#include <cutils/multiuser.h>
#include <gtest/gtest.h>
#include <netdutils/NetNativeTestBase.h>
#include <netutils/ifc.h>
#include <utils/Errors.h>
#include "Fwmark.h"
#include "InterfaceController.h"
#include "NetdClient.h"
#include "NetdConstants.h"
#include "NetworkController.h"
#include "RouteController.h"
#include "SockDiag.h"
#include "TestUnsolService.h"
#include "XfrmController.h"
#include "android/net/INetd.h"
#include "android/net/mdns/aidl/BnMDnsEventListener.h"
#include "android/net/mdns/aidl/DiscoveryInfo.h"
#include "android/net/mdns/aidl/GetAddressInfo.h"
#include "android/net/mdns/aidl/IMDns.h"
#include "android/net/mdns/aidl/RegistrationInfo.h"
#include "android/net/mdns/aidl/ResolutionInfo.h"
#include "binder/IServiceManager.h"
#include "netdutils/InternetAddresses.h"
#include "netdutils/Stopwatch.h"
#include "netdutils/Syscalls.h"
#include "netdutils/Utils.h"
#include "netid_client.h" // NETID_UNSET
#include "nettestutils/DumpService.h"
#include "test_utils.h"
#include "tun_interface.h"
#define IP6TABLES_PATH "/system/bin/ip6tables"
#define IPTABLES_PATH "/system/bin/iptables"
#define RAW_TABLE "raw"
#define MANGLE_TABLE "mangle"
#define FILTER_TABLE "filter"
#define NAT_TABLE "nat"
namespace binder = android::binder;
using android::IBinder;
using android::IServiceManager;
using android::sp;
using android::String16;
using android::String8;
using android::base::Join;
using android::base::make_scope_guard;
using android::base::ReadFileToString;
using android::base::StartsWith;
using android::base::StringPrintf;
using android::base::Trim;
using android::base::unique_fd;
using android::binder::Status;
using android::net::INetd;
using android::net::InterfaceConfigurationParcel;
using android::net::InterfaceController;
using android::net::MarkMaskParcel;
using android::net::NativeNetworkConfig;
using android::net::NativeNetworkType;
using android::net::NativeVpnType;
using android::net::RULE_PRIORITY_BYPASSABLE_VPN_LOCAL_EXCLUSION;
using android::net::RULE_PRIORITY_BYPASSABLE_VPN_NO_LOCAL_EXCLUSION;
using android::net::RULE_PRIORITY_DEFAULT_NETWORK;
using android::net::RULE_PRIORITY_EXPLICIT_NETWORK;
using android::net::RULE_PRIORITY_LOCAL_ROUTES;
using android::net::RULE_PRIORITY_OUTPUT_INTERFACE;
using android::net::RULE_PRIORITY_PROHIBIT_NON_VPN;
using android::net::RULE_PRIORITY_SECURE_VPN;
using android::net::RULE_PRIORITY_TETHERING;
using android::net::RULE_PRIORITY_UID_DEFAULT_NETWORK;
using android::net::RULE_PRIORITY_UID_DEFAULT_UNREACHABLE;
using android::net::RULE_PRIORITY_UID_EXPLICIT_NETWORK;
using android::net::RULE_PRIORITY_UID_IMPLICIT_NETWORK;
using android::net::RULE_PRIORITY_UID_LOCAL_ROUTES;
using android::net::RULE_PRIORITY_VPN_FALLTHROUGH;
using android::net::SockDiag;
using android::net::TetherOffloadRuleParcel;
using android::net::TetherStatsParcel;
using android::net::TunInterface;
using android::net::UidRangeParcel;
using android::net::UidRanges;
using android::net::V4_FIXED_LOCAL_PREFIXES;
using android::net::mdns::aidl::DiscoveryInfo;
using android::net::mdns::aidl::GetAddressInfo;
using android::net::mdns::aidl::IMDns;
using android::net::mdns::aidl::RegistrationInfo;
using android::net::mdns::aidl::ResolutionInfo;
using android::net::netd::aidl::NativeUidRangeConfig;
using android::netdutils::getIfaceNames;
using android::netdutils::IPAddress;
using android::netdutils::IPSockAddr;
using android::netdutils::ScopedAddrinfo;
using android::netdutils::sSyscalls;
using android::netdutils::Stopwatch;
static const char* IP_RULE_V4 = "-4";
static const char* IP_RULE_V6 = "-6";
static const int TEST_NETID1 = 65501;
static const int TEST_NETID2 = 65502;
static const int TEST_NETID3 = 65503;
static const int TEST_NETID4 = 65504;
static const int TEST_DUMP_NETID = 65123;
static const char* DNSMASQ = "dnsmasq";
// Use maximum reserved appId for applications to avoid conflict with existing
// uids.
static const int TEST_UID1 = 99999;
static const int TEST_UID2 = 99998;
static const int TEST_UID3 = 99997;
static const int TEST_UID4 = 99996;
static const int TEST_UID5 = 99995;
static const int TEST_UID6 = 99994;
constexpr int BASE_UID = AID_USER_OFFSET * 5;
static const std::string NO_SOCKET_ALLOW_RULE("! owner UID match 0-4294967294");
static const std::string ESP_ALLOW_RULE("esp");
static const in6_addr V6_ADDR = {
{// 2001:db8:cafe::8888
.u6_addr8 = {0x20, 0x01, 0x0d, 0xb8, 0xca, 0xfe, 0, 0, 0, 0, 0, 0, 0, 0, 0x88, 0x88}}};
class NetdBinderTest : public NetNativeTestBase {
public:
NetdBinderTest() {
sp<IServiceManager> sm = android::defaultServiceManager();
sp<IBinder> binder = sm->getService(String16("netd"));
if (binder != nullptr) {
mNetd = android::interface_cast<INetd>(binder);
}
}
void SetUp() override {
ASSERT_NE(nullptr, mNetd.get());
}
void TearDown() override {
mNetd->networkDestroy(TEST_NETID1);
mNetd->networkDestroy(TEST_NETID2);
mNetd->networkDestroy(TEST_NETID3);
mNetd->networkDestroy(TEST_NETID4);
setNetworkForProcess(NETID_UNSET);
// Restore default network
if (mStoredDefaultNetwork >= 0) mNetd->networkSetDefault(mStoredDefaultNetwork);
}
bool allocateIpSecResources(bool expectOk, int32_t* spi);
// Static because setting up the tun interface takes about 40ms.
static void SetUpTestCase() {
ASSERT_EQ(0, sTun.init());
ASSERT_EQ(0, sTun2.init());
ASSERT_EQ(0, sTun3.init());
ASSERT_EQ(0, sTun4.init());
ASSERT_LE(sTun.name().size(), static_cast<size_t>(IFNAMSIZ));
ASSERT_LE(sTun2.name().size(), static_cast<size_t>(IFNAMSIZ));
ASSERT_LE(sTun3.name().size(), static_cast<size_t>(IFNAMSIZ));
ASSERT_LE(sTun4.name().size(), static_cast<size_t>(IFNAMSIZ));
}
static void TearDownTestCase() {
// Closing the socket removes the interface and IP addresses.
sTun.destroy();
sTun2.destroy();
sTun3.destroy();
sTun4.destroy();
}
static void fakeRemoteSocketPair(unique_fd* clientSocket, unique_fd* serverSocket,
unique_fd* acceptedSocket);
void createVpnNetworkWithUid(bool secure, uid_t uid, int vpnNetId = TEST_NETID2,
int fallthroughNetId = TEST_NETID1,
int nonDefaultNetId = TEST_NETID3);
void createAndSetDefaultNetwork(int netId, const std::string& interface,
int permission = INetd::PERMISSION_NONE);
void createPhysicalNetwork(int netId, const std::string& interface,
int permission = INetd::PERMISSION_NONE);
void createDefaultAndOtherPhysicalNetwork(int defaultNetId, int otherNetId);
void createVpnAndOtherPhysicalNetwork(int systemDefaultNetId, int otherNetId, int vpnNetId,
bool secure);
void createVpnAndAppDefaultNetworkWithUid(int systemDefaultNetId, int appDefaultNetId,
int vpnNetId, bool secure,
std::vector<UidRangeParcel>&& appDefaultUidRanges,
std::vector<UidRangeParcel>&& vpnUidRanges);
void setupNetworkRoutesForVpnAndDefaultNetworks(
int systemDefaultNetId, int appDefaultNetId, int vpnNetId, int otherNetId, bool secure,
bool excludeLocalRoutes, bool testV6, bool differentLocalAddr,
std::vector<UidRangeParcel>&& appDefaultUidRanges,
std::vector<UidRangeParcel>&& vpnUidRanges);
protected:
// Use -1 to represent that default network was not modified because
// real netId must be an unsigned value.
int mStoredDefaultNetwork = -1;
sp<INetd> mNetd;
static TunInterface sTun;
static TunInterface sTun2;
static TunInterface sTun3;
static TunInterface sTun4;
};
TunInterface NetdBinderTest::sTun;
TunInterface NetdBinderTest::sTun2;
TunInterface NetdBinderTest::sTun3;
TunInterface NetdBinderTest::sTun4;
class TimedOperation : public Stopwatch {
public:
explicit TimedOperation(const std::string &name): mName(name) {}
virtual ~TimedOperation() {
std::cerr << " " << mName << ": " << timeTakenUs() << "us" << std::endl;
}
private:
std::string mName;
};
TEST_F(NetdBinderTest, IsAlive) {
TimedOperation t("isAlive RPC");
bool isAlive = false;
mNetd->isAlive(&isAlive);
ASSERT_TRUE(isAlive);
}
namespace {
NativeNetworkConfig makeNativeNetworkConfig(int netId, NativeNetworkType networkType,
int permission, bool secure, bool excludeLocalRoutes) {
NativeNetworkConfig config = {};
config.netId = netId;
config.networkType = networkType;
config.permission = permission;
config.secure = secure;
// The vpnType doesn't matter in AOSP. Just pick a well defined one from INetd.
config.vpnType = NativeVpnType::PLATFORM;
config.excludeLocalRoutes = excludeLocalRoutes;
return config;
}
} // namespace
bool testNetworkExistsButCannotConnect(const sp<INetd>& netd, TunInterface& ifc, const int netId) {
// If this network exists, we should definitely not be able to create it.
// Note that this networkCreate is never allowed to create reserved network IDs, so
// this call may fail for other reasons than the network already existing.
const auto& config = makeNativeNetworkConfig(netId, NativeNetworkType::PHYSICAL,
INetd::PERMISSION_NONE, false, false);
EXPECT_FALSE(netd->networkCreate(config).isOk());
// Test if the network exist by adding interface. INetd has no dedicated method to query. When
// the network exists and the interface can be added, the function succeeds. When the network
// exists but the interface cannot be added, it fails with EINVAL, otherwise it is ENONET.
binder::Status status = netd->networkAddInterface(netId, ifc.name());
if (status.isOk()) { // clean up
EXPECT_TRUE(netd->networkRemoveInterface(netId, ifc.name()).isOk());
} else if (status.serviceSpecificErrorCode() == ENONET) {
return false;
}
const sockaddr_in6 sin6 = {.sin6_family = AF_INET6,
.sin6_addr = {{.u6_addr32 = {htonl(0x20010db8), 0, 0, 0}}},
.sin6_port = 53};
const int s = socket(AF_INET6, SOCK_DGRAM, 0);
EXPECT_NE(-1, s);
if (s == -1) return true;
Fwmark fwmark;
fwmark.explicitlySelected = true;
fwmark.netId = netId;
EXPECT_EQ(0, setsockopt(s, SOL_SOCKET, SO_MARK, &fwmark.intValue, sizeof(fwmark.intValue)));
const int ret = connect(s, (struct sockaddr*)&sin6, sizeof(sin6));
const int err = errno;
EXPECT_EQ(-1, ret);
EXPECT_EQ(ENETUNREACH, err);
close(s);
return true;
}
TEST_F(NetdBinderTest, InitialNetworksExist) {
EXPECT_TRUE(testNetworkExistsButCannotConnect(mNetd, sTun, INetd::DUMMY_NET_ID));
EXPECT_TRUE(testNetworkExistsButCannotConnect(mNetd, sTun, INetd::LOCAL_NET_ID));
EXPECT_TRUE(testNetworkExistsButCannotConnect(mNetd, sTun, INetd::UNREACHABLE_NET_ID));
EXPECT_FALSE(testNetworkExistsButCannotConnect(mNetd, sTun, 77 /* not exist */));
}
TEST_F(NetdBinderTest, IpSecTunnelInterface) {
const struct TestData {
const std::string family;
const std::string deviceName;
const std::string localAddress;
const std::string remoteAddress;
int32_t iKey;
int32_t oKey;
int32_t ifId;
} kTestData[] = {
{"IPV4", "ipsec_test", "127.0.0.1", "8.8.8.8", 0x1234 + 53, 0x1234 + 53, 0xFFFE},
{"IPV6", "ipsec_test6", "::1", "2001:4860:4860::8888", 0x1234 + 50, 0x1234 + 50,
0xFFFE},
};
for (size_t i = 0; i < std::size(kTestData); i++) {
const auto& td = kTestData[i];
binder::Status status;
// Create Tunnel Interface.
status = mNetd->ipSecAddTunnelInterface(td.deviceName, td.localAddress, td.remoteAddress,
td.iKey, td.oKey, td.ifId);
EXPECT_TRUE(status.isOk()) << td.family << status.exceptionMessage();
// Check that the interface exists
EXPECT_NE(0U, if_nametoindex(td.deviceName.c_str()));
// Update Tunnel Interface.
status = mNetd->ipSecUpdateTunnelInterface(td.deviceName, td.localAddress, td.remoteAddress,
td.iKey, td.oKey, td.ifId);
EXPECT_TRUE(status.isOk()) << td.family << status.exceptionMessage();
// Remove Tunnel Interface.
status = mNetd->ipSecRemoveTunnelInterface(td.deviceName);
EXPECT_TRUE(status.isOk()) << td.family << status.exceptionMessage();
// Check that the interface no longer exists
EXPECT_EQ(0U, if_nametoindex(td.deviceName.c_str()));
}
}
TEST_F(NetdBinderTest, IpSecSetEncapSocketOwner) {
unique_fd uniqueFd(socket(AF_INET, SOCK_DGRAM | SOCK_CLOEXEC, 0));
android::os::ParcelFileDescriptor sockFd(std::move(uniqueFd));
int sockOptVal = UDP_ENCAP_ESPINUDP;
setsockopt(sockFd.get(), IPPROTO_UDP, UDP_ENCAP, &sockOptVal, sizeof(sockOptVal));
binder::Status res = mNetd->ipSecSetEncapSocketOwner(sockFd, 1001);
EXPECT_TRUE(res.isOk());
struct stat info;
EXPECT_EQ(0, fstat(sockFd.get(), &info));
EXPECT_EQ(1001, (int) info.st_uid);
}
// IPsec tests are not run in 32 bit mode; both 32-bit kernels and
// mismatched ABIs (64-bit kernel with 32-bit userspace) are unsupported.
#if INTPTR_MAX != INT32_MAX
using android::net::XfrmController;
static const int XFRM_DIRECTIONS[] = {static_cast<int>(android::net::XfrmDirection::IN),
static_cast<int>(android::net::XfrmDirection::OUT)};
static const int ADDRESS_FAMILIES[] = {AF_INET, AF_INET6};
#define RETURN_FALSE_IF_NEQ(_expect_, _ret_) \
do { if ((_expect_) != (_ret_)) return false; } while(false)
bool NetdBinderTest::allocateIpSecResources(bool expectOk, int32_t* spi) {
android::netdutils::Status status = XfrmController::ipSecAllocateSpi(0, "::", "::1", 123, spi);
SCOPED_TRACE(status);
RETURN_FALSE_IF_NEQ(status.ok(), expectOk);
// Add a policy
status = XfrmController::ipSecAddSecurityPolicy(0, AF_INET6, 0, "::", "::1", 123, 0, 0, 0);
SCOPED_TRACE(status);
RETURN_FALSE_IF_NEQ(status.ok(), expectOk);
// Add an ipsec interface
return expectOk == XfrmController::ipSecAddTunnelInterface("ipsec_test", "::", "::1", 0xF00D,
0xD00D, 0xE00D, false)
.ok();
}
TEST_F(NetdBinderTest, XfrmDualSelectorTunnelModePoliciesV4) {
android::binder::Status status;
// Repeat to ensure cleanup and recreation works correctly
for (int i = 0; i < 2; i++) {
for (int direction : XFRM_DIRECTIONS) {
for (int addrFamily : ADDRESS_FAMILIES) {
status = mNetd->ipSecAddSecurityPolicy(0, addrFamily, direction, "127.0.0.5",
"127.0.0.6", 123, 0, 0, 0);
EXPECT_TRUE(status.isOk())
<< " family: " << addrFamily << " direction: " << direction;
}
}
// Cleanup
for (int direction : XFRM_DIRECTIONS) {
for (int addrFamily : ADDRESS_FAMILIES) {
status = mNetd->ipSecDeleteSecurityPolicy(0, addrFamily, direction, 0, 0, 0);
EXPECT_TRUE(status.isOk());
}
}
}
}
TEST_F(NetdBinderTest, XfrmDualSelectorTunnelModePoliciesV6) {
binder::Status status;
// Repeat to ensure cleanup and recreation works correctly
for (int i = 0; i < 2; i++) {
for (int direction : XFRM_DIRECTIONS) {
for (int addrFamily : ADDRESS_FAMILIES) {
status = mNetd->ipSecAddSecurityPolicy(0, addrFamily, direction, "2001:db8::f00d",
"2001:db8::d00d", 123, 0, 0, 0);
EXPECT_TRUE(status.isOk())
<< " family: " << addrFamily << " direction: " << direction;
}
}
// Cleanup
for (int direction : XFRM_DIRECTIONS) {
for (int addrFamily : ADDRESS_FAMILIES) {
status = mNetd->ipSecDeleteSecurityPolicy(0, addrFamily, direction, 0, 0, 0);
EXPECT_TRUE(status.isOk());
}
}
}
}
TEST_F(NetdBinderTest, XfrmControllerInit) {
android::netdutils::Status status;
status = XfrmController::Init();
SCOPED_TRACE(status);
// Older devices or devices with mismatched Kernel/User ABI cannot support the IPsec
// feature.
if (status.code() == EOPNOTSUPP) return;
ASSERT_TRUE(status.ok());
int32_t spi = 0;
ASSERT_TRUE(allocateIpSecResources(true, &spi));
ASSERT_TRUE(allocateIpSecResources(false, &spi));
status = XfrmController::Init();
ASSERT_TRUE(status.ok());
ASSERT_TRUE(allocateIpSecResources(true, &spi));
// Clean up
status = XfrmController::ipSecDeleteSecurityAssociation(0, "::", "::1", 123, spi, 0, 0);
SCOPED_TRACE(status);
ASSERT_TRUE(status.ok());
status = XfrmController::ipSecDeleteSecurityPolicy(0, AF_INET6, 0, 0, 0, 0);
SCOPED_TRACE(status);
ASSERT_TRUE(status.ok());
// Remove Virtual Tunnel Interface.
ASSERT_TRUE(XfrmController::ipSecRemoveTunnelInterface("ipsec_test").ok());
}
#endif // INTPTR_MAX != INT32_MAX
static int bandwidthDataSaverEnabled(const char *binary) {
std::vector<std::string> lines = listIptablesRule(binary, "bw_data_saver");
// Output looks like this:
//
// Chain bw_data_saver (1 references)
// target prot opt source destination
// RETURN all -- 0.0.0.0/0 0.0.0.0/0
//
// or:
//
// Chain bw_data_saver (1 references)
// target prot opt source destination
// ... possibly connectivity critical packet rules here ...
// REJECT all -- ::/0 ::/0
EXPECT_GE(lines.size(), 3U);
if (lines.size() == 3 && StartsWith(lines[2], "RETURN ")) {
// Data saver disabled.
return 0;
}
size_t minSize = (std::string(binary) == IPTABLES_PATH) ? 3 : 9;
if (lines.size() >= minSize && StartsWith(lines[lines.size() -1], "REJECT ")) {
// Data saver enabled.
return 1;
}
return -1;
}
bool enableDataSaver(sp<INetd>& netd, bool enable) {
TimedOperation op(enable ? " Enabling data saver" : "Disabling data saver");
bool ret;
netd->bandwidthEnableDataSaver(enable, &ret);
return ret;
}
int getDataSaverState() {
const int enabled4 = bandwidthDataSaverEnabled(IPTABLES_PATH);
const int enabled6 = bandwidthDataSaverEnabled(IP6TABLES_PATH);
EXPECT_EQ(enabled4, enabled6);
EXPECT_NE(-1, enabled4);
EXPECT_NE(-1, enabled6);
if (enabled4 != enabled6 || (enabled6 != 0 && enabled6 != 1)) {
return -1;
}
return enabled6;
}
TEST_F(NetdBinderTest, BandwidthEnableDataSaver) {
const int wasEnabled = getDataSaverState();
ASSERT_NE(-1, wasEnabled);
if (wasEnabled) {
ASSERT_TRUE(enableDataSaver(mNetd, false));
EXPECT_EQ(0, getDataSaverState());
}
ASSERT_TRUE(enableDataSaver(mNetd, false));
EXPECT_EQ(0, getDataSaverState());
ASSERT_TRUE(enableDataSaver(mNetd, true));
EXPECT_EQ(1, getDataSaverState());
ASSERT_TRUE(enableDataSaver(mNetd, true));
EXPECT_EQ(1, getDataSaverState());
if (!wasEnabled) {
ASSERT_TRUE(enableDataSaver(mNetd, false));
EXPECT_EQ(0, getDataSaverState());
}
}
static bool ipRuleExistsForRange(const uint32_t priority, const UidRangeParcel& range,
const std::string& action, const char* ipVersion,
const char* oif) {
// Output looks like this:
// "<priority>:\tfrom all iif lo oif netdc0ca6 uidrange 500000-500000 lookup netdc0ca6"
// "<priority>:\tfrom all fwmark 0x0/0x20000 iif lo uidrange 1000-2000 prohibit"
std::vector<std::string> rules = listIpRules(ipVersion);
std::string prefix = StringPrintf("%" PRIu32 ":", priority);
std::string suffix;
if (oif) {
suffix = StringPrintf(" iif lo oif %s uidrange %d-%d %s\n", oif, range.start, range.stop,
action.c_str());
} else {
suffix = StringPrintf(" iif lo uidrange %d-%d %s\n", range.start, range.stop,
action.c_str());
}
for (const auto& line : rules) {
if (android::base::StartsWith(line, prefix) && android::base::EndsWith(line, suffix)) {
return true;
}
}
return false;
}
// Overloads function with oif parameter for VPN rules compare.
static bool ipRuleExistsForRange(const uint32_t priority, const UidRangeParcel& range,
const std::string& action, const char* oif) {
bool existsIp4 = ipRuleExistsForRange(priority, range, action, IP_RULE_V4, oif);
bool existsIp6 = ipRuleExistsForRange(priority, range, action, IP_RULE_V6, oif);
EXPECT_EQ(existsIp4, existsIp6);
return existsIp4;
}
static bool ipRuleExistsForRange(const uint32_t priority, const UidRangeParcel& range,
const std::string& action) {
return ipRuleExistsForRange(priority, range, action, nullptr);
}
namespace {
UidRangeParcel makeUidRangeParcel(int start, int stop) {
UidRangeParcel res;
res.start = start;
res.stop = stop;
return res;
}
UidRangeParcel makeUidRangeParcel(int uid) {
return makeUidRangeParcel(uid, uid);
}
NativeUidRangeConfig makeNativeUidRangeConfig(unsigned netId, std::vector<UidRangeParcel> uidRanges,
int32_t subPriority) {
NativeUidRangeConfig res;
res.netId = netId;
res.uidRanges = std::move(uidRanges);
res.subPriority = subPriority;
return res;
}
} // namespace
TEST_F(NetdBinderTest, NetworkInterfaces) {
auto config = makeNativeNetworkConfig(TEST_NETID1, NativeNetworkType::PHYSICAL,
INetd::PERMISSION_NONE, false, false);
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
EXPECT_EQ(EEXIST, mNetd->networkCreate(config).serviceSpecificErrorCode());
config.networkType = NativeNetworkType::VIRTUAL;
config.secure = true;
EXPECT_EQ(EEXIST, mNetd->networkCreate(config).serviceSpecificErrorCode());
config.netId = TEST_NETID2;
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID1, sTun.name()).isOk());
EXPECT_EQ(EBUSY,
mNetd->networkAddInterface(TEST_NETID2, sTun.name()).serviceSpecificErrorCode());
EXPECT_TRUE(mNetd->networkDestroy(TEST_NETID1).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID2, sTun.name()).isOk());
EXPECT_TRUE(mNetd->networkDestroy(TEST_NETID2).isOk());
EXPECT_EQ(ENONET, mNetd->networkDestroy(TEST_NETID1).serviceSpecificErrorCode());
}
TEST_F(NetdBinderTest, NetworkUidRules) {
auto config = makeNativeNetworkConfig(TEST_NETID1, NativeNetworkType::VIRTUAL,
INetd::PERMISSION_NONE, true, false);
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
EXPECT_EQ(EEXIST, mNetd->networkCreate(config).serviceSpecificErrorCode());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID1, sTun.name()).isOk());
std::vector<UidRangeParcel> uidRanges = {makeUidRangeParcel(BASE_UID + 8005, BASE_UID + 8012),
makeUidRangeParcel(BASE_UID + 8090, BASE_UID + 8099)};
UidRangeParcel otherRange = makeUidRangeParcel(BASE_UID + 8190, BASE_UID + 8299);
std::string action = StringPrintf("lookup %s ", sTun.name().c_str());
EXPECT_TRUE(mNetd->networkAddUidRanges(TEST_NETID1, uidRanges).isOk());
EXPECT_TRUE(ipRuleExistsForRange(RULE_PRIORITY_SECURE_VPN, uidRanges[0], action));
EXPECT_FALSE(ipRuleExistsForRange(RULE_PRIORITY_SECURE_VPN, otherRange, action));
EXPECT_TRUE(mNetd->networkRemoveUidRanges(TEST_NETID1, uidRanges).isOk());
EXPECT_FALSE(ipRuleExistsForRange(RULE_PRIORITY_SECURE_VPN, uidRanges[0], action));
EXPECT_TRUE(mNetd->networkAddUidRanges(TEST_NETID1, uidRanges).isOk());
EXPECT_TRUE(ipRuleExistsForRange(RULE_PRIORITY_SECURE_VPN, uidRanges[1], action));
EXPECT_TRUE(mNetd->networkDestroy(TEST_NETID1).isOk());
EXPECT_FALSE(ipRuleExistsForRange(RULE_PRIORITY_SECURE_VPN, uidRanges[1], action));
EXPECT_EQ(ENONET, mNetd->networkDestroy(TEST_NETID1).serviceSpecificErrorCode());
}
TEST_F(NetdBinderTest, NetworkRejectNonSecureVpn) {
std::vector<UidRangeParcel> uidRanges = {makeUidRangeParcel(BASE_UID + 150, BASE_UID + 224),
makeUidRangeParcel(BASE_UID + 226, BASE_UID + 300)};
// Make sure no rules existed before calling commands.
for (auto const& range : uidRanges) {
EXPECT_FALSE(ipRuleExistsForRange(RULE_PRIORITY_PROHIBIT_NON_VPN, range, "prohibit"));
}
// Create two valid rules.
ASSERT_TRUE(mNetd->networkRejectNonSecureVpn(true, uidRanges).isOk());
for (auto const& range : uidRanges) {
EXPECT_TRUE(ipRuleExistsForRange(RULE_PRIORITY_PROHIBIT_NON_VPN, range, "prohibit"));
}
// Remove the rules.
ASSERT_TRUE(mNetd->networkRejectNonSecureVpn(false, uidRanges).isOk());
for (auto const& range : uidRanges) {
EXPECT_FALSE(ipRuleExistsForRange(RULE_PRIORITY_PROHIBIT_NON_VPN, range, "prohibit"));
}
// Fail to remove the rules a second time after they are already deleted.
binder::Status status = mNetd->networkRejectNonSecureVpn(false, uidRanges);
ASSERT_EQ(binder::Status::EX_SERVICE_SPECIFIC, status.exceptionCode());
EXPECT_EQ(ENOENT, status.serviceSpecificErrorCode());
}
// Create a socket pair that isLoopbackSocket won't think is local.
void NetdBinderTest::fakeRemoteSocketPair(unique_fd* clientSocket, unique_fd* serverSocket,
unique_fd* acceptedSocket) {
serverSocket->reset(socket(AF_INET6, SOCK_STREAM | SOCK_CLOEXEC, 0));
struct sockaddr_in6 server6 = { .sin6_family = AF_INET6, .sin6_addr = sTun.dstAddr() };
ASSERT_EQ(0, bind(*serverSocket, (struct sockaddr *) &server6, sizeof(server6)));
socklen_t addrlen = sizeof(server6);
ASSERT_EQ(0, getsockname(*serverSocket, (struct sockaddr *) &server6, &addrlen));
ASSERT_EQ(0, listen(*serverSocket, 10));
clientSocket->reset(socket(AF_INET6, SOCK_STREAM | SOCK_CLOEXEC, 0));
struct sockaddr_in6 client6 = { .sin6_family = AF_INET6, .sin6_addr = sTun.srcAddr() };
ASSERT_EQ(0, bind(*clientSocket, (struct sockaddr *) &client6, sizeof(client6)));
ASSERT_EQ(0, connect(*clientSocket, (struct sockaddr *) &server6, sizeof(server6)));
ASSERT_EQ(0, getsockname(*clientSocket, (struct sockaddr *) &client6, &addrlen));
acceptedSocket->reset(
accept4(*serverSocket, (struct sockaddr*)&server6, &addrlen, SOCK_CLOEXEC));
ASSERT_NE(-1, *acceptedSocket);
ASSERT_EQ(0, memcmp(&client6, &server6, sizeof(client6)));
}
void checkSocketpairOpen(int clientSocket, int acceptedSocket) {
char buf[4096];
EXPECT_EQ(4, write(clientSocket, "foo", sizeof("foo")));
EXPECT_EQ(4, read(acceptedSocket, buf, sizeof(buf)));
EXPECT_EQ(0, memcmp(buf, "foo", sizeof("foo")));
}
void checkSocketpairClosed(int clientSocket, int acceptedSocket) {
// Check that the client socket was closed with ECONNABORTED.
int ret = write(clientSocket, "foo", sizeof("foo"));
int err = errno;
EXPECT_EQ(-1, ret);
EXPECT_EQ(ECONNABORTED, err);
// Check that it sent a RST to the server.
ret = write(acceptedSocket, "foo", sizeof("foo"));
err = errno;
EXPECT_EQ(-1, ret);
EXPECT_EQ(ECONNRESET, err);
}
TEST_F(NetdBinderTest, SocketDestroy) {
unique_fd clientSocket, serverSocket, acceptedSocket;
ASSERT_NO_FATAL_FAILURE(fakeRemoteSocketPair(&clientSocket, &serverSocket, &acceptedSocket));
// Pick a random UID in the system UID range.
constexpr int baseUid = AID_APP - 2000;
static_assert(baseUid > 0, "Not enough UIDs? Please fix this test.");
int uid = baseUid + 500 + arc4random_uniform(1000);
EXPECT_EQ(0, fchown(clientSocket, uid, -1));
// UID ranges that don't contain uid.
std::vector<UidRangeParcel> uidRanges = {
makeUidRangeParcel(baseUid + 42, baseUid + 449),
makeUidRangeParcel(baseUid + 1536, AID_APP - 4),
makeUidRangeParcel(baseUid + 498, uid - 1),
makeUidRangeParcel(uid + 1, baseUid + 1520),
};
// A skip list that doesn't contain UID.
std::vector<int32_t> skipUids { baseUid + 123, baseUid + 1600 };
// Close sockets. Our test socket should be intact.
EXPECT_TRUE(mNetd->socketDestroy(uidRanges, skipUids).isOk());
checkSocketpairOpen(clientSocket, acceptedSocket);
// UID ranges that do contain uid.
uidRanges = {
makeUidRangeParcel(baseUid + 42, baseUid + 449),
makeUidRangeParcel(baseUid + 1536, AID_APP - 4),
makeUidRangeParcel(baseUid + 498, baseUid + 1520),
};
// Add uid to the skip list.
skipUids.push_back(uid);
// Close sockets. Our test socket should still be intact because it's in the skip list.
EXPECT_TRUE(mNetd->socketDestroy(uidRanges, skipUids).isOk());
checkSocketpairOpen(clientSocket, acceptedSocket);
// Now remove uid from skipUids, and close sockets. Our test socket should have been closed.
skipUids.resize(skipUids.size() - 1);
EXPECT_TRUE(mNetd->socketDestroy(uidRanges, skipUids).isOk());
checkSocketpairClosed(clientSocket, acceptedSocket);
}
TEST_F(NetdBinderTest, SocketDestroyLinkLocal) {
// Add the same link-local address to two interfaces.
const char* kLinkLocalAddress = "fe80::ace:d00d";
const struct addrinfo hints = {
.ai_family = AF_INET6,
.ai_socktype = SOCK_STREAM,
.ai_flags = AI_NUMERICHOST,
};
binder::Status status = mNetd->interfaceAddAddress(sTun.name(), kLinkLocalAddress, 64);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
status = mNetd->interfaceAddAddress(sTun2.name(), kLinkLocalAddress, 64);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
// Bind a listening socket to the address on each of two interfaces.
// The sockets must be open at the same time, because this test checks that SOCK_DESTROY only
// destroys the sockets on the interface where the address is deleted.
struct addrinfo* addrinfoList = nullptr;
int ret = getaddrinfo(kLinkLocalAddress, nullptr, &hints, &addrinfoList);
ScopedAddrinfo addrinfoCleanup(addrinfoList);
ASSERT_EQ(0, ret);
socklen_t len = addrinfoList[0].ai_addrlen;
sockaddr_in6 sin6_1 = *reinterpret_cast<sockaddr_in6*>(addrinfoList[0].ai_addr);
sockaddr_in6 sin6_2 = sin6_1;
sin6_1.sin6_scope_id = if_nametoindex(sTun.name().c_str());
sin6_2.sin6_scope_id = if_nametoindex(sTun2.name().c_str());
int s1 = socket(AF_INET6, SOCK_STREAM | SOCK_NONBLOCK, 0);
ASSERT_EQ(0, bind(s1, reinterpret_cast<sockaddr*>(&sin6_1), len));
ASSERT_EQ(0, getsockname(s1, reinterpret_cast<sockaddr*>(&sin6_1), &len));
// getsockname technically writes to len, but sizeof(sockaddr_in6) doesn't change.
int s2 = socket(AF_INET6, SOCK_STREAM | SOCK_NONBLOCK, 0);
ASSERT_EQ(0, bind(s2, reinterpret_cast<sockaddr*>(&sin6_2), len));
ASSERT_EQ(0, getsockname(s2, reinterpret_cast<sockaddr*>(&sin6_2), &len));
ASSERT_EQ(0, listen(s1, 10));
ASSERT_EQ(0, listen(s2, 10));
// Connect one client socket to each and accept the connections.
int c1 = socket(AF_INET6, SOCK_STREAM, 0);
int c2 = socket(AF_INET6, SOCK_STREAM, 0);
ASSERT_EQ(0, connect(c1, reinterpret_cast<sockaddr*>(&sin6_1), len));
ASSERT_EQ(0, connect(c2, reinterpret_cast<sockaddr*>(&sin6_2), len));
int a1 = accept(s1, nullptr, 0);
ASSERT_NE(-1, a1);
int a2 = accept(s2, nullptr, 0);
ASSERT_NE(-1, a2);
// Delete the address on sTun2.
status = mNetd->interfaceDelAddress(sTun2.name(), kLinkLocalAddress, 64);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
// The client sockets on sTun2 are closed, but the ones on sTun1 remain open.
char buf[1024];
EXPECT_EQ(-1, read(c2, buf, sizeof(buf)));
EXPECT_EQ(ECONNABORTED, errno);
// The blocking read above ensures that SOCK_DESTROY has completed.
EXPECT_EQ(3, write(a1, "foo", 3));
EXPECT_EQ(3, read(c1, buf, sizeof(buf)));
EXPECT_EQ(-1, write(a2, "foo", 3));
EXPECT_TRUE(errno == ECONNABORTED || errno == ECONNRESET);
// Check the server sockets too.
EXPECT_EQ(-1, accept(s1, nullptr, 0));
EXPECT_EQ(EAGAIN, errno);
EXPECT_EQ(-1, accept(s2, nullptr, 0));
EXPECT_EQ(EINVAL, errno);
}
namespace {
int netmaskToPrefixLength(const uint8_t *buf, size_t buflen) {
if (buf == nullptr) return -1;
int prefixLength = 0;
bool endOfContiguousBits = false;
for (unsigned int i = 0; i < buflen; i++) {
const uint8_t value = buf[i];
// Bad bit sequence: check for a contiguous set of bits from the high
// end by verifying that the inverted value + 1 is a power of 2
// (power of 2 iff. (v & (v - 1)) == 0).
const uint8_t inverse = ~value + 1;
if ((inverse & (inverse - 1)) != 0) return -1;
prefixLength += (value == 0) ? 0 : CHAR_BIT - ffs(value) + 1;
// Bogus netmask.
if (endOfContiguousBits && value != 0) return -1;
if (value != 0xff) endOfContiguousBits = true;
}
return prefixLength;
}
template<typename T>
int netmaskToPrefixLength(const T *p) {
return netmaskToPrefixLength(reinterpret_cast<const uint8_t*>(p), sizeof(T));
}
static bool interfaceHasAddress(
const std::string &ifname, const char *addrString, int prefixLength) {
struct addrinfo *addrinfoList = nullptr;
const struct addrinfo hints = {
.ai_flags = AI_NUMERICHOST,
.ai_family = AF_UNSPEC,
.ai_socktype = SOCK_DGRAM,
};
if (getaddrinfo(addrString, nullptr, &hints, &addrinfoList) != 0 ||
addrinfoList == nullptr || addrinfoList->ai_addr == nullptr) {
return false;
}
ScopedAddrinfo addrinfoCleanup(addrinfoList);
struct ifaddrs *ifaddrsList = nullptr;
ScopedIfaddrs ifaddrsCleanup(ifaddrsList);
if (getifaddrs(&ifaddrsList) != 0) {
return false;
}
for (struct ifaddrs *addr = ifaddrsList; addr != nullptr; addr = addr->ifa_next) {
if (std::string(addr->ifa_name) != ifname ||
addr->ifa_addr == nullptr ||
addr->ifa_addr->sa_family != addrinfoList->ai_addr->sa_family) {
continue;
}
switch (addr->ifa_addr->sa_family) {
case AF_INET: {
auto *addr4 = reinterpret_cast<const struct sockaddr_in*>(addr->ifa_addr);
auto *want = reinterpret_cast<const struct sockaddr_in*>(addrinfoList->ai_addr);
if (memcmp(&addr4->sin_addr, &want->sin_addr, sizeof(want->sin_addr)) != 0) {
continue;
}
if (prefixLength < 0) return true; // not checking prefix lengths
if (addr->ifa_netmask == nullptr) return false;
auto *nm = reinterpret_cast<const struct sockaddr_in*>(addr->ifa_netmask);
EXPECT_EQ(prefixLength, netmaskToPrefixLength(&nm->sin_addr));
return (prefixLength == netmaskToPrefixLength(&nm->sin_addr));
}
case AF_INET6: {
auto *addr6 = reinterpret_cast<const struct sockaddr_in6*>(addr->ifa_addr);
auto *want = reinterpret_cast<const struct sockaddr_in6*>(addrinfoList->ai_addr);
if (memcmp(&addr6->sin6_addr, &want->sin6_addr, sizeof(want->sin6_addr)) != 0) {
continue;
}
if (prefixLength < 0) return true; // not checking prefix lengths
if (addr->ifa_netmask == nullptr) return false;
auto *nm = reinterpret_cast<const struct sockaddr_in6*>(addr->ifa_netmask);
EXPECT_EQ(prefixLength, netmaskToPrefixLength(&nm->sin6_addr));
return (prefixLength == netmaskToPrefixLength(&nm->sin6_addr));
}
default:
// Cannot happen because we have already screened for matching
// address families at the top of each iteration.
continue;
}
}
return false;
}
} // namespace
TEST_F(NetdBinderTest, InterfaceAddRemoveAddress) {
static const struct TestData {
const char *addrString;
const int prefixLength;
const int expectAddResult;
const int expectRemoveResult;
} kTestData[] = {
{"192.0.2.1", 24, 0, 0},
{"192.0.2.2", 25, 0, 0},
{"192.0.2.3", 32, 0, 0},
{"192.0.2.4", 33, EINVAL, EADDRNOTAVAIL},
{"192.not.an.ip", 24, EINVAL, EINVAL},
{"2001:db8::1", 64, 0, 0},
{"2001:db8::2", 65, 0, 0},
{"2001:db8::3", 128, 0, 0},
{"fe80::1234", 64, 0, 0},
{"2001:db8::4", 129, EINVAL, EINVAL},
{"foo:bar::bad", 64, EINVAL, EINVAL},
{"2001:db8::1/64", 64, EINVAL, EINVAL},
};
for (size_t i = 0; i < std::size(kTestData); i++) {
const auto &td = kTestData[i];
SCOPED_TRACE(String8::format("Offending IP address %s/%d", td.addrString, td.prefixLength));
// [1.a] Add the address.
binder::Status status = mNetd->interfaceAddAddress(
sTun.name(), td.addrString, td.prefixLength);
if (td.expectAddResult == 0) {
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
} else {
ASSERT_EQ(binder::Status::EX_SERVICE_SPECIFIC, status.exceptionCode());
ASSERT_EQ(td.expectAddResult, status.serviceSpecificErrorCode());
}
// [1.b] Verify the addition meets the expectation.
if (td.expectAddResult == 0) {
EXPECT_TRUE(interfaceHasAddress(sTun.name(), td.addrString, td.prefixLength));
} else {
EXPECT_FALSE(interfaceHasAddress(sTun.name(), td.addrString, -1));
}
// [2.a] Try to remove the address. If it was not previously added, removing it fails.
status = mNetd->interfaceDelAddress(sTun.name(), td.addrString, td.prefixLength);
if (td.expectRemoveResult == 0) {
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
} else {
ASSERT_EQ(binder::Status::EX_SERVICE_SPECIFIC, status.exceptionCode());
ASSERT_EQ(td.expectRemoveResult, status.serviceSpecificErrorCode());
}
// [2.b] No matter what, the address should not be present.
EXPECT_FALSE(interfaceHasAddress(sTun.name(), td.addrString, -1));
}
// Check that netlink errors are returned correctly.
// We do this by attempting to create an IPv6 address on an interface that has IPv6 disabled,
// which returns EACCES.
TunInterface tun;
ASSERT_EQ(0, tun.init());
binder::Status status =
mNetd->setProcSysNet(INetd::IPV6, INetd::CONF, tun.name(), "disable_ipv6", "1");
ASSERT_TRUE(status.isOk()) << status.exceptionMessage();
status = mNetd->interfaceAddAddress(tun.name(), "2001:db8::1", 64);
EXPECT_EQ(binder::Status::EX_SERVICE_SPECIFIC, status.exceptionCode());
EXPECT_EQ(EACCES, status.serviceSpecificErrorCode());
tun.destroy();
}
TEST_F(NetdBinderTest, GetProcSysNet) {
const char* LOOPBACK = "lo";
static const struct {
const int ipversion;
const int which;
const char* ifname;
const char* parameter;
const char* expectedValue;
const int expectedReturnCode;
} kTestData[] = {
{INetd::IPV4, INetd::CONF, LOOPBACK, "arp_ignore", "0", 0},
{-1, INetd::CONF, sTun.name().c_str(), "arp_ignore", nullptr, EAFNOSUPPORT},
{INetd::IPV4, -1, sTun.name().c_str(), "arp_ignore", nullptr, EINVAL},
{INetd::IPV4, INetd::CONF, "..", "conf/lo/arp_ignore", nullptr, EINVAL},
{INetd::IPV4, INetd::CONF, ".", "lo/arp_ignore", nullptr, EINVAL},
{INetd::IPV4, INetd::CONF, sTun.name().c_str(), "../all/arp_ignore", nullptr, EINVAL},
{INetd::IPV6, INetd::NEIGH, LOOPBACK, "ucast_solicit", "3", 0},
};
for (size_t i = 0; i < std::size(kTestData); i++) {
const auto& td = kTestData[i];
std::string value;
const binder::Status status =
mNetd->getProcSysNet(td.ipversion, td.which, td.ifname, td.parameter, &value);
if (td.expectedReturnCode == 0) {
SCOPED_TRACE(String8::format("test case %zu should have passed", i));
EXPECT_EQ(0, status.exceptionCode());
EXPECT_EQ(0, status.serviceSpecificErrorCode());
EXPECT_EQ(td.expectedValue, value);
} else {
SCOPED_TRACE(String8::format("test case %zu should have failed", i));
EXPECT_EQ(binder::Status::EX_SERVICE_SPECIFIC, status.exceptionCode());
EXPECT_EQ(td.expectedReturnCode, status.serviceSpecificErrorCode());
}
}
}
TEST_F(NetdBinderTest, SetProcSysNet) {
static const struct {
const int ipversion;
const int which;
const char* ifname;
const char* parameter;
const char* value;
const int expectedReturnCode;
} kTestData[] = {
{INetd::IPV4, INetd::CONF, sTun.name().c_str(), "arp_ignore", "1", 0},
{-1, INetd::CONF, sTun.name().c_str(), "arp_ignore", "1", EAFNOSUPPORT},
{INetd::IPV4, -1, sTun.name().c_str(), "arp_ignore", "1", EINVAL},
{INetd::IPV4, INetd::CONF, "..", "conf/lo/arp_ignore", "1", EINVAL},
{INetd::IPV4, INetd::CONF, ".", "lo/arp_ignore", "1", EINVAL},
{INetd::IPV4, INetd::CONF, sTun.name().c_str(), "../all/arp_ignore", "1", EINVAL},
{INetd::IPV6, INetd::NEIGH, sTun.name().c_str(), "ucast_solicit", "7", 0},
};
for (size_t i = 0; i < std::size(kTestData); i++) {
const auto& td = kTestData[i];
const binder::Status status =
mNetd->setProcSysNet(td.ipversion, td.which, td.ifname, td.parameter, td.value);
if (td.expectedReturnCode == 0) {
SCOPED_TRACE(String8::format("test case %zu should have passed", i));
EXPECT_EQ(0, status.exceptionCode());
EXPECT_EQ(0, status.serviceSpecificErrorCode());
} else {
SCOPED_TRACE(String8::format("test case %zu should have failed", i));
EXPECT_EQ(binder::Status::EX_SERVICE_SPECIFIC, status.exceptionCode());
EXPECT_EQ(td.expectedReturnCode, status.serviceSpecificErrorCode());
}
}
}
TEST_F(NetdBinderTest, GetSetProcSysNet) {
const int ipversion = INetd::IPV6;
const int category = INetd::NEIGH;
const std::string& tun = sTun.name();
const std::string parameter("ucast_solicit");
std::string value{};
EXPECT_TRUE(mNetd->getProcSysNet(ipversion, category, tun, parameter, &value).isOk());
ASSERT_FALSE(value.empty());
const int ival = std::stoi(value);
EXPECT_GT(ival, 0);
// Try doubling the parameter value (always best!).
EXPECT_TRUE(mNetd->setProcSysNet(ipversion, category, tun, parameter, std::to_string(2 * ival))
.isOk());
EXPECT_TRUE(mNetd->getProcSysNet(ipversion, category, tun, parameter, &value).isOk());
EXPECT_EQ(2 * ival, std::stoi(value));
// Try resetting the parameter.
EXPECT_TRUE(mNetd->setProcSysNet(ipversion, category, tun, parameter, std::to_string(ival))
.isOk());
EXPECT_TRUE(mNetd->getProcSysNet(ipversion, category, tun, parameter, &value).isOk());
EXPECT_EQ(ival, std::stoi(value));
}
namespace {
void expectNoTestCounterRules() {
for (const auto& binary : { IPTABLES_PATH, IP6TABLES_PATH }) {
std::string command = StringPrintf("%s -w -nvL tetherctrl_counters", binary);
std::string allRules = Join(runCommand(command), "\n");
EXPECT_EQ(std::string::npos, allRules.find("netdtest_"));
}
}
void addTetherCounterValues(const char* path, const std::string& if1, const std::string& if2,
int byte, int pkt) {
runCommand(StringPrintf("%s -w -A tetherctrl_counters -i %s -o %s -j RETURN -c %d %d",
path, if1.c_str(), if2.c_str(), pkt, byte));
}
void delTetherCounterValues(const char* path, const std::string& if1, const std::string& if2) {
runCommand(StringPrintf("%s -w -D tetherctrl_counters -i %s -o %s -j RETURN",
path, if1.c_str(), if2.c_str()));
runCommand(StringPrintf("%s -w -D tetherctrl_counters -i %s -o %s -j RETURN",
path, if2.c_str(), if1.c_str()));
}
std::vector<int64_t> getStatsVectorByIf(const std::vector<TetherStatsParcel>& statsVec,
const std::string& iface) {
for (auto& stats : statsVec) {
if (stats.iface == iface) {
return {stats.rxBytes, stats.rxPackets, stats.txBytes, stats.txPackets};
}
}
return {};
}
} // namespace
TEST_F(NetdBinderTest, TetherGetStats) {
expectNoTestCounterRules();
// TODO: fold this into more comprehensive tests once we have binder RPCs for enabling and
// disabling tethering. We don't check the return value because these commands will fail if
// tethering is already enabled.
runCommand(StringPrintf("%s -w -N tetherctrl_counters", IPTABLES_PATH));
runCommand(StringPrintf("%s -w -N tetherctrl_counters", IP6TABLES_PATH));
std::string intIface1 = StringPrintf("netdtest_%u", arc4random_uniform(10000));
std::string intIface2 = StringPrintf("netdtest_%u", arc4random_uniform(10000));
std::string intIface3 = StringPrintf("netdtest_%u", arc4random_uniform(10000));
// Ensure we won't use the same interface name, otherwise the test will fail.
u_int32_t rNumber = arc4random_uniform(10000);
std::string extIface1 = StringPrintf("netdtest_%u", rNumber);
std::string extIface2 = StringPrintf("netdtest_%u", rNumber + 1);
addTetherCounterValues(IPTABLES_PATH, intIface1, extIface1, 123, 111);
addTetherCounterValues(IP6TABLES_PATH, intIface1, extIface1, 456, 10);
addTetherCounterValues(IPTABLES_PATH, extIface1, intIface1, 321, 222);
addTetherCounterValues(IP6TABLES_PATH, extIface1, intIface1, 654, 20);
// RX is from external to internal, and TX is from internal to external.
// So rxBytes is 321 + 654 = 975, txBytes is 123 + 456 = 579, etc.
std::vector<int64_t> expected1 = { 975, 242, 579, 121 };
addTetherCounterValues(IPTABLES_PATH, intIface2, extIface2, 1000, 333);
addTetherCounterValues(IP6TABLES_PATH, intIface2, extIface2, 3000, 30);
addTetherCounterValues(IPTABLES_PATH, extIface2, intIface2, 2000, 444);
addTetherCounterValues(IP6TABLES_PATH, extIface2, intIface2, 4000, 40);
addTetherCounterValues(IP6TABLES_PATH, intIface3, extIface2, 1000, 25);
addTetherCounterValues(IP6TABLES_PATH, extIface2, intIface3, 2000, 35);
std::vector<int64_t> expected2 = { 8000, 519, 5000, 388 };
std::vector<TetherStatsParcel> statsVec;
binder::Status status = mNetd->tetherGetStats(&statsVec);
EXPECT_TRUE(status.isOk()) << "Getting tethering stats failed: " << status;
EXPECT_EQ(expected1, getStatsVectorByIf(statsVec, extIface1));
EXPECT_EQ(expected2, getStatsVectorByIf(statsVec, extIface2));
for (const auto& path : { IPTABLES_PATH, IP6TABLES_PATH }) {
delTetherCounterValues(path, intIface1, extIface1);
delTetherCounterValues(path, intIface2, extIface2);
if (strcmp(path, IP6TABLES_PATH) == 0) {
delTetherCounterValues(path, intIface3, extIface2);
}
}
expectNoTestCounterRules();
}
namespace {
constexpr char IDLETIMER_RAW_PREROUTING[] = "idletimer_raw_PREROUTING";
constexpr char IDLETIMER_MANGLE_POSTROUTING[] = "idletimer_mangle_POSTROUTING";
static std::vector<std::string> listIptablesRuleByTable(const char* binary, const char* table,
const char* chainName) {
std::string command = StringPrintf("%s -t %s -w -n -v -L %s", binary, table, chainName);
return runCommand(command);
}
// TODO: It is a duplicate function, need to remove it
bool iptablesIdleTimerInterfaceRuleExists(const char* binary, const char* chainName,
const std::string& expectedInterface,
const std::string& expectedRule, const char* table) {
std::vector<std::string> rules = listIptablesRuleByTable(binary, table, chainName);
for (const auto& rule : rules) {
if (rule.find(expectedInterface) != std::string::npos) {
if (rule.find(expectedRule) != std::string::npos) {
return true;
}
}
}
return false;
}
void expectIdletimerInterfaceRuleExists(const std::string& ifname, int timeout,
const std::string& classLabel) {
std::string IdletimerRule =
StringPrintf("timeout:%u label:%s send_nl_msg", timeout, classLabel.c_str());
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_TRUE(iptablesIdleTimerInterfaceRuleExists(binary, IDLETIMER_RAW_PREROUTING, ifname,
IdletimerRule, RAW_TABLE));
EXPECT_TRUE(iptablesIdleTimerInterfaceRuleExists(binary, IDLETIMER_MANGLE_POSTROUTING,
ifname, IdletimerRule, MANGLE_TABLE));
}
}
void expectIdletimerInterfaceRuleNotExists(const std::string& ifname, int timeout,
const std::string& classLabel) {
std::string IdletimerRule =
StringPrintf("timeout:%u label:%s send_nl_msg", timeout, classLabel.c_str());
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_FALSE(iptablesIdleTimerInterfaceRuleExists(binary, IDLETIMER_RAW_PREROUTING, ifname,
IdletimerRule, RAW_TABLE));
EXPECT_FALSE(iptablesIdleTimerInterfaceRuleExists(binary, IDLETIMER_MANGLE_POSTROUTING,
ifname, IdletimerRule, MANGLE_TABLE));
}
}
} // namespace
TEST_F(NetdBinderTest, IdletimerAddRemoveInterface) {
// TODO: We will get error in if expectIdletimerInterfaceRuleNotExists if there are the same
// rule in the table. Because we only check the result after calling remove function. We might
// check the actual rule which is removed by our function (maybe compare the results between
// calling function before and after)
binder::Status status;
const struct TestData {
const std::string ifname;
int32_t timeout;
const std::string classLabel;
} idleTestData[] = {
{"wlan0", 1234, "happyday"},
{"rmnet_data0", 4567, "friday"},
};
for (const auto& td : idleTestData) {
status = mNetd->idletimerAddInterface(td.ifname, td.timeout, td.classLabel);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectIdletimerInterfaceRuleExists(td.ifname, td.timeout, td.classLabel);
status = mNetd->idletimerRemoveInterface(td.ifname, td.timeout, td.classLabel);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectIdletimerInterfaceRuleNotExists(td.ifname, td.timeout, td.classLabel);
}
}
namespace {
constexpr char STRICT_OUTPUT[] = "st_OUTPUT";
constexpr char STRICT_CLEAR_CAUGHT[] = "st_clear_caught";
// Output looks like this:
//
// IPv4:
//
// throw dst proto static scope link
// unreachable dst proto static scope link
// dst via nextHop dev ifName proto static
// dst dev ifName proto static scope link
//
// IPv6:
//
// throw dst dev lo proto static metric 1024
// unreachable dst dev lo proto static metric 1024
// dst via nextHop dev ifName proto static metric 1024
// dst dev ifName proto static metric 1024
std::string ipRoutePrefix(const std::string& ifName, const std::string& dst,
const std::string& nextHop) {
std::string prefixString;
bool isThrow = nextHop == "throw";
bool isUnreachable = nextHop == "unreachable";
bool isDefault = (dst == "0.0.0.0/0" || dst == "::/0");
bool isIPv6 = dst.find(':') != std::string::npos;
bool isThrowOrUnreachable = isThrow || isUnreachable;
if (isThrowOrUnreachable) {
prefixString += nextHop + " ";
}
prefixString += isDefault ? "default" : dst;
if (!nextHop.empty() && !isThrowOrUnreachable) {
prefixString += " via " + nextHop;
}
if (isThrowOrUnreachable) {
if (isIPv6) {
prefixString += " dev lo";
}
} else {
prefixString += " dev " + ifName;
}
prefixString += " proto static";
// IPv6 routes report the metric, IPv4 routes report the scope.
if (isIPv6) {
prefixString += " metric 1024";
} else {
if (nextHop.empty() || isThrowOrUnreachable) {
prefixString += " scope link";
}
}
return prefixString;
}
void expectStrictSetUidAccept(const int uid) {
std::string uidRule = StringPrintf("owner UID match %u", uid);
std::string perUidChain = StringPrintf("st_clear_caught_%u", uid);
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_FALSE(iptablesRuleExists(binary, STRICT_OUTPUT, uidRule));
EXPECT_FALSE(iptablesRuleExists(binary, STRICT_CLEAR_CAUGHT, uidRule));
EXPECT_EQ(0, iptablesRuleLineLength(binary, perUidChain.c_str()));
}
}
void expectStrictSetUidLog(const int uid) {
static const char logRule[] = "st_penalty_log all";
std::string uidRule = StringPrintf("owner UID match %u", uid);
std::string perUidChain = StringPrintf("st_clear_caught_%u", uid);
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_TRUE(iptablesRuleExists(binary, STRICT_OUTPUT, uidRule));
EXPECT_TRUE(iptablesRuleExists(binary, STRICT_CLEAR_CAUGHT, uidRule));
EXPECT_TRUE(iptablesRuleExists(binary, perUidChain.c_str(), logRule));
}
}
void expectStrictSetUidReject(const int uid) {
static const char rejectRule[] = "st_penalty_reject all";
std::string uidRule = StringPrintf("owner UID match %u", uid);
std::string perUidChain = StringPrintf("st_clear_caught_%u", uid);
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_TRUE(iptablesRuleExists(binary, STRICT_OUTPUT, uidRule));
EXPECT_TRUE(iptablesRuleExists(binary, STRICT_CLEAR_CAUGHT, uidRule));
EXPECT_TRUE(iptablesRuleExists(binary, perUidChain.c_str(), rejectRule));
}
}
bool ipRuleExists(const char* ipVersion, const std::string& ipRule) {
std::vector<std::string> rules = listIpRules(ipVersion);
for (const auto& rule : rules) {
if (rule.find(ipRule) != std::string::npos) {
return true;
}
}
return false;
}
std::vector<std::string> ipRouteSubstrings(const std::string& ifName, const std::string& dst,
const std::string& nextHop, const std::string& mtu) {
std::vector<std::string> routeSubstrings;
routeSubstrings.push_back(ipRoutePrefix(ifName, dst, nextHop));
if (!mtu.empty()) {
// Add separate substring to match mtu value.
// This is needed because on some devices "error -11"/"error -113" appears between ip prefix
// and mtu for throw/unreachable routes.
routeSubstrings.push_back("mtu " + mtu);
}
return routeSubstrings;
}
void expectNetworkRouteDoesNotExistWithMtu(const char* ipVersion, const std::string& ifName,
const std::string& dst, const std::string& nextHop,
const std::string& mtu, const char* table) {
std::vector<std::string> routeSubstrings = ipRouteSubstrings(ifName, dst, nextHop, mtu);
EXPECT_FALSE(ipRouteExists(ipVersion, table, routeSubstrings))
<< "Found unexpected route [" << Join(routeSubstrings, ", ") << "] in table " << table;
}
void expectNetworkRouteExistsWithMtu(const char* ipVersion, const std::string& ifName,
const std::string& dst, const std::string& nextHop,
const std::string& mtu, const char* table) {
std::vector<std::string> routeSubstrings = ipRouteSubstrings(ifName, dst, nextHop, mtu);
EXPECT_TRUE(ipRouteExists(ipVersion, table, routeSubstrings))
<< "Couldn't find route to " << dst << ": [" << Join(routeSubstrings, ", ")
<< "] in table " << table;
}
void expectVpnLocalExclusionRuleExists(const std::string& ifName, bool expectExists) {
std::string tableName = std::string(ifName + "_local");
// Check if rule exists
std::string vpnLocalExclusionRule =
StringPrintf("%d:\tfrom all fwmark 0x0/0x10000 iif lo lookup %s",
RULE_PRIORITY_LOCAL_ROUTES, tableName.c_str());
for (const auto& ipVersion : {IP_RULE_V4, IP_RULE_V6}) {
EXPECT_EQ(expectExists, ipRuleExists(ipVersion, vpnLocalExclusionRule));
}
}
void expectNetworkRouteExists(const char* ipVersion, const std::string& ifName,
const std::string& dst, const std::string& nextHop,
const char* table) {
expectNetworkRouteExistsWithMtu(ipVersion, ifName, dst, nextHop, "", table);
}
void expectNetworkRouteDoesNotExist(const char* ipVersion, const std::string& ifName,
const std::string& dst, const std::string& nextHop,
const char* table) {
expectNetworkRouteDoesNotExistWithMtu(ipVersion, ifName, dst, nextHop, "", table);
}
void expectNetworkDefaultIpRuleExists(const char* ifName) {
std::string networkDefaultRule =
StringPrintf("%u:\tfrom all fwmark 0x0/0xffff iif lo lookup %s",
RULE_PRIORITY_DEFAULT_NETWORK, ifName);
for (const auto& ipVersion : {IP_RULE_V4, IP_RULE_V6}) {
EXPECT_TRUE(ipRuleExists(ipVersion, networkDefaultRule));
}
}
void expectNetworkDefaultIpRuleDoesNotExist() {
std::string networkDefaultRule =
StringPrintf("%u:\tfrom all fwmark 0x0/0xffff iif lo", RULE_PRIORITY_DEFAULT_NETWORK);
for (const auto& ipVersion : {IP_RULE_V4, IP_RULE_V6}) {
EXPECT_FALSE(ipRuleExists(ipVersion, networkDefaultRule));
}
}
void expectNetworkPermissionIpRuleExists(const char* ifName, int permission) {
std::string networkPermissionRule = "";
switch (permission) {
case INetd::PERMISSION_NONE:
networkPermissionRule =
StringPrintf("%u:\tfrom all fwmark 0x1ffdd/0x1ffff iif lo lookup %s",
RULE_PRIORITY_EXPLICIT_NETWORK, ifName);
break;
case INetd::PERMISSION_NETWORK:
networkPermissionRule =
StringPrintf("%u:\tfrom all fwmark 0x5ffdd/0x5ffff iif lo lookup %s",
RULE_PRIORITY_EXPLICIT_NETWORK, ifName);
break;
case INetd::PERMISSION_SYSTEM:
networkPermissionRule =
StringPrintf("%u:\tfrom all fwmark 0xdffdd/0xdffff iif lo lookup %s",
RULE_PRIORITY_EXPLICIT_NETWORK, ifName);
break;
}
for (const auto& ipVersion : {IP_RULE_V4, IP_RULE_V6}) {
EXPECT_TRUE(ipRuleExists(ipVersion, networkPermissionRule));
}
}
// TODO: It is a duplicate function, need to remove it
bool iptablesNetworkPermissionIptablesRuleExists(const char* binary, const char* chainName,
const std::string& expectedInterface,
const std::string& expectedRule,
const char* table) {
std::vector<std::string> rules = listIptablesRuleByTable(binary, table, chainName);
for (const auto& rule : rules) {
if (rule.find(expectedInterface) != std::string::npos) {
if (rule.find(expectedRule) != std::string::npos) {
return true;
}
}
}
return false;
}
void expectNetworkPermissionIptablesRuleExists(const char* ifName, int permission) {
static const char ROUTECTRL_INPUT[] = "routectrl_mangle_INPUT";
std::string networkIncomingPacketMarkRule = "";
switch (permission) {
case INetd::PERMISSION_NONE:
networkIncomingPacketMarkRule = "MARK xset 0x3ffdd/0xffefffff";
break;
case INetd::PERMISSION_NETWORK:
networkIncomingPacketMarkRule = "MARK xset 0x7ffdd/0xffefffff";
break;
case INetd::PERMISSION_SYSTEM:
networkIncomingPacketMarkRule = "MARK xset 0xfffdd/0xffefffff";
break;
}
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_TRUE(iptablesNetworkPermissionIptablesRuleExists(
binary, ROUTECTRL_INPUT, ifName, networkIncomingPacketMarkRule, MANGLE_TABLE));
}
}
} // namespace
TEST_F(NetdBinderTest, StrictSetUidCleartextPenalty) {
binder::Status status;
int32_t uid = randomUid();
// setUidCleartextPenalty Policy:Log with randomUid
status = mNetd->strictUidCleartextPenalty(uid, INetd::PENALTY_POLICY_LOG);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectStrictSetUidLog(uid);
// setUidCleartextPenalty Policy:Accept with randomUid
status = mNetd->strictUidCleartextPenalty(uid, INetd::PENALTY_POLICY_ACCEPT);
expectStrictSetUidAccept(uid);
// setUidCleartextPenalty Policy:Reject with randomUid
status = mNetd->strictUidCleartextPenalty(uid, INetd::PENALTY_POLICY_REJECT);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectStrictSetUidReject(uid);
// setUidCleartextPenalty Policy:Accept with randomUid
status = mNetd->strictUidCleartextPenalty(uid, INetd::PENALTY_POLICY_ACCEPT);
expectStrictSetUidAccept(uid);
// test wrong policy
int32_t wrongPolicy = -123;
status = mNetd->strictUidCleartextPenalty(uid, wrongPolicy);
EXPECT_EQ(EINVAL, status.serviceSpecificErrorCode());
}
namespace {
std::vector<std::string> tryToFindProcesses(const std::string& processName, uint32_t maxTries = 1,
uint32_t intervalMs = 50) {
// Output looks like:(clatd)
// clat 4963 850 1 12:16:51 ? 00:00:00 clatd-netd10a88 -i netd10a88 ...
// ...
// root 5221 5219 0 12:18:12 ? 00:00:00 sh -c ps -Af | grep ' clatd-netdcc1a0'
// (dnsmasq)
// dns_tether 4620 792 0 16:51:28 ? 00:00:00 dnsmasq --keep-in-foreground ...
if (maxTries == 0) return {};
std::string cmd = StringPrintf("ps -Af | grep '[0-9] %s'", processName.c_str());
std::vector<std::string> result;
for (uint32_t run = 1;;) {
result = runCommand(cmd);
if (result.size() || ++run > maxTries) {
break;
}
usleep(intervalMs * 1000);
}
return result;
}
void expectProcessExists(const std::string& processName) {
EXPECT_EQ(1U, tryToFindProcesses(processName, 5 /*maxTries*/).size());
}
void expectProcessDoesNotExist(const std::string& processName) {
EXPECT_FALSE(tryToFindProcesses(processName).size());
}
} // namespace
TEST_F(NetdBinderTest, NetworkAddRemoveRouteToLocalExcludeTable) {
static const struct {
const char* ipVersion;
const char* testDest;
const char* testNextHop;
const bool expectInLocalTable;
} kTestData[] = {{IP_RULE_V6, "::/0", "fe80::", false},
{IP_RULE_V6, "::/0", "", false},
{IP_RULE_V6, "2001:db8:cafe::/64", "fe80::", false},
{IP_RULE_V6, "fe80::/64", "", true},
{IP_RULE_V6, "2001:db8:cafe::/48", "", true},
{IP_RULE_V6, "2001:db8:cafe::/64", "unreachable", false},
{IP_RULE_V6, "2001:db8:ca00::/40", "", true},
{IP_RULE_V4, "0.0.0.0/0", "10.251.10.1", false},
{IP_RULE_V4, "192.1.0.0/16", "", false},
{IP_RULE_V4, "192.168.0.0/15", "", false},
{IP_RULE_V4, "192.168.0.0/16", "", true},
{IP_RULE_V4, "192.168.0.0/24", "", true},
{IP_RULE_V4, "100.1.0.0/16", "", false},
{IP_RULE_V4, "100.0.0.0/8", "", false},
{IP_RULE_V4, "100.64.0.0/10", "", true},
{IP_RULE_V4, "100.64.0.0/16", "", true},
{IP_RULE_V4, "100.64.0.0/10", "throw", false},
{IP_RULE_V4, "172.0.0.0/8", "", false},
{IP_RULE_V4, "172.16.0.0/12", "", true},
{IP_RULE_V4, "172.16.0.0/16", "", true},
{IP_RULE_V4, "172.16.0.0/12", "unreachable", false},
{IP_RULE_V4, "172.32.0.0/12", "", false},
{IP_RULE_V4, "169.0.0.0/8", "", false},
{IP_RULE_V4, "169.254.0.0/16", "", true},
{IP_RULE_V4, "169.254.0.0/20", "", true},
{IP_RULE_V4, "169.254.3.0/24", "", true},
{IP_RULE_V4, "170.254.0.0/16", "", false},
{IP_RULE_V4, "10.0.0.0/8", "", true},
{IP_RULE_V4, "10.0.0.0/7", "", false},
{IP_RULE_V4, "10.0.0.0/16", "", true},
{IP_RULE_V4, "10.251.0.0/16", "", true},
{IP_RULE_V4, "10.251.250.0/24", "", true},
{IP_RULE_V4, "10.251.10.2/31", "throw", false},
{IP_RULE_V4, "10.251.10.2/31", "unreachable", false}};
// To ensure that the nexthops for the above are reachable.
// Otherwise, the routes can't be created.
static const struct {
const char* ipVersion;
const char* testDest;
const char* testNextHop;
} kDirectlyConnectedRoutes[] = {
{IP_RULE_V4, "10.251.10.0/30", ""},
{IP_RULE_V6, "2001:db8::/32", ""},
};
// Add test physical network
const auto& config = makeNativeNetworkConfig(TEST_NETID1, NativeNetworkType::PHYSICAL,
INetd::PERMISSION_NONE, false, false);
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID1, sTun.name()).isOk());
// Get current default network NetId
binder::Status status = mNetd->networkGetDefault(&mStoredDefaultNetwork);
ASSERT_TRUE(status.isOk()) << status.exceptionMessage();
// Set default network
EXPECT_TRUE(mNetd->networkSetDefault(TEST_NETID1).isOk());
std::string localTableName = std::string(sTun.name() + "_local");
// Verify the fixed routes exist in the local table.
for (size_t i = 0; i < std::size(V4_FIXED_LOCAL_PREFIXES); i++) {
expectNetworkRouteExists(IP_RULE_V4, sTun.name(), V4_FIXED_LOCAL_PREFIXES[i], "",
localTableName.c_str());
}
// Set up link-local routes for connectivity to the "gateway"
for (size_t i = 0; i < std::size(kDirectlyConnectedRoutes); i++) {
const auto& td = kDirectlyConnectedRoutes[i];
binder::Status status =
mNetd->networkAddRoute(TEST_NETID1, sTun.name(), td.testDest, td.testNextHop);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkRouteExists(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
sTun.name().c_str());
// Verify routes in local table
expectNetworkRouteExists(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
localTableName.c_str());
}
for (size_t i = 0; i < std::size(kTestData); i++) {
const auto& td = kTestData[i];
SCOPED_TRACE(StringPrintf("case ip:%s, dest:%s, nexHop:%s, expect:%d", td.ipVersion,
td.testDest, td.testNextHop, td.expectInLocalTable));
binder::Status status =
mNetd->networkAddRoute(TEST_NETID1, sTun.name(), td.testDest, td.testNextHop);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
// Verify routes in local table
if (td.expectInLocalTable) {
expectNetworkRouteExists(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
localTableName.c_str());
} else {
expectNetworkRouteDoesNotExist(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
localTableName.c_str());
}
status = mNetd->networkRemoveRoute(TEST_NETID1, sTun.name(), td.testDest, td.testNextHop);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkRouteDoesNotExist(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
localTableName.c_str());
}
for (size_t i = 0; i < std::size(kDirectlyConnectedRoutes); i++) {
const auto& td = kDirectlyConnectedRoutes[i];
status = mNetd->networkRemoveRoute(TEST_NETID1, sTun.name(), td.testDest, td.testNextHop);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
}
// Set default network back
status = mNetd->networkSetDefault(mStoredDefaultNetwork);
// Remove test physical network
EXPECT_TRUE(mNetd->networkDestroy(TEST_NETID1).isOk());
}
namespace {
bool getIpfwdV4Enable() {
static const char ipv4IpfwdCmd[] = "cat /proc/sys/net/ipv4/ip_forward";
std::vector<std::string> result = runCommand(ipv4IpfwdCmd);
EXPECT_TRUE(!result.empty());
int v4Enable = std::stoi(result[0]);
return v4Enable;
}
bool getIpfwdV6Enable() {
static const char ipv6IpfwdCmd[] = "cat /proc/sys/net/ipv6/conf/all/forwarding";
std::vector<std::string> result = runCommand(ipv6IpfwdCmd);
EXPECT_TRUE(!result.empty());
int v6Enable = std::stoi(result[0]);
return v6Enable;
}
void expectIpfwdEnable(bool enable) {
int enableIPv4 = getIpfwdV4Enable();
int enableIPv6 = getIpfwdV6Enable();
EXPECT_EQ(enable, enableIPv4);
EXPECT_EQ(enable, enableIPv6);
}
bool ipRuleIpfwdExists(const char* ipVersion, const std::string& ipfwdRule) {
std::vector<std::string> rules = listIpRules(ipVersion);
for (const auto& rule : rules) {
if (rule.find(ipfwdRule) != std::string::npos) {
return true;
}
}
return false;
}
void expectIpfwdRuleExists(const char* fromIf, const char* toIf) {
std::string ipfwdRule =
StringPrintf("%u:\tfrom all iif %s lookup %s ", RULE_PRIORITY_TETHERING, fromIf, toIf);
for (const auto& ipVersion : {IP_RULE_V4, IP_RULE_V6}) {
EXPECT_TRUE(ipRuleIpfwdExists(ipVersion, ipfwdRule));
}
}
void expectIpfwdRuleNotExists(const char* fromIf, const char* toIf) {
std::string ipfwdRule =
StringPrintf("%u:\tfrom all iif %s lookup %s ", RULE_PRIORITY_TETHERING, fromIf, toIf);
for (const auto& ipVersion : {IP_RULE_V4, IP_RULE_V6}) {
EXPECT_FALSE(ipRuleIpfwdExists(ipVersion, ipfwdRule));
}
}
} // namespace
TEST_F(NetdBinderTest, TestIpfwdEnableDisableStatusForwarding) {
// Get ipfwd requester list from Netd
std::vector<std::string> requesterList;
binder::Status status = mNetd->ipfwdGetRequesterList(&requesterList);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
bool ipfwdEnabled;
if (requesterList.size() == 0) {
// No requester in Netd, ipfwd should be disabled
// So add one test requester and verify
status = mNetd->ipfwdEnableForwarding("TestRequester");
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectIpfwdEnable(true);
status = mNetd->ipfwdEnabled(&ipfwdEnabled);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
EXPECT_TRUE(ipfwdEnabled);
// Remove test one, verify again
status = mNetd->ipfwdDisableForwarding("TestRequester");
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectIpfwdEnable(false);
status = mNetd->ipfwdEnabled(&ipfwdEnabled);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
EXPECT_FALSE(ipfwdEnabled);
} else {
// Disable all requesters
for (const auto& requester : requesterList) {
status = mNetd->ipfwdDisableForwarding(requester);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
}
// After disable all requester, ipfwd should be disabled
expectIpfwdEnable(false);
status = mNetd->ipfwdEnabled(&ipfwdEnabled);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
EXPECT_FALSE(ipfwdEnabled);
// Enable them back
for (const auto& requester : requesterList) {
status = mNetd->ipfwdEnableForwarding(requester);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
}
// ipfwd should be enabled
expectIpfwdEnable(true);
status = mNetd->ipfwdEnabled(&ipfwdEnabled);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
EXPECT_TRUE(ipfwdEnabled);
}
}
TEST_F(NetdBinderTest, TestIpfwdAddRemoveInterfaceForward) {
// Add test physical network
auto config = makeNativeNetworkConfig(TEST_NETID1, NativeNetworkType::PHYSICAL,
INetd::PERMISSION_NONE, false, false);
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID1, sTun.name()).isOk());
config.netId = TEST_NETID2;
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID2, sTun2.name()).isOk());
binder::Status status = mNetd->ipfwdAddInterfaceForward(sTun.name(), sTun2.name());
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectIpfwdRuleExists(sTun.name().c_str(), sTun2.name().c_str());
status = mNetd->ipfwdRemoveInterfaceForward(sTun.name(), sTun2.name());
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectIpfwdRuleNotExists(sTun.name().c_str(), sTun2.name().c_str());
}
namespace {
constexpr char BANDWIDTH_INPUT[] = "bw_INPUT";
constexpr char BANDWIDTH_OUTPUT[] = "bw_OUTPUT";
constexpr char BANDWIDTH_FORWARD[] = "bw_FORWARD";
constexpr char BANDWIDTH_NAUGHTY[] = "bw_penalty_box";
constexpr char BANDWIDTH_ALERT[] = "bw_global_alert";
// TODO: Move iptablesTargetsExists and listIptablesRuleByTable to the top.
// Use either a std::vector<std::string> of things to match, or a variadic function.
bool iptablesTargetsExists(const char* binary, int expectedCount, const char* table,
const char* chainName, const std::string& expectedTargetA,
const std::string& expectedTargetB) {
std::vector<std::string> rules = listIptablesRuleByTable(binary, table, chainName);
int matchCount = 0;
for (const auto& rule : rules) {
if (rule.find(expectedTargetA) != std::string::npos) {
if (rule.find(expectedTargetB) != std::string::npos) {
matchCount++;
}
}
}
return matchCount == expectedCount;
}
void expectXtQuotaValueEqual(const char* ifname, long quotaBytes) {
std::string path = StringPrintf("/proc/net/xt_quota/%s", ifname);
std::string result = "";
EXPECT_TRUE(ReadFileToString(path, &result));
// Quota value might be decreased while matching packets
EXPECT_GE(quotaBytes, std::stol(Trim(result)));
}
void expectBandwidthInterfaceQuotaRuleExists(const char* ifname, long quotaBytes) {
std::string BANDWIDTH_COSTLY_IF = StringPrintf("bw_costly_%s", ifname);
std::string quotaRule = StringPrintf("quota %s", ifname);
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_TRUE(iptablesTargetsExists(binary, 1, FILTER_TABLE, BANDWIDTH_INPUT, ifname,
BANDWIDTH_COSTLY_IF));
EXPECT_TRUE(iptablesTargetsExists(binary, 1, FILTER_TABLE, BANDWIDTH_OUTPUT, ifname,
BANDWIDTH_COSTLY_IF));
EXPECT_TRUE(iptablesTargetsExists(binary, 2, FILTER_TABLE, BANDWIDTH_FORWARD, ifname,
BANDWIDTH_COSTLY_IF));
EXPECT_TRUE(iptablesRuleExists(binary, BANDWIDTH_COSTLY_IF.c_str(), BANDWIDTH_NAUGHTY));
EXPECT_TRUE(iptablesRuleExists(binary, BANDWIDTH_COSTLY_IF.c_str(), quotaRule));
}
expectXtQuotaValueEqual(ifname, quotaBytes);
}
void expectBandwidthInterfaceQuotaRuleDoesNotExist(const char* ifname) {
std::string BANDWIDTH_COSTLY_IF = StringPrintf("bw_costly_%s", ifname);
std::string quotaRule = StringPrintf("quota %s", ifname);
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_FALSE(iptablesTargetsExists(binary, 1, FILTER_TABLE, BANDWIDTH_INPUT, ifname,
BANDWIDTH_COSTLY_IF));
EXPECT_FALSE(iptablesTargetsExists(binary, 1, FILTER_TABLE, BANDWIDTH_OUTPUT, ifname,
BANDWIDTH_COSTLY_IF));
EXPECT_FALSE(iptablesTargetsExists(binary, 2, FILTER_TABLE, BANDWIDTH_FORWARD, ifname,
BANDWIDTH_COSTLY_IF));
EXPECT_FALSE(iptablesRuleExists(binary, BANDWIDTH_COSTLY_IF.c_str(), BANDWIDTH_NAUGHTY));
EXPECT_FALSE(iptablesRuleExists(binary, BANDWIDTH_COSTLY_IF.c_str(), quotaRule));
}
}
void expectBandwidthInterfaceAlertRuleExists(const char* ifname, long alertBytes) {
std::string BANDWIDTH_COSTLY_IF = StringPrintf("bw_costly_%s", ifname);
std::string alertRule = StringPrintf("quota %sAlert", ifname);
std::string alertName = StringPrintf("%sAlert", ifname);
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_TRUE(iptablesRuleExists(binary, BANDWIDTH_COSTLY_IF.c_str(), alertRule));
}
expectXtQuotaValueEqual(alertName.c_str(), alertBytes);
}
void expectBandwidthInterfaceAlertRuleDoesNotExist(const char* ifname) {
std::string BANDWIDTH_COSTLY_IF = StringPrintf("bw_costly_%s", ifname);
std::string alertRule = StringPrintf("quota %sAlert", ifname);
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_FALSE(iptablesRuleExists(binary, BANDWIDTH_COSTLY_IF.c_str(), alertRule));
}
}
void expectBandwidthGlobalAlertRuleExists(long alertBytes) {
static const char globalAlertRule[] = "quota globalAlert";
static const char globalAlertName[] = "globalAlert";
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_TRUE(iptablesRuleExists(binary, BANDWIDTH_ALERT, globalAlertRule));
}
expectXtQuotaValueEqual(globalAlertName, alertBytes);
}
} // namespace
TEST_F(NetdBinderTest, BandwidthSetRemoveInterfaceQuota) {
long testQuotaBytes = 5550;
// Add test physical network
const auto& config = makeNativeNetworkConfig(TEST_NETID1, NativeNetworkType::PHYSICAL,
INetd::PERMISSION_NONE, false, false);
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID1, sTun.name()).isOk());
binder::Status status = mNetd->bandwidthSetInterfaceQuota(sTun.name(), testQuotaBytes);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectBandwidthInterfaceQuotaRuleExists(sTun.name().c_str(), testQuotaBytes);
status = mNetd->bandwidthRemoveInterfaceQuota(sTun.name());
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectBandwidthInterfaceQuotaRuleDoesNotExist(sTun.name().c_str());
// Remove test physical network
EXPECT_TRUE(mNetd->networkDestroy(TEST_NETID1).isOk());
}
TEST_F(NetdBinderTest, BandwidthSetRemoveInterfaceAlert) {
long testAlertBytes = 373;
// Add test physical network
const auto& config = makeNativeNetworkConfig(TEST_NETID1, NativeNetworkType::PHYSICAL,
INetd::PERMISSION_NONE, false, false);
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID1, sTun.name()).isOk());
// Need to have a prior interface quota set to set an alert
binder::Status status = mNetd->bandwidthSetInterfaceQuota(sTun.name(), testAlertBytes);
status = mNetd->bandwidthSetInterfaceAlert(sTun.name(), testAlertBytes);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectBandwidthInterfaceAlertRuleExists(sTun.name().c_str(), testAlertBytes);
status = mNetd->bandwidthRemoveInterfaceAlert(sTun.name());
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectBandwidthInterfaceAlertRuleDoesNotExist(sTun.name().c_str());
// Remove interface quota
status = mNetd->bandwidthRemoveInterfaceQuota(sTun.name());
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectBandwidthInterfaceQuotaRuleDoesNotExist(sTun.name().c_str());
// Remove test physical network
EXPECT_TRUE(mNetd->networkDestroy(TEST_NETID1).isOk());
}
TEST_F(NetdBinderTest, BandwidthSetGlobalAlert) {
int64_t testAlertBytes = 2097200;
binder::Status status = mNetd->bandwidthSetGlobalAlert(testAlertBytes);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectBandwidthGlobalAlertRuleExists(testAlertBytes);
testAlertBytes = 2098230;
status = mNetd->bandwidthSetGlobalAlert(testAlertBytes);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectBandwidthGlobalAlertRuleExists(testAlertBytes);
}
TEST_F(NetdBinderTest, NetworkAddRemoveRouteUserPermission) {
static const struct {
const char* ipVersion;
const char* testDest;
const char* testNextHop;
const bool expectSuccess;
} kTestData[] = {
{IP_RULE_V4, "0.0.0.0/0", "", true},
{IP_RULE_V4, "0.0.0.0/0", "10.251.10.0", true},
{IP_RULE_V4, "10.251.0.0/16", "", true},
{IP_RULE_V4, "10.251.0.0/16", "10.251.10.0", true},
{IP_RULE_V4, "10.251.0.0/16", "fe80::/64", false},
{IP_RULE_V6, "::/0", "", true},
{IP_RULE_V6, "::/0", "2001:db8::", true},
{IP_RULE_V6, "2001:db8:cafe::/64", "2001:db8::", true},
{IP_RULE_V4, "fe80::/64", "0.0.0.0", false},
{IP_RULE_V4, "10.251.10.2/31", "throw", true},
{IP_RULE_V4, "10.251.10.2/31", "unreachable", true},
{IP_RULE_V4, "0.0.0.0/0", "throw", true},
{IP_RULE_V4, "0.0.0.0/0", "unreachable", true},
{IP_RULE_V6, "::/0", "throw", true},
{IP_RULE_V6, "::/0", "unreachable", true},
{IP_RULE_V6, "2001:db8:cafe::/64", "throw", true},
{IP_RULE_V6, "2001:db8:cafe::/64", "unreachable", true},
};
static const struct {
const char* ipVersion;
const char* testDest;
const char* testNextHop;
} kTestDataWithNextHop[] = {
{IP_RULE_V4, "10.251.10.0/30", ""},
{IP_RULE_V6, "2001:db8::/32", ""},
};
static const char testTableLegacySystem[] = "legacy_system";
static const char testTableLegacyNetwork[] = "legacy_network";
const int testUid = randomUid();
const std::vector<int32_t> testUids = {testUid};
// Add test physical network
const auto& config = makeNativeNetworkConfig(TEST_NETID1, NativeNetworkType::PHYSICAL,
INetd::PERMISSION_NONE, false, false);
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID1, sTun.name()).isOk());
// Setup route for testing nextHop
for (size_t i = 0; i < std::size(kTestDataWithNextHop); i++) {
const auto& td = kTestDataWithNextHop[i];
// All route for test tun will disappear once the tun interface is deleted.
binder::Status status =
mNetd->networkAddRoute(TEST_NETID1, sTun.name(), td.testDest, td.testNextHop);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkRouteExists(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
sTun.name().c_str());
// Add system permission for test uid, setup route in legacy system table.
EXPECT_TRUE(mNetd->networkSetPermissionForUser(INetd::PERMISSION_SYSTEM, testUids).isOk());
status = mNetd->networkAddLegacyRoute(TEST_NETID1, sTun.name(), td.testDest, td.testNextHop,
testUid);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkRouteExists(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
testTableLegacySystem);
// Remove system permission for test uid, setup route in legacy network table.
EXPECT_TRUE(mNetd->networkClearPermissionForUser(testUids).isOk());
status = mNetd->networkAddLegacyRoute(TEST_NETID1, sTun.name(), td.testDest, td.testNextHop,
testUid);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkRouteExists(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
testTableLegacyNetwork);
}
for (size_t i = 0; i < std::size(kTestData); i++) {
const auto& td = kTestData[i];
binder::Status status =
mNetd->networkAddRoute(TEST_NETID1, sTun.name(), td.testDest, td.testNextHop);
if (td.expectSuccess) {
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkRouteExists(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
sTun.name().c_str());
} else {
EXPECT_EQ(binder::Status::EX_SERVICE_SPECIFIC, status.exceptionCode());
EXPECT_NE(0, status.serviceSpecificErrorCode());
}
status = mNetd->networkRemoveRoute(TEST_NETID1, sTun.name(), td.testDest, td.testNextHop);
if (td.expectSuccess) {
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkRouteDoesNotExist(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
sTun.name().c_str());
} else {
EXPECT_EQ(binder::Status::EX_SERVICE_SPECIFIC, status.exceptionCode());
EXPECT_NE(0, status.serviceSpecificErrorCode());
}
// Add system permission for test uid, route will be added into legacy system table.
EXPECT_TRUE(mNetd->networkSetPermissionForUser(INetd::PERMISSION_SYSTEM, testUids).isOk());
status = mNetd->networkAddLegacyRoute(TEST_NETID1, sTun.name(), td.testDest, td.testNextHop,
testUid);
if (td.expectSuccess) {
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkRouteExists(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
testTableLegacySystem);
} else {
EXPECT_EQ(binder::Status::EX_SERVICE_SPECIFIC, status.exceptionCode());
EXPECT_NE(0, status.serviceSpecificErrorCode());
}
status = mNetd->networkRemoveLegacyRoute(TEST_NETID1, sTun.name(), td.testDest,
td.testNextHop, testUid);
if (td.expectSuccess) {
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkRouteDoesNotExist(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
testTableLegacySystem);
} else {
EXPECT_EQ(binder::Status::EX_SERVICE_SPECIFIC, status.exceptionCode());
EXPECT_NE(0, status.serviceSpecificErrorCode());
}
// Remove system permission for test uid, route will be added into legacy network table.
EXPECT_TRUE(mNetd->networkClearPermissionForUser(testUids).isOk());
status = mNetd->networkAddLegacyRoute(TEST_NETID1, sTun.name(), td.testDest, td.testNextHop,
testUid);
if (td.expectSuccess) {
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkRouteExists(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
testTableLegacyNetwork);
} else {
EXPECT_EQ(binder::Status::EX_SERVICE_SPECIFIC, status.exceptionCode());
EXPECT_NE(0, status.serviceSpecificErrorCode());
}
status = mNetd->networkRemoveLegacyRoute(TEST_NETID1, sTun.name(), td.testDest,
td.testNextHop, testUid);
if (td.expectSuccess) {
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkRouteDoesNotExist(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
testTableLegacyNetwork);
} else {
EXPECT_EQ(binder::Status::EX_SERVICE_SPECIFIC, status.exceptionCode());
EXPECT_NE(0, status.serviceSpecificErrorCode());
}
}
/*
* Test networkUpdateRouteParcel behavior in case of route MTU change.
*
* Change of route MTU should be treated as an update of the route:
* - networkUpdateRouteParcel should succeed and update route MTU.
*/
for (size_t i = 0; i < std::size(kTestData); i++) {
const auto& td = kTestData[i];
int mtu = (i % 2) ? 1480 : 1280;
android::net::RouteInfoParcel parcel;
parcel.ifName = sTun.name();
parcel.destination = td.testDest;
parcel.nextHop = td.testNextHop;
parcel.mtu = mtu;
binder::Status status = mNetd->networkAddRouteParcel(TEST_NETID1, parcel);
if (td.expectSuccess) {
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkRouteExistsWithMtu(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
std::to_string(parcel.mtu), sTun.name().c_str());
} else {
EXPECT_EQ(binder::Status::EX_SERVICE_SPECIFIC, status.exceptionCode());
EXPECT_NE(0, status.serviceSpecificErrorCode());
}
parcel.mtu = 1337;
status = mNetd->networkUpdateRouteParcel(TEST_NETID1, parcel);
if (td.expectSuccess) {
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkRouteExistsWithMtu(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
std::to_string(parcel.mtu), sTun.name().c_str());
} else {
EXPECT_EQ(binder::Status::EX_SERVICE_SPECIFIC, status.exceptionCode());
EXPECT_NE(0, status.serviceSpecificErrorCode());
}
status = mNetd->networkRemoveRouteParcel(TEST_NETID1, parcel);
if (td.expectSuccess) {
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkRouteDoesNotExist(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
sTun.name().c_str());
} else {
EXPECT_EQ(binder::Status::EX_SERVICE_SPECIFIC, status.exceptionCode());
EXPECT_NE(0, status.serviceSpecificErrorCode());
}
}
/*
* Test network[Update|Add]RouteParcel behavior in case of route type change.
*
* Change of route type should be treated as an update of the route:
* - networkUpdateRouteParcel should succeed and update route type.
* - networkAddRouteParcel should silently fail, because the route already exists. Route type
* should not be changed in this case.
*/
for (size_t i = 0; i < std::size(kTestData); i++) {
const auto& td = kTestData[i];
if (!td.expectSuccess) {
continue;
}
android::net::RouteInfoParcel parcel;
parcel.ifName = sTun.name();
parcel.destination = td.testDest;
parcel.nextHop = td.testNextHop;
parcel.mtu = 1280;
binder::Status status = mNetd->networkAddRouteParcel(TEST_NETID1, parcel);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkRouteExistsWithMtu(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
std::to_string(parcel.mtu), sTun.name().c_str());
parcel.nextHop = parcel.nextHop == "throw" ? "unreachable" : "throw";
const char* oldNextHop = td.testNextHop;
const char* newNextHop = parcel.nextHop.c_str();
// Trying to add same route with changed type, this should silently fail.
status = mNetd->networkAddRouteParcel(TEST_NETID1, parcel);
// No error reported.
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
// Old route still exists.
expectNetworkRouteExistsWithMtu(td.ipVersion, sTun.name(), td.testDest, oldNextHop,
std::to_string(parcel.mtu), sTun.name().c_str());
// New route was not actually added.
expectNetworkRouteDoesNotExistWithMtu(td.ipVersion, sTun.name(), td.testDest, newNextHop,
std::to_string(parcel.mtu), sTun.name().c_str());
// Update should succeed.
status = mNetd->networkUpdateRouteParcel(TEST_NETID1, parcel);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkRouteExistsWithMtu(td.ipVersion, sTun.name(), td.testDest, newNextHop,
std::to_string(parcel.mtu), sTun.name().c_str());
expectNetworkRouteDoesNotExistWithMtu(td.ipVersion, sTun.name(), td.testDest, oldNextHop,
std::to_string(parcel.mtu), sTun.name().c_str());
status = mNetd->networkRemoveRouteParcel(TEST_NETID1, parcel);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkRouteDoesNotExistWithMtu(td.ipVersion, sTun.name(), td.testDest, newNextHop,
std::to_string(parcel.mtu), sTun.name().c_str());
}
// Remove test physical network
EXPECT_TRUE(mNetd->networkDestroy(TEST_NETID1).isOk());
}
TEST_F(NetdBinderTest, NetworkPermissionDefault) {
// Add test physical network
const auto& config = makeNativeNetworkConfig(TEST_NETID1, NativeNetworkType::PHYSICAL,
INetd::PERMISSION_NONE, false, false);
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID1, sTun.name()).isOk());
// Get current default network NetId
binder::Status status = mNetd->networkGetDefault(&mStoredDefaultNetwork);
ASSERT_TRUE(status.isOk()) << status.exceptionMessage();
// Test SetDefault
status = mNetd->networkSetDefault(TEST_NETID1);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkDefaultIpRuleExists(sTun.name().c_str());
status = mNetd->networkClearDefault();
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkDefaultIpRuleDoesNotExist();
// Set default network back
status = mNetd->networkSetDefault(mStoredDefaultNetwork);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
// Test SetPermission
status = mNetd->networkSetPermissionForNetwork(TEST_NETID1, INetd::PERMISSION_SYSTEM);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkPermissionIpRuleExists(sTun.name().c_str(), INetd::PERMISSION_SYSTEM);
expectNetworkPermissionIptablesRuleExists(sTun.name().c_str(), INetd::PERMISSION_SYSTEM);
status = mNetd->networkSetPermissionForNetwork(TEST_NETID1, INetd::PERMISSION_NONE);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkPermissionIpRuleExists(sTun.name().c_str(), INetd::PERMISSION_NONE);
expectNetworkPermissionIptablesRuleExists(sTun.name().c_str(), INetd::PERMISSION_NONE);
// Remove test physical network
EXPECT_TRUE(mNetd->networkDestroy(TEST_NETID1).isOk());
}
TEST_F(NetdBinderTest, NetworkSetProtectAllowDeny) {
binder::Status status = mNetd->networkSetProtectAllow(TEST_UID1);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
bool ret = false;
status = mNetd->networkCanProtect(TEST_UID1, &ret);
EXPECT_TRUE(ret);
status = mNetd->networkSetProtectDeny(TEST_UID1);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
// Clear uid permission before calling networkCanProtect to ensure
// the call won't be affected by uid permission.
EXPECT_TRUE(mNetd->networkClearPermissionForUser({TEST_UID1}).isOk());
status = mNetd->networkCanProtect(TEST_UID1, &ret);
EXPECT_FALSE(ret);
}
namespace {
int readIntFromPath(const std::string& path) {
std::string result = "";
EXPECT_TRUE(ReadFileToString(path, &result));
return std::stoi(result);
}
int getTetherAcceptIPv6Ra(const std::string& ifName) {
std::string path = StringPrintf("/proc/sys/net/ipv6/conf/%s/accept_ra", ifName.c_str());
return readIntFromPath(path);
}
bool getTetherAcceptIPv6Dad(const std::string& ifName) {
std::string path = StringPrintf("/proc/sys/net/ipv6/conf/%s/accept_dad", ifName.c_str());
return readIntFromPath(path);
}
int getTetherIPv6DadTransmits(const std::string& ifName) {
std::string path = StringPrintf("/proc/sys/net/ipv6/conf/%s/dad_transmits", ifName.c_str());
return readIntFromPath(path);
}
bool getTetherEnableIPv6(const std::string& ifName) {
std::string path = StringPrintf("/proc/sys/net/ipv6/conf/%s/disable_ipv6", ifName.c_str());
int disableIPv6 = readIntFromPath(path);
return !disableIPv6;
}
bool interfaceListContains(const std::vector<std::string>& ifList, const std::string& ifName) {
for (const auto& iface : ifList) {
if (iface == ifName) {
return true;
}
}
return false;
}
void expectTetherInterfaceConfigureForIPv6Router(const std::string& ifName) {
EXPECT_EQ(getTetherAcceptIPv6Ra(ifName), 0);
EXPECT_FALSE(getTetherAcceptIPv6Dad(ifName));
EXPECT_EQ(getTetherIPv6DadTransmits(ifName), 0);
EXPECT_TRUE(getTetherEnableIPv6(ifName));
}
void expectTetherInterfaceConfigureForIPv6Client(const std::string& ifName) {
EXPECT_EQ(getTetherAcceptIPv6Ra(ifName), 2);
EXPECT_TRUE(getTetherAcceptIPv6Dad(ifName));
EXPECT_EQ(getTetherIPv6DadTransmits(ifName), 1);
EXPECT_FALSE(getTetherEnableIPv6(ifName));
}
void expectTetherInterfaceExists(const std::vector<std::string>& ifList,
const std::string& ifName) {
EXPECT_TRUE(interfaceListContains(ifList, ifName));
}
void expectTetherInterfaceNotExists(const std::vector<std::string>& ifList,
const std::string& ifName) {
EXPECT_FALSE(interfaceListContains(ifList, ifName));
}
void expectTetherDnsListEquals(const std::vector<std::string>& dnsList,
const std::vector<std::string>& testDnsAddrs) {
EXPECT_TRUE(dnsList == testDnsAddrs);
}
} // namespace
TEST_F(NetdBinderTest, TetherStartStopStatus) {
std::vector<std::string> noDhcpRange = {};
for (bool usingLegacyDnsProxy : {true, false}) {
android::net::TetherConfigParcel config;
config.usingLegacyDnsProxy = usingLegacyDnsProxy;
config.dhcpRanges = noDhcpRange;
binder::Status status = mNetd->tetherStartWithConfiguration(config);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
SCOPED_TRACE(StringPrintf("usingLegacyDnsProxy: %d", usingLegacyDnsProxy));
if (usingLegacyDnsProxy == true) {
expectProcessExists(DNSMASQ);
} else {
expectProcessDoesNotExist(DNSMASQ);
}
bool tetherEnabled;
status = mNetd->tetherIsEnabled(&tetherEnabled);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
EXPECT_TRUE(tetherEnabled);
status = mNetd->tetherStop();
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectProcessDoesNotExist(DNSMASQ);
status = mNetd->tetherIsEnabled(&tetherEnabled);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
EXPECT_FALSE(tetherEnabled);
}
}
TEST_F(NetdBinderTest, TetherInterfaceAddRemoveList) {
// TODO: verify if dnsmasq update interface successfully
binder::Status status = mNetd->tetherInterfaceAdd(sTun.name());
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectTetherInterfaceConfigureForIPv6Router(sTun.name());
std::vector<std::string> ifList;
status = mNetd->tetherInterfaceList(&ifList);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectTetherInterfaceExists(ifList, sTun.name());
status = mNetd->tetherInterfaceRemove(sTun.name());
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectTetherInterfaceConfigureForIPv6Client(sTun.name());
status = mNetd->tetherInterfaceList(&ifList);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectTetherInterfaceNotExists(ifList, sTun.name());
// Disable IPv6 tethering will disable IPv6 abilities by changing IPv6 settings(accept_ra,
// dad_transmits, accept_dad, disable_ipv6). See tetherInterfaceRemove in details.
// Re-init sTun to reset the interface to prevent affecting other test that requires IPv6 with
// the same interface.
sTun.destroy();
sTun.init();
}
TEST_F(NetdBinderTest, TetherDnsSetList) {
// TODO: verify if dnsmasq update dns successfully
std::vector<std::string> testDnsAddrs = {"192.168.1.37", "213.137.100.3",
"fe80::1%" + sTun.name()};
binder::Status status = mNetd->tetherDnsSet(TEST_NETID1, testDnsAddrs);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
std::vector<std::string> dnsList;
status = mNetd->tetherDnsList(&dnsList);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectTetherDnsListEquals(dnsList, testDnsAddrs);
}
namespace {
std::vector<IPAddress> findDnsSockets(SockDiag* sd, unsigned numExpected) {
std::vector<IPAddress> listenAddrs;
// Callback lambda that finds all IPv4 sockets with source port 53.
auto findDnsSockets = [&](uint8_t /* proto */, const inet_diag_msg* msg) {
// Always return false, which means do not destroy this socket.
if (msg->id.idiag_sport != htons(53)) return false;
IPAddress addr(*(in_addr*)msg->id.idiag_src);
listenAddrs.push_back(addr);
return false;
};
// There is no way to know if dnsmasq has finished processing the update_interfaces command and
// opened listening sockets. So, just spin a few times and return the first list of sockets
// that is at least numExpected long.
// Pick a relatively large timeout to avoid flaky tests, particularly when running on shared
// devices.
constexpr int kMaxAttempts = 50;
constexpr int kSleepMs = 100;
for (int i = 0; i < kMaxAttempts; i++) {
listenAddrs.clear();
EXPECT_EQ(0, sd->sendDumpRequest(IPPROTO_TCP, AF_INET, 1 << TCP_LISTEN))
<< "Failed to dump sockets, attempt " << i << " of " << kMaxAttempts;
sd->readDiagMsg(IPPROTO_TCP, findDnsSockets);
if (listenAddrs.size() >= numExpected) {
break;
}
usleep(kSleepMs * 1000);
}
return listenAddrs;
}
} // namespace
// Checks that when starting dnsmasq on an interface that no longer exists, it doesn't attempt to
// start on other interfaces instead.
TEST_F(NetdBinderTest, TetherDeletedInterface) {
// Do this first so we don't need to clean up anything else if it fails.
SockDiag sd;
ASSERT_TRUE(sd.open()) << "Failed to open SOCK_DIAG socket";
// Create our own TunInterfaces (so we can delete them without affecting other tests), and add
// IP addresses to them. They must be IPv4 because tethering an interface disables and
// re-enables IPv6 on the interface, which clears all addresses.
TunInterface tun1, tun2;
ASSERT_EQ(0, tun1.init());
ASSERT_EQ(0, tun2.init());
// Clean up. It is safe to call TunInterface::destroy multiple times.
auto guard = android::base::make_scope_guard([&] {
tun1.destroy();
tun2.destroy();
mNetd->tetherStop();
mNetd->tetherInterfaceRemove(tun1.name());
mNetd->tetherInterfaceRemove(tun2.name());
});
IPAddress addr1, addr2;
ASSERT_TRUE(IPAddress::forString("192.0.2.1", &addr1));
ASSERT_TRUE(IPAddress::forString("192.0.2.2", &addr2));
EXPECT_EQ(0, tun1.addAddress(addr1.toString(), 32));
EXPECT_EQ(0, tun2.addAddress(addr2.toString(), 32));
// Stop tethering.
binder::Status status = mNetd->tetherStop();
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
// Start dnsmasq on an interface that doesn't exist.
// First, tether our tun interface...
status = mNetd->tetherInterfaceAdd(tun1.name());
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectTetherInterfaceConfigureForIPv6Router(tun1.name());
// ... then delete it...
tun1.destroy();
// ... then start dnsmasq.
android::net::TetherConfigParcel config;
config.usingLegacyDnsProxy = true;
config.dhcpRanges = {};
status = mNetd->tetherStartWithConfiguration(config);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
// Wait for dnsmasq to start.
expectProcessExists(DNSMASQ);
// Make sure that netd thinks the interface is tethered (even though it doesn't exist).
std::vector<std::string> ifList;
status = mNetd->tetherInterfaceList(&ifList);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
ASSERT_EQ(1U, ifList.size());
EXPECT_EQ(tun1.name(), ifList[0]);
// Give dnsmasq some time to start up.
usleep(200 * 1000);
// Check that dnsmasq is not listening on any IP addresses. It shouldn't, because it was only
// told to run on tun1, and tun1 does not exist. Ensure it stays running and doesn't listen on
// any IP addresses.
std::vector<IPAddress> listenAddrs = findDnsSockets(&sd, 0);
EXPECT_EQ(0U, listenAddrs.size()) << "Unexpectedly found IPv4 socket(s) listening on port 53";
// Now add an interface to dnsmasq and check that we can see the sockets. This confirms that
// findDnsSockets is actually able to see sockets when they exist.
status = mNetd->tetherInterfaceAdd(tun2.name());
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
in_addr loopback = {htonl(INADDR_LOOPBACK)};
listenAddrs = findDnsSockets(&sd, 2);
EXPECT_EQ(2U, listenAddrs.size()) << "Expected exactly 2 IPv4 sockets listening on port 53";
EXPECT_EQ(1, std::count(listenAddrs.begin(), listenAddrs.end(), addr2));
EXPECT_EQ(1, std::count(listenAddrs.begin(), listenAddrs.end(), IPAddress(loopback)));
// Clean up.
status = mNetd->tetherStop();
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectProcessDoesNotExist(DNSMASQ);
status = mNetd->tetherInterfaceRemove(tun1.name());
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
status = mNetd->tetherInterfaceRemove(tun2.name());
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
}
namespace {
constexpr char FIREWALL_INPUT[] = "fw_INPUT";
constexpr char FIREWALL_OUTPUT[] = "fw_OUTPUT";
constexpr char FIREWALL_FORWARD[] = "fw_FORWARD";
void expectFirewallAllowlistMode() {
static const char dropRule[] = "DROP all";
static const char rejectRule[] = "REJECT all";
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_TRUE(iptablesRuleExists(binary, FIREWALL_INPUT, dropRule));
EXPECT_TRUE(iptablesRuleExists(binary, FIREWALL_OUTPUT, rejectRule));
EXPECT_TRUE(iptablesRuleExists(binary, FIREWALL_FORWARD, rejectRule));
}
}
void expectFirewallDenylistMode() {
EXPECT_EQ(2, iptablesRuleLineLength(IPTABLES_PATH, FIREWALL_INPUT));
EXPECT_EQ(2, iptablesRuleLineLength(IPTABLES_PATH, FIREWALL_OUTPUT));
EXPECT_EQ(2, iptablesRuleLineLength(IPTABLES_PATH, FIREWALL_FORWARD));
// for IPv6 there is an extra OUTPUT rule to DROP ::1 sourced packets to non-loopback devices
EXPECT_EQ(2, iptablesRuleLineLength(IP6TABLES_PATH, FIREWALL_INPUT));
EXPECT_EQ(3, iptablesRuleLineLength(IP6TABLES_PATH, FIREWALL_OUTPUT));
EXPECT_EQ(2, iptablesRuleLineLength(IP6TABLES_PATH, FIREWALL_FORWARD));
}
bool iptablesFirewallInterfaceFirstRuleExists(const char* binary, const char* chainName,
const std::string& expectedInterface,
const std::string& expectedRule) {
std::vector<std::string> rules = listIptablesRuleByTable(binary, FILTER_TABLE, chainName);
// Expected rule:
// Chain fw_INPUT (1 references)
// pkts bytes target prot opt in out source destination
// 0 0 RETURN all -- expectedInterface * 0.0.0.0/0 0.0.0.0/0
// 0 0 DROP all -- * * 0.0.0.0/0 0.0.0.0/0
int firstRuleIndex = 2;
if (rules.size() < 4) return false;
if (rules[firstRuleIndex].find(expectedInterface) != std::string::npos) {
if (rules[firstRuleIndex].find(expectedRule) != std::string::npos) {
return true;
}
}
return false;
}
// TODO: It is a duplicate function, need to remove it
bool iptablesFirewallInterfaceRuleExists(const char* binary, const char* chainName,
const std::string& expectedInterface,
const std::string& expectedRule) {
std::vector<std::string> rules = listIptablesRuleByTable(binary, FILTER_TABLE, chainName);
for (const auto& rule : rules) {
if (rule.find(expectedInterface) != std::string::npos) {
if (rule.find(expectedRule) != std::string::npos) {
return true;
}
}
}
return false;
}
void expectFirewallInterfaceRuleAllowExists(const std::string& ifname) {
static const char returnRule[] = "RETURN all";
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_TRUE(iptablesFirewallInterfaceFirstRuleExists(binary, FIREWALL_INPUT, ifname,
returnRule));
EXPECT_TRUE(iptablesFirewallInterfaceFirstRuleExists(binary, FIREWALL_OUTPUT, ifname,
returnRule));
}
}
void expectFireWallInterfaceRuleAllowDoesNotExist(const std::string& ifname) {
static const char returnRule[] = "RETURN all";
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_FALSE(
iptablesFirewallInterfaceRuleExists(binary, FIREWALL_INPUT, ifname, returnRule));
EXPECT_FALSE(
iptablesFirewallInterfaceRuleExists(binary, FIREWALL_OUTPUT, ifname, returnRule));
}
}
} // namespace
TEST_F(NetdBinderTest, FirewallSetFirewallType) {
binder::Status status = mNetd->firewallSetFirewallType(INetd::FIREWALL_ALLOWLIST);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallAllowlistMode();
status = mNetd->firewallSetFirewallType(INetd::FIREWALL_DENYLIST);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallDenylistMode();
// set firewall type blacklist twice
mNetd->firewallSetFirewallType(INetd::FIREWALL_DENYLIST);
status = mNetd->firewallSetFirewallType(INetd::FIREWALL_DENYLIST);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallDenylistMode();
// set firewall type whitelist twice
mNetd->firewallSetFirewallType(INetd::FIREWALL_ALLOWLIST);
status = mNetd->firewallSetFirewallType(INetd::FIREWALL_ALLOWLIST);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallAllowlistMode();
// reset firewall type to default
status = mNetd->firewallSetFirewallType(INetd::FIREWALL_DENYLIST);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallDenylistMode();
}
TEST_F(NetdBinderTest, FirewallSetInterfaceRule) {
// setinterfaceRule is not supported in BLACKLIST MODE
binder::Status status = mNetd->firewallSetFirewallType(INetd::FIREWALL_DENYLIST);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
status = mNetd->firewallSetInterfaceRule(sTun.name(), INetd::FIREWALL_RULE_ALLOW);
EXPECT_FALSE(status.isOk()) << status.exceptionMessage();
// set WHITELIST mode first
status = mNetd->firewallSetFirewallType(INetd::FIREWALL_ALLOWLIST);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
status = mNetd->firewallSetInterfaceRule(sTun.name(), INetd::FIREWALL_RULE_ALLOW);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallInterfaceRuleAllowExists(sTun.name());
status = mNetd->firewallSetInterfaceRule(sTun.name(), INetd::FIREWALL_RULE_DENY);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFireWallInterfaceRuleAllowDoesNotExist(sTun.name());
// reset firewall mode to default
status = mNetd->firewallSetFirewallType(INetd::FIREWALL_DENYLIST);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallDenylistMode();
}
namespace {
std::string hwAddrToStr(unsigned char* hwaddr) {
return StringPrintf("%02x:%02x:%02x:%02x:%02x:%02x", hwaddr[0], hwaddr[1], hwaddr[2], hwaddr[3],
hwaddr[4], hwaddr[5]);
}
int ipv4NetmaskToPrefixLength(in_addr_t mask) {
int prefixLength = 0;
uint32_t m = ntohl(mask);
while (m & (1 << 31)) {
prefixLength++;
m = m << 1;
}
return prefixLength;
}
std::string toStdString(const String16& s) {
return std::string(String8(s.string()));
}
android::netdutils::StatusOr<ifreq> ioctlByIfName(const std::string& ifName, unsigned long flag) {
const auto& sys = sSyscalls.get();
auto fd = sys.socket(AF_INET, SOCK_DGRAM | SOCK_CLOEXEC, 0);
EXPECT_TRUE(isOk(fd.status()));
struct ifreq ifr = {};
strlcpy(ifr.ifr_name, ifName.c_str(), IFNAMSIZ);
return sys.ioctl(fd.value(), flag, &ifr);
}
std::string getInterfaceHwAddr(const std::string& ifName) {
auto res = ioctlByIfName(ifName, SIOCGIFHWADDR);
unsigned char hwaddr[ETH_ALEN] = {};
if (isOk(res.status())) {
memcpy((void*) hwaddr, &res.value().ifr_hwaddr.sa_data, ETH_ALEN);
}
return hwAddrToStr(hwaddr);
}
int getInterfaceIPv4Prefix(const std::string& ifName) {
auto res = ioctlByIfName(ifName, SIOCGIFNETMASK);
int prefixLength = 0;
if (isOk(res.status())) {
prefixLength = ipv4NetmaskToPrefixLength(
((struct sockaddr_in*) &res.value().ifr_addr)->sin_addr.s_addr);
}
return prefixLength;
}
std::string getInterfaceIPv4Addr(const std::string& ifName) {
auto res = ioctlByIfName(ifName, SIOCGIFADDR);
struct in_addr addr = {};
if (isOk(res.status())) {
addr.s_addr = ((struct sockaddr_in*) &res.value().ifr_addr)->sin_addr.s_addr;
}
return std::string(inet_ntoa(addr));
}
std::vector<std::string> getInterfaceFlags(const std::string& ifName) {
auto res = ioctlByIfName(ifName, SIOCGIFFLAGS);
unsigned flags = 0;
if (isOk(res.status())) {
flags = res.value().ifr_flags;
}
std::vector<std::string> ifFlags;
ifFlags.push_back(flags & IFF_UP ? toStdString(INetd::IF_STATE_UP())
: toStdString(INetd::IF_STATE_DOWN()));
if (flags & IFF_BROADCAST) ifFlags.push_back(toStdString(INetd::IF_FLAG_BROADCAST()));
if (flags & IFF_LOOPBACK) ifFlags.push_back(toStdString(INetd::IF_FLAG_LOOPBACK()));
if (flags & IFF_POINTOPOINT) ifFlags.push_back(toStdString(INetd::IF_FLAG_POINTOPOINT()));
if (flags & IFF_RUNNING) ifFlags.push_back(toStdString(INetd::IF_FLAG_RUNNING()));
if (flags & IFF_MULTICAST) ifFlags.push_back(toStdString(INetd::IF_FLAG_MULTICAST()));
return ifFlags;
}
bool compareListInterface(const std::vector<std::string>& interfaceList) {
const auto& res = getIfaceNames();
EXPECT_TRUE(isOk(res));
std::vector<std::string> resIfList;
resIfList.reserve(res.value().size());
resIfList.insert(end(resIfList), begin(res.value()), end(res.value()));
return resIfList == interfaceList;
}
int getInterfaceIPv6PrivacyExtensions(const std::string& ifName) {
std::string path = StringPrintf("/proc/sys/net/ipv6/conf/%s/use_tempaddr", ifName.c_str());
return readIntFromPath(path);
}
bool getInterfaceEnableIPv6(const std::string& ifName) {
std::string path = StringPrintf("/proc/sys/net/ipv6/conf/%s/disable_ipv6", ifName.c_str());
int disableIPv6 = readIntFromPath(path);
return !disableIPv6;
}
int getInterfaceMtu(const std::string& ifName) {
std::string path = StringPrintf("/sys/class/net/%s/mtu", ifName.c_str());
return readIntFromPath(path);
}
void expectInterfaceList(const std::vector<std::string>& interfaceList) {
EXPECT_TRUE(compareListInterface(interfaceList));
}
void expectCurrentInterfaceConfigurationEquals(const std::string& ifName,
const InterfaceConfigurationParcel& interfaceCfg) {
EXPECT_EQ(getInterfaceIPv4Addr(ifName), interfaceCfg.ipv4Addr);
EXPECT_EQ(getInterfaceIPv4Prefix(ifName), interfaceCfg.prefixLength);
EXPECT_EQ(getInterfaceHwAddr(ifName), interfaceCfg.hwAddr);
EXPECT_EQ(getInterfaceFlags(ifName), interfaceCfg.flags);
}
void expectCurrentInterfaceConfigurationAlmostEqual(const InterfaceConfigurationParcel& setCfg) {
EXPECT_EQ(getInterfaceIPv4Addr(setCfg.ifName), setCfg.ipv4Addr);
EXPECT_EQ(getInterfaceIPv4Prefix(setCfg.ifName), setCfg.prefixLength);
const auto& ifFlags = getInterfaceFlags(setCfg.ifName);
for (const auto& flag : setCfg.flags) {
EXPECT_TRUE(std::find(ifFlags.begin(), ifFlags.end(), flag) != ifFlags.end());
}
}
void expectInterfaceIPv6PrivacyExtensions(const std::string& ifName, bool enable) {
int v6PrivacyExtensions = getInterfaceIPv6PrivacyExtensions(ifName);
EXPECT_EQ(v6PrivacyExtensions, enable ? 2 : 0);
}
void expectInterfaceNoAddr(const std::string& ifName) {
// noAddr
EXPECT_EQ(getInterfaceIPv4Addr(ifName), "0.0.0.0");
// noPrefix
EXPECT_EQ(getInterfaceIPv4Prefix(ifName), 0);
}
void expectInterfaceEnableIPv6(const std::string& ifName, bool enable) {
int enableIPv6 = getInterfaceEnableIPv6(ifName);
EXPECT_EQ(enableIPv6, enable);
}
void expectInterfaceMtu(const std::string& ifName, const int mtu) {
int mtuSize = getInterfaceMtu(ifName);
EXPECT_EQ(mtu, mtuSize);
}
InterfaceConfigurationParcel makeInterfaceCfgParcel(const std::string& ifName,
const std::string& addr, int prefixLength,
const std::vector<std::string>& flags) {
InterfaceConfigurationParcel cfg;
cfg.ifName = ifName;
cfg.hwAddr = "";
cfg.ipv4Addr = addr;
cfg.prefixLength = prefixLength;
cfg.flags = flags;
return cfg;
}
void expectTunFlags(const InterfaceConfigurationParcel& interfaceCfg) {
std::vector<std::string> expectedFlags = {"up", "point-to-point", "running", "multicast"};
std::vector<std::string> unexpectedFlags = {"down", "broadcast"};
for (const auto& flag : expectedFlags) {
EXPECT_TRUE(std::find(interfaceCfg.flags.begin(), interfaceCfg.flags.end(), flag) !=
interfaceCfg.flags.end());
}
for (const auto& flag : unexpectedFlags) {
EXPECT_TRUE(std::find(interfaceCfg.flags.begin(), interfaceCfg.flags.end(), flag) ==
interfaceCfg.flags.end());
}
}
} // namespace
TEST_F(NetdBinderTest, InterfaceList) {
std::vector<std::string> interfaceListResult;
binder::Status status = mNetd->interfaceGetList(&interfaceListResult);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectInterfaceList(interfaceListResult);
}
TEST_F(NetdBinderTest, InterfaceGetCfg) {
InterfaceConfigurationParcel interfaceCfgResult;
// Add test physical network
const auto& config = makeNativeNetworkConfig(TEST_NETID1, NativeNetworkType::PHYSICAL,
INetd::PERMISSION_NONE, false, false);
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID1, sTun.name()).isOk());
binder::Status status = mNetd->interfaceGetCfg(sTun.name(), &interfaceCfgResult);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectCurrentInterfaceConfigurationEquals(sTun.name(), interfaceCfgResult);
expectTunFlags(interfaceCfgResult);
// Remove test physical network
EXPECT_TRUE(mNetd->networkDestroy(TEST_NETID1).isOk());
}
TEST_F(NetdBinderTest, InterfaceSetCfg) {
const std::string testAddr = "192.0.2.3";
const int testPrefixLength = 24;
std::vector<std::string> upFlags = {"up"};
std::vector<std::string> downFlags = {"down"};
// Add test physical network
const auto& config = makeNativeNetworkConfig(TEST_NETID1, NativeNetworkType::PHYSICAL,
INetd::PERMISSION_NONE, false, false);
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID1, sTun.name()).isOk());
// Set tun interface down.
auto interfaceCfg = makeInterfaceCfgParcel(sTun.name(), testAddr, testPrefixLength, downFlags);
binder::Status status = mNetd->interfaceSetCfg(interfaceCfg);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectCurrentInterfaceConfigurationAlmostEqual(interfaceCfg);
// Set tun interface up again.
interfaceCfg = makeInterfaceCfgParcel(sTun.name(), testAddr, testPrefixLength, upFlags);
status = mNetd->interfaceSetCfg(interfaceCfg);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
status = mNetd->interfaceClearAddrs(sTun.name());
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
// Remove test physical network
EXPECT_TRUE(mNetd->networkDestroy(TEST_NETID1).isOk());
}
TEST_F(NetdBinderTest, InterfaceSetIPv6PrivacyExtensions) {
// enable
binder::Status status = mNetd->interfaceSetIPv6PrivacyExtensions(sTun.name(), true);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectInterfaceIPv6PrivacyExtensions(sTun.name(), true);
// disable
status = mNetd->interfaceSetIPv6PrivacyExtensions(sTun.name(), false);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectInterfaceIPv6PrivacyExtensions(sTun.name(), false);
}
TEST_F(NetdBinderTest, InterfaceClearAddr) {
const std::string testAddr = "192.0.2.3";
const int testPrefixLength = 24;
std::vector<std::string> noFlags{};
// Add test physical network
const auto& config = makeNativeNetworkConfig(TEST_NETID1, NativeNetworkType::PHYSICAL,
INetd::PERMISSION_NONE, false, false);
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID1, sTun.name()).isOk());
auto interfaceCfg = makeInterfaceCfgParcel(sTun.name(), testAddr, testPrefixLength, noFlags);
binder::Status status = mNetd->interfaceSetCfg(interfaceCfg);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectCurrentInterfaceConfigurationAlmostEqual(interfaceCfg);
status = mNetd->interfaceClearAddrs(sTun.name());
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectInterfaceNoAddr(sTun.name());
// Remove test physical network
EXPECT_TRUE(mNetd->networkDestroy(TEST_NETID1).isOk());
}
TEST_F(NetdBinderTest, InterfaceSetEnableIPv6) {
// Add test physical network
const auto& config = makeNativeNetworkConfig(TEST_NETID1, NativeNetworkType::PHYSICAL,
INetd::PERMISSION_NONE, false, false);
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID1, sTun.name()).isOk());
// disable
binder::Status status = mNetd->interfaceSetEnableIPv6(sTun.name(), false);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectInterfaceEnableIPv6(sTun.name(), false);
// enable
status = mNetd->interfaceSetEnableIPv6(sTun.name(), true);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectInterfaceEnableIPv6(sTun.name(), true);
// Remove test physical network
EXPECT_TRUE(mNetd->networkDestroy(TEST_NETID1).isOk());
}
TEST_F(NetdBinderTest, InterfaceSetMtu) {
const int currentMtu = getInterfaceMtu(sTun.name());
const int testMtu = 1200;
// Add test physical network
const auto& config = makeNativeNetworkConfig(TEST_NETID1, NativeNetworkType::PHYSICAL,
INetd::PERMISSION_NONE, false, false);
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID1, sTun.name()).isOk());
binder::Status status = mNetd->interfaceSetMtu(sTun.name(), testMtu);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectInterfaceMtu(sTun.name(), testMtu);
// restore the MTU back
status = mNetd->interfaceSetMtu(sTun.name(), currentMtu);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
// Remove test physical network
EXPECT_TRUE(mNetd->networkDestroy(TEST_NETID1).isOk());
}
namespace {
constexpr const char TETHER_FORWARD[] = "tetherctrl_FORWARD";
constexpr const char TETHER_NAT_POSTROUTING[] = "tetherctrl_nat_POSTROUTING";
constexpr const char TETHER_RAW_PREROUTING[] = "tetherctrl_raw_PREROUTING";
constexpr const char TETHER_COUNTERS_CHAIN[] = "tetherctrl_counters";
int iptablesCountRules(const char* binary, const char* table, const char* chainName) {
return listIptablesRuleByTable(binary, table, chainName).size();
}
bool iptablesChainMatch(const char* binary, const char* table, const char* chainName,
const std::vector<std::string>& targetVec) {
std::vector<std::string> rules = listIptablesRuleByTable(binary, table, chainName);
if (targetVec.size() != rules.size() - 2) {
return false;
}
/*
* Check that the rules match. Note that this function matches substrings, not entire rules,
* because otherwise rules where "pkts" or "bytes" are nonzero would not match.
* Skip first two lines since rules start from third line.
* Chain chainName (x references)
* pkts bytes target prot opt in out source destination
* ...
*/
int rIndex = 2;
for (const auto& target : targetVec) {
if (rules[rIndex].find(target) == std::string::npos) {
return false;
}
rIndex++;
}
return true;
}
void expectNatEnable(const std::string& intIf, const std::string& extIf) {
std::vector<std::string> postroutingV4Match = {"MASQUERADE"};
std::vector<std::string> preroutingV4Match = {"CT helper ftp", "CT helper pptp"};
std::vector<std::string> forwardV4Match = {
"bw_global_alert", "state RELATED", "state INVALID",
StringPrintf("tetherctrl_counters all -- %s %s", intIf.c_str(), extIf.c_str()),
"DROP"};
// V4
EXPECT_TRUE(iptablesChainMatch(IPTABLES_PATH, NAT_TABLE, TETHER_NAT_POSTROUTING,
postroutingV4Match));
EXPECT_TRUE(
iptablesChainMatch(IPTABLES_PATH, RAW_TABLE, TETHER_RAW_PREROUTING, preroutingV4Match));
EXPECT_TRUE(iptablesChainMatch(IPTABLES_PATH, FILTER_TABLE, TETHER_FORWARD, forwardV4Match));
std::vector<std::string> forwardV6Match = {"bw_global_alert", "tetherctrl_counters"};
std::vector<std::string> preroutingV6Match = {"rpfilter invert"};
// V6
EXPECT_TRUE(iptablesChainMatch(IP6TABLES_PATH, FILTER_TABLE, TETHER_FORWARD, forwardV6Match));
EXPECT_TRUE(iptablesChainMatch(IP6TABLES_PATH, RAW_TABLE, TETHER_RAW_PREROUTING,
preroutingV6Match));
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_TRUE(iptablesTargetsExists(binary, 2, FILTER_TABLE, TETHER_COUNTERS_CHAIN, intIf,
extIf));
}
}
void expectNatDisable() {
// It is the default DROP rule with tethering disable.
// Chain tetherctrl_FORWARD (1 references)
// pkts bytes target prot opt in out source destination
// 0 0 DROP all -- * * 0.0.0.0/0 0.0.0.0/0
std::vector<std::string> forwardV4Match = {"DROP"};
EXPECT_TRUE(iptablesChainMatch(IPTABLES_PATH, FILTER_TABLE, TETHER_FORWARD, forwardV4Match));
// We expect that these chains should be empty.
EXPECT_EQ(2, iptablesCountRules(IPTABLES_PATH, NAT_TABLE, TETHER_NAT_POSTROUTING));
EXPECT_EQ(2, iptablesCountRules(IPTABLES_PATH, RAW_TABLE, TETHER_RAW_PREROUTING));
EXPECT_EQ(2, iptablesCountRules(IP6TABLES_PATH, FILTER_TABLE, TETHER_FORWARD));
EXPECT_EQ(2, iptablesCountRules(IP6TABLES_PATH, RAW_TABLE, TETHER_RAW_PREROUTING));
// Netd won't clear tether quota rule, we don't care rule in tetherctrl_counters.
}
} // namespace
TEST_F(NetdBinderTest, TetherForwardAddRemove) {
binder::Status status = mNetd->tetherAddForward(sTun.name(), sTun2.name());
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNatEnable(sTun.name(), sTun2.name());
status = mNetd->tetherRemoveForward(sTun.name(), sTun2.name());
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNatDisable();
}
namespace {
using TripleInt = std::array<int, 3>;
TripleInt readProcFileToTripleInt(const std::string& path) {
std::string valueString;
int min, def, max;
EXPECT_TRUE(ReadFileToString(path, &valueString));
EXPECT_EQ(3, sscanf(valueString.c_str(), "%d %d %d", &min, &def, &max));
return {min, def, max};
}
void updateAndCheckTcpBuffer(sp<INetd>& netd, TripleInt& rmemValues, TripleInt& wmemValues) {
std::string testRmemValues =
StringPrintf("%u %u %u", rmemValues[0], rmemValues[1], rmemValues[2]);
std::string testWmemValues =
StringPrintf("%u %u %u", wmemValues[0], wmemValues[1], wmemValues[2]);
EXPECT_TRUE(netd->setTcpRWmemorySize(testRmemValues, testWmemValues).isOk());
TripleInt newRmemValues = readProcFileToTripleInt(TCP_RMEM_PROC_FILE);
TripleInt newWmemValues = readProcFileToTripleInt(TCP_WMEM_PROC_FILE);
for (int i = 0; i < 3; i++) {
SCOPED_TRACE(StringPrintf("tcp_mem value %d should be equal", i));
EXPECT_EQ(rmemValues[i], newRmemValues[i]);
EXPECT_EQ(wmemValues[i], newWmemValues[i]);
}
}
} // namespace
TEST_F(NetdBinderTest, TcpBufferSet) {
TripleInt rmemValue = readProcFileToTripleInt(TCP_RMEM_PROC_FILE);
TripleInt testRmemValue{rmemValue[0] + 42, rmemValue[1] + 42, rmemValue[2] + 42};
TripleInt wmemValue = readProcFileToTripleInt(TCP_WMEM_PROC_FILE);
TripleInt testWmemValue{wmemValue[0] + 42, wmemValue[1] + 42, wmemValue[2] + 42};
updateAndCheckTcpBuffer(mNetd, testRmemValue, testWmemValue);
updateAndCheckTcpBuffer(mNetd, rmemValue, wmemValue);
}
TEST_F(NetdBinderTest, UnsolEvents) {
auto testUnsolService = android::net::TestUnsolService::start();
std::string oldTunName = sTun.name();
std::string newTunName = "unsolTest";
testUnsolService->tarVec.push_back(oldTunName);
testUnsolService->tarVec.push_back(newTunName);
auto& cv = testUnsolService->getCv();
auto& cvMutex = testUnsolService->getCvMutex();
binder::Status status = mNetd->registerUnsolicitedEventListener(
android::interface_cast<android::net::INetdUnsolicitedEventListener>(testUnsolService));
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
// TODO: Add test for below events
// StrictCleartextDetected / InterfaceDnsServersAdded
// InterfaceClassActivity / QuotaLimitReached / InterfaceAddressRemoved
{
std::unique_lock lock(cvMutex);
// Re-init test Tun, and we expect that we will get some unsol events.
// Use the test Tun device name to verify if we receive its unsol events.
sTun.destroy();
// Use predefined name
sTun.init(newTunName);
EXPECT_EQ(std::cv_status::no_timeout, cv.wait_for(lock, std::chrono::seconds(2)));
}
// bit mask 1101101000
// Test only covers below events currently
const uint32_t kExpectedEvents = InterfaceAddressUpdated | InterfaceAdded | InterfaceRemoved |
InterfaceLinkStatusChanged | RouteChanged;
EXPECT_EQ(kExpectedEvents, testUnsolService->getReceived());
// Re-init sTun to clear predefined name
sTun.destroy();
sTun.init();
}
TEST_F(NetdBinderTest, NDC) {
struct Command {
const std::string cmdString;
const std::string expectedResult;
};
// clang-format off
// Do not change the commands order
const Command networkCmds[] = {
{StringPrintf("ndc network create %d", TEST_NETID1),
"200 0 success"},
{StringPrintf("ndc network interface add %d %s", TEST_NETID1, sTun.name().c_str()),
"200 0 success"},
{StringPrintf("ndc network interface remove %d %s", TEST_NETID1, sTun.name().c_str()),
"200 0 success"},
{StringPrintf("ndc network interface add %d %s", TEST_NETID2, sTun.name().c_str()),
"400 0 addInterfaceToNetwork() failed (Machine is not on the network)"},
{StringPrintf("ndc network destroy %d", TEST_NETID1),
"200 0 success"},
};
const std::vector<Command> ipfwdCmds = {
{"ndc ipfwd enable " + sTun.name(),
"200 0 ipfwd operation succeeded"},
{"ndc ipfwd disable " + sTun.name(),
"200 0 ipfwd operation succeeded"},
{"ndc ipfwd add lo2 lo3",
"400 0 ipfwd operation failed (No such process)"},
{"ndc ipfwd add " + sTun.name() + " " + sTun2.name(),
"200 0 ipfwd operation succeeded"},
{"ndc ipfwd remove " + sTun.name() + " " + sTun2.name(),
"200 0 ipfwd operation succeeded"},
};
static const struct {
const char* ipVersion;
const char* testDest;
const char* testNextHop;
const bool expectSuccess;
const std::string expectedResult;
} kTestData[] = {
{IP_RULE_V4, "0.0.0.0/0", "", true,
"200 0 success"},
{IP_RULE_V4, "10.251.0.0/16", "", true,
"200 0 success"},
{IP_RULE_V4, "10.251.0.0/16", "fe80::/64", false,
"400 0 addRoute() failed (Invalid argument)",},
{IP_RULE_V6, "::/0", "", true,
"200 0 success"},
{IP_RULE_V6, "2001:db8:cafe::/64", "", true,
"200 0 success"},
{IP_RULE_V6, "fe80::/64", "0.0.0.0", false,
"400 0 addRoute() failed (Invalid argument)"},
};
// clang-format on
for (const auto& cmd : networkCmds) {
const std::vector<std::string> result = runCommand(cmd.cmdString);
SCOPED_TRACE(cmd.cmdString);
EXPECT_EQ(result.size(), 1U);
EXPECT_EQ(cmd.expectedResult, Trim(result[0]));
}
for (const auto& cmd : ipfwdCmds) {
const std::vector<std::string> result = runCommand(cmd.cmdString);
SCOPED_TRACE(cmd.cmdString);
EXPECT_EQ(result.size(), 1U);
EXPECT_EQ(cmd.expectedResult, Trim(result[0]));
}
// Add test physical network
const auto& config = makeNativeNetworkConfig(TEST_NETID1, NativeNetworkType::PHYSICAL,
INetd::PERMISSION_NONE, false, false);
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID1, sTun.name()).isOk());
for (const auto& td : kTestData) {
const std::string routeAddCmd =
StringPrintf("ndc network route add %d %s %s %s", TEST_NETID1, sTun.name().c_str(),
td.testDest, td.testNextHop);
const std::string routeRemoveCmd =
StringPrintf("ndc network route remove %d %s %s %s", TEST_NETID1,
sTun.name().c_str(), td.testDest, td.testNextHop);
std::vector<std::string> result = runCommand(routeAddCmd);
SCOPED_TRACE(routeAddCmd);
EXPECT_EQ(result.size(), 1U);
EXPECT_EQ(td.expectedResult, Trim(result[0]));
if (td.expectSuccess) {
expectNetworkRouteExists(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
sTun.name().c_str());
result = runCommand(routeRemoveCmd);
EXPECT_EQ(result.size(), 1U);
EXPECT_EQ(td.expectedResult, Trim(result[0]));
expectNetworkRouteDoesNotExist(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
sTun.name().c_str());
}
}
// Remove test physical network
EXPECT_TRUE(mNetd->networkDestroy(TEST_NETID1).isOk());
}
TEST_F(NetdBinderTest, OemNetdRelated) {
sp<IBinder> binder;
binder::Status status = mNetd->getOemNetd(&binder);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
sp<com::android::internal::net::IOemNetd> oemNetd;
if (binder != nullptr) {
oemNetd = android::interface_cast<com::android::internal::net::IOemNetd>(binder);
}
ASSERT_NE(nullptr, oemNetd.get());
TimedOperation t("OemNetd isAlive RPC");
bool isAlive = false;
oemNetd->isAlive(&isAlive);
ASSERT_TRUE(isAlive);
class TestOemUnsolListener
: public com::android::internal::net::BnOemNetdUnsolicitedEventListener {
public:
android::binder::Status onRegistered() override {
std::lock_guard lock(mCvMutex);
mCv.notify_one();
return android::binder::Status::ok();
}
std::condition_variable& getCv() { return mCv; }
std::mutex& getCvMutex() { return mCvMutex; }
private:
std::mutex mCvMutex;
std::condition_variable mCv;
};
// Start the Binder thread pool.
android::ProcessState::self()->startThreadPool();
android::sp<TestOemUnsolListener> testListener = new TestOemUnsolListener();
auto& cv = testListener->getCv();
auto& cvMutex = testListener->getCvMutex();
{
std::unique_lock lock(cvMutex);
status = oemNetd->registerOemUnsolicitedEventListener(
::android::interface_cast<
com::android::internal::net::IOemNetdUnsolicitedEventListener>(
testListener));
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
// Wait for receiving expected events.
EXPECT_EQ(std::cv_status::no_timeout, cv.wait_for(lock, std::chrono::seconds(2)));
}
}
void NetdBinderTest::createVpnNetworkWithUid(bool secure, uid_t uid, int vpnNetId,
int fallthroughNetId, int nonDefaultNetId) {
// Re-init sTun* to ensure route rule exists.
sTun.destroy();
sTun.init();
sTun2.destroy();
sTun2.init();
sTun3.destroy();
sTun3.init();
// Create physical network with fallthroughNetId but not set it as default network
auto config = makeNativeNetworkConfig(fallthroughNetId, NativeNetworkType::PHYSICAL,
INetd::PERMISSION_NONE, false, false);
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(fallthroughNetId, sTun.name()).isOk());
// Create another physical network in order to test VPN behaviour with multiple networks
// connected, of which one may be the default.
auto nonDefaultNetworkConfig = makeNativeNetworkConfig(
nonDefaultNetId, NativeNetworkType::PHYSICAL, INetd::PERMISSION_NONE, false, false);
EXPECT_TRUE(mNetd->networkCreate(nonDefaultNetworkConfig).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(nonDefaultNetId, sTun3.name()).isOk());
// Create VPN with vpnNetId
config.netId = vpnNetId;
config.networkType = NativeNetworkType::VIRTUAL;
config.secure = secure;
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
// Add uid to VPN
EXPECT_TRUE(mNetd->networkAddUidRanges(vpnNetId, {makeUidRangeParcel(uid, uid)}).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(vpnNetId, sTun2.name()).isOk());
// Add default route to fallthroughNetwork
EXPECT_TRUE(mNetd->networkAddRoute(TEST_NETID1, sTun.name(), "::/0", "").isOk());
// Add limited route
EXPECT_TRUE(mNetd->networkAddRoute(TEST_NETID2, sTun2.name(), "2001:db8::/32", "").isOk());
// Also add default route to non-default network for per app default use.
EXPECT_TRUE(mNetd->networkAddRoute(TEST_NETID3, sTun3.name(), "::/0", "").isOk());
}
void NetdBinderTest::createAndSetDefaultNetwork(int netId, const std::string& interface,
int permission) {
// backup current default network.
ASSERT_TRUE(mNetd->networkGetDefault(&mStoredDefaultNetwork).isOk());
const auto& config =
makeNativeNetworkConfig(netId, NativeNetworkType::PHYSICAL, permission, false, false);
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(netId, interface).isOk());
EXPECT_TRUE(mNetd->networkSetDefault(netId).isOk());
}
void NetdBinderTest::createPhysicalNetwork(int netId, const std::string& interface,
int permission) {
const auto& config =
makeNativeNetworkConfig(netId, NativeNetworkType::PHYSICAL, permission, false, false);
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(netId, interface).isOk());
}
// 1. Create a physical network on sTun, and set it as the system default network.
// 2. Create another physical network on sTun2.
void NetdBinderTest::createDefaultAndOtherPhysicalNetwork(int defaultNetId, int otherNetId) {
createAndSetDefaultNetwork(defaultNetId, sTun.name());
EXPECT_TRUE(mNetd->networkAddRoute(defaultNetId, sTun.name(), "::/0", "").isOk());
createPhysicalNetwork(otherNetId, sTun2.name());
EXPECT_TRUE(mNetd->networkAddRoute(otherNetId, sTun2.name(), "::/0", "").isOk());
}
// 1. Create a system default network and a physical network.
// 2. Create a VPN on sTun3.
void NetdBinderTest::createVpnAndOtherPhysicalNetwork(int systemDefaultNetId, int otherNetId,
int vpnNetId, bool secure) {
createDefaultAndOtherPhysicalNetwork(systemDefaultNetId, otherNetId);
auto config = makeNativeNetworkConfig(vpnNetId, NativeNetworkType::VIRTUAL,
INetd::PERMISSION_NONE, secure, false);
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(vpnNetId, sTun3.name()).isOk());
EXPECT_TRUE(mNetd->networkAddRoute(vpnNetId, sTun3.name(), "2001:db8::/32", "").isOk());
}
// 1. Create system default network, a physical network (for per-app default), and a VPN.
// 2. Add per-app uid ranges and VPN ranges.
void NetdBinderTest::createVpnAndAppDefaultNetworkWithUid(
int systemDefaultNetId, int appDefaultNetId, int vpnNetId, bool secure,
std::vector<UidRangeParcel>&& appDefaultUidRanges,
std::vector<UidRangeParcel>&& vpnUidRanges) {
createVpnAndOtherPhysicalNetwork(systemDefaultNetId, appDefaultNetId, vpnNetId, secure);
// add per-app uid ranges.
EXPECT_TRUE(mNetd->networkAddUidRanges(appDefaultNetId, appDefaultUidRanges).isOk());
// add VPN uid ranges.
EXPECT_TRUE(mNetd->networkAddUidRanges(vpnNetId, vpnUidRanges).isOk());
}
namespace {
class ScopedUidChange {
public:
explicit ScopedUidChange(uid_t uid) : mInputUid(uid) {
mStoredUid = geteuid();
if (mInputUid == mStoredUid) return;
EXPECT_TRUE(seteuid(uid) == 0);
}
~ScopedUidChange() {
if (mInputUid == mStoredUid) return;
EXPECT_TRUE(seteuid(mStoredUid) == 0);
}
private:
uid_t mInputUid;
uid_t mStoredUid;
};
void clearQueue(int tunFd) {
char buf[4096];
int ret;
do {
ret = read(tunFd, buf, sizeof(buf));
} while (ret > 0);
}
void checkDataReceived(int udpSocket, int tunFd, sockaddr* dstAddr, int addrLen) {
char buf[4096] = {};
// Clear tunFd's queue before write something because there might be some
// arbitrary packets in the queue. (e.g. ICMPv6 packet)
clearQueue(tunFd);
EXPECT_EQ(4, sendto(udpSocket, "foo", sizeof("foo"), 0, dstAddr, addrLen));
// TODO: extract header and verify data
EXPECT_GT(read(tunFd, buf, sizeof(buf)), 0);
}
bool sendPacketFromUid(uid_t uid, IPSockAddr& dstAddr, Fwmark* fwmark, int tunFd,
bool doConnect = true) {
int family = dstAddr.family();
ScopedUidChange scopedUidChange(uid);
unique_fd testSocket(socket(family, SOCK_DGRAM | SOCK_CLOEXEC, 0));
if (testSocket < 0) return false;
const sockaddr_storage dst = IPSockAddr(dstAddr.ip(), dstAddr.port());
if (doConnect && connect(testSocket, (sockaddr*)&dst, sizeof(dst)) == -1) return false;
socklen_t fwmarkLen = sizeof(fwmark->intValue);
EXPECT_NE(-1, getsockopt(testSocket, SOL_SOCKET, SO_MARK, &(fwmark->intValue), &fwmarkLen));
int addr_len = (family == AF_INET) ? INET_ADDRSTRLEN : INET6_ADDRSTRLEN;
char addr[addr_len];
inet_ntop(family, &dstAddr, addr, addr_len);
SCOPED_TRACE(StringPrintf("sendPacket, addr: %s, uid: %u, doConnect: %s", addr, uid,
doConnect ? "true" : "false"));
if (doConnect) {
checkDataReceived(testSocket, tunFd, nullptr, 0);
} else {
checkDataReceived(testSocket, tunFd, (sockaddr*)&dst, sizeof(dst));
}
return true;
}
bool sendIPv4PacketFromUid(uid_t uid, const in_addr& dstAddr, Fwmark* fwmark, int tunFd,
bool doConnect = true) {
const sockaddr_in dst = {.sin_family = AF_INET, .sin_port = 42, .sin_addr = dstAddr};
IPSockAddr addr = IPSockAddr(dst);
return sendPacketFromUid(uid, addr, fwmark, tunFd, doConnect);
}
bool sendIPv6PacketFromUid(uid_t uid, const in6_addr& dstAddr, Fwmark* fwmark, int tunFd,
bool doConnect = true) {
const sockaddr_in6 dst6 = {
.sin6_family = AF_INET6,
.sin6_port = 42,
.sin6_addr = dstAddr,
};
IPSockAddr addr = IPSockAddr(dst6);
return sendPacketFromUid(uid, addr, fwmark, tunFd, doConnect);
}
// Send an IPv6 packet from the uid. Expect to fail and get specified errno.
bool sendIPv6PacketFromUidFail(uid_t uid, const in6_addr& dstAddr, Fwmark* fwmark, bool doConnect,
int expectedErr) {
ScopedUidChange scopedUidChange(uid);
unique_fd s(socket(AF_INET6, SOCK_DGRAM | SOCK_CLOEXEC, 0));
if (s < 0) return false;
const sockaddr_in6 dst6 = {
.sin6_family = AF_INET6,
.sin6_port = 42,
.sin6_addr = dstAddr,
};
if (doConnect) {
if (connect(s, (sockaddr*)&dst6, sizeof(dst6)) == 0) return false;
if (errno != expectedErr) return false;
}
socklen_t fwmarkLen = sizeof(fwmark->intValue);
EXPECT_NE(-1, getsockopt(s, SOL_SOCKET, SO_MARK, &(fwmark->intValue), &fwmarkLen));
char addr[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6, &dstAddr, addr, INET6_ADDRSTRLEN);
SCOPED_TRACE(StringPrintf("sendIPv6PacketFail, addr: %s, uid: %u, doConnect: %s", addr, uid,
doConnect ? "true" : "false"));
if (!doConnect) {
if (sendto(s, "foo", sizeof("foo"), 0, (sockaddr*)&dst6, sizeof(dst6)) == 0) return false;
if (errno != expectedErr) return false;
}
return true;
}
void expectVpnFallthroughRuleExists(const std::string& ifName, int vpnNetId) {
std::string vpnFallthroughRule =
StringPrintf("%d:\tfrom all fwmark 0x%x/0xffff lookup %s",
RULE_PRIORITY_VPN_FALLTHROUGH, vpnNetId, ifName.c_str());
for (const auto& ipVersion : {IP_RULE_V4, IP_RULE_V6}) {
EXPECT_TRUE(ipRuleExists(ipVersion, vpnFallthroughRule));
}
}
void expectVpnFallthroughWorks(android::net::INetd* netdService, bool bypassable, uid_t uid,
const TunInterface& fallthroughNetwork,
const TunInterface& vpnNetwork, const TunInterface& otherNetwork,
int vpnNetId = TEST_NETID2, int fallthroughNetId = TEST_NETID1) {
// Set default network to NETID_UNSET
EXPECT_TRUE(netdService->networkSetDefault(NETID_UNSET).isOk());
// insideVpnAddr based on the route we added in createVpnNetworkWithUid
in6_addr insideVpnAddr = {
{// 2001:db8:cafe::1
.u6_addr8 = {0x20, 0x01, 0x0d, 0xb8, 0xca, 0xfe, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}}};
// outsideVpnAddr will hit the route in the fallthrough network route table
// because we added default route in createVpnNetworkWithUid
in6_addr outsideVpnAddr = {
{// 2607:f0d0:1002::4
.u6_addr8 = {0x26, 0x07, 0xf0, 0xd0, 0x10, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4}}};
int fallthroughFd = fallthroughNetwork.getFdForTesting();
int vpnFd = vpnNetwork.getFdForTesting();
// Expect all connections to fail because UID 0 is not routed to the VPN and there is no
// default network.
Fwmark fwmark;
EXPECT_FALSE(sendIPv6PacketFromUid(0, outsideVpnAddr, &fwmark, fallthroughFd));
EXPECT_FALSE(sendIPv6PacketFromUid(0, insideVpnAddr, &fwmark, fallthroughFd));
// Set default network
EXPECT_TRUE(netdService->networkSetDefault(fallthroughNetId).isOk());
// Connections go on the default network because UID 0 is not subject to the VPN.
EXPECT_TRUE(sendIPv6PacketFromUid(0, outsideVpnAddr, &fwmark, fallthroughFd));
EXPECT_EQ(fallthroughNetId | 0xC0000, static_cast<int>(fwmark.intValue));
EXPECT_TRUE(sendIPv6PacketFromUid(0, insideVpnAddr, &fwmark, fallthroughFd));
EXPECT_EQ(fallthroughNetId | 0xC0000, static_cast<int>(fwmark.intValue));
// Check if fallthrough rule exists
expectVpnFallthroughRuleExists(fallthroughNetwork.name(), vpnNetId);
// Check if local exclusion rule exists for default network
expectVpnLocalExclusionRuleExists(fallthroughNetwork.name(), true);
// No local exclusion rule for non-default network
expectVpnLocalExclusionRuleExists(otherNetwork.name(), false);
// Expect fallthrough to default network
// The fwmark differs depending on whether the VPN is bypassable or not.
EXPECT_TRUE(sendIPv6PacketFromUid(uid, outsideVpnAddr, &fwmark, fallthroughFd));
EXPECT_EQ(bypassable ? vpnNetId : fallthroughNetId, static_cast<int>(fwmark.intValue));
// Expect connect success, packet will be sent to vpnFd.
EXPECT_TRUE(sendIPv6PacketFromUid(uid, insideVpnAddr, &fwmark, vpnFd));
EXPECT_EQ(bypassable ? vpnNetId : fallthroughNetId, static_cast<int>(fwmark.intValue));
// Explicitly select vpn network
setNetworkForProcess(vpnNetId);
// Expect fallthrough to default network
EXPECT_TRUE(sendIPv6PacketFromUid(0, outsideVpnAddr, &fwmark, fallthroughFd));
// Expect the mark contains all the bit because we've selected network.
EXPECT_EQ(vpnNetId | 0xF0000, static_cast<int>(fwmark.intValue));
// Expect connect success, packet will be sent to vpnFd.
EXPECT_TRUE(sendIPv6PacketFromUid(0, insideVpnAddr, &fwmark, vpnFd));
// Expect the mark contains all the bit because we've selected network.
EXPECT_EQ(vpnNetId | 0xF0000, static_cast<int>(fwmark.intValue));
// Explicitly select fallthrough network
setNetworkForProcess(fallthroughNetId);
// The mark is set to fallthrough network because we've selected it.
EXPECT_TRUE(sendIPv6PacketFromUid(0, outsideVpnAddr, &fwmark, fallthroughFd));
EXPECT_TRUE(sendIPv6PacketFromUid(0, insideVpnAddr, &fwmark, fallthroughFd));
// If vpn is BypassableVPN, connections can also go on the fallthrough network under vpn uid.
if (bypassable) {
EXPECT_TRUE(sendIPv6PacketFromUid(uid, outsideVpnAddr, &fwmark, fallthroughFd));
EXPECT_TRUE(sendIPv6PacketFromUid(uid, insideVpnAddr, &fwmark, fallthroughFd));
} else {
// If not, no permission to bypass vpn.
EXPECT_FALSE(sendIPv6PacketFromUid(uid, outsideVpnAddr, &fwmark, fallthroughFd));
EXPECT_FALSE(sendIPv6PacketFromUid(uid, insideVpnAddr, &fwmark, fallthroughFd));
}
}
} // namespace
TEST_F(NetdBinderTest, SecureVPNFallthrough) {
createVpnNetworkWithUid(true /* secure */, TEST_UID1);
// Get current default network NetId
ASSERT_TRUE(mNetd->networkGetDefault(&mStoredDefaultNetwork).isOk());
expectVpnFallthroughWorks(mNetd.get(), false /* bypassable */, TEST_UID1, sTun, sTun2, sTun3);
}
TEST_F(NetdBinderTest, BypassableVPNFallthrough) {
createVpnNetworkWithUid(false /* secure */, TEST_UID1);
// Get current default network NetId
ASSERT_TRUE(mNetd->networkGetDefault(&mStoredDefaultNetwork).isOk());
expectVpnFallthroughWorks(mNetd.get(), true /* bypassable */, TEST_UID1, sTun, sTun2, sTun3);
}
namespace {
int32_t createIpv6SocketAndCheckMark(int type, const in6_addr& dstAddr) {
const sockaddr_in6 dst6 = {
.sin6_family = AF_INET6,
.sin6_port = 1234,
.sin6_addr = dstAddr,
};
// create non-blocking socket.
int sockFd = socket(AF_INET6, type | SOCK_NONBLOCK, 0);
EXPECT_NE(-1, sockFd);
EXPECT_EQ((type == SOCK_STREAM) ? -1 : 0, connect(sockFd, (sockaddr*)&dst6, sizeof(dst6)));
// Get socket fwmark.
Fwmark fwmark;
socklen_t fwmarkLen = sizeof(fwmark.intValue);
EXPECT_EQ(0, getsockopt(sockFd, SOL_SOCKET, SO_MARK, &fwmark.intValue, &fwmarkLen));
EXPECT_EQ(0, close(sockFd));
return fwmark.intValue;
}
} // namespace
TEST_F(NetdBinderTest, GetFwmarkForNetwork) {
// Save current default network.
ASSERT_TRUE(mNetd->networkGetDefault(&mStoredDefaultNetwork).isOk());
// Add test physical network 1 and set as default network.
auto config = makeNativeNetworkConfig(TEST_NETID1, NativeNetworkType::PHYSICAL,
INetd::PERMISSION_NONE, false, false);
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID1, sTun.name()).isOk());
EXPECT_TRUE(mNetd->networkAddRoute(TEST_NETID1, sTun.name(), "2001:db8::/32", "").isOk());
EXPECT_TRUE(mNetd->networkSetDefault(TEST_NETID1).isOk());
// Add test physical network 2
config.netId = TEST_NETID2;
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID2, sTun2.name()).isOk());
// Get fwmark for network 1.
MarkMaskParcel maskMarkNet1;
ASSERT_TRUE(mNetd->getFwmarkForNetwork(TEST_NETID1, &maskMarkNet1).isOk());
uint32_t fwmarkTcp = createIpv6SocketAndCheckMark(SOCK_STREAM, V6_ADDR);
uint32_t fwmarkUdp = createIpv6SocketAndCheckMark(SOCK_DGRAM, V6_ADDR);
EXPECT_EQ(maskMarkNet1.mark, static_cast<int>(fwmarkTcp & maskMarkNet1.mask));
EXPECT_EQ(maskMarkNet1.mark, static_cast<int>(fwmarkUdp & maskMarkNet1.mask));
// Get fwmark for network 2.
MarkMaskParcel maskMarkNet2;
ASSERT_TRUE(mNetd->getFwmarkForNetwork(TEST_NETID2, &maskMarkNet2).isOk());
EXPECT_NE(maskMarkNet2.mark, static_cast<int>(fwmarkTcp & maskMarkNet2.mask));
EXPECT_NE(maskMarkNet2.mark, static_cast<int>(fwmarkUdp & maskMarkNet2.mask));
// Remove test physical network.
EXPECT_TRUE(mNetd->networkDestroy(TEST_NETID2).isOk());
EXPECT_TRUE(mNetd->networkDestroy(TEST_NETID1).isOk());
}
TEST_F(NetdBinderTest, TestServiceDump) {
sp<IBinder> binder = INetd::asBinder(mNetd);
ASSERT_NE(nullptr, binder);
struct TestData {
// Expected contents of the dump command.
const std::string output;
// A regex that might be helpful in matching relevant lines in the output.
// Used to make it easier to add test cases for this code.
const std::string hintRegex;
};
std::vector<TestData> testData;
// Send some IPCs and for each one add an element to testData telling us what to expect.
const auto& config = makeNativeNetworkConfig(TEST_DUMP_NETID, NativeNetworkType::PHYSICAL,
INetd::PERMISSION_NONE, false, false);
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
testData.push_back(
{"networkCreate(NativeNetworkConfig{netId: 65123, networkType: PHYSICAL, "
"permission: 0, secure: false, vpnType: PLATFORM, excludeLocalRoutes: false})",
"networkCreate.*65123"});
EXPECT_EQ(EEXIST, mNetd->networkCreate(config).serviceSpecificErrorCode());
testData.push_back(
{"networkCreate(NativeNetworkConfig{netId: 65123, networkType: PHYSICAL, "
"permission: 0, secure: false, vpnType: PLATFORM, excludeLocalRoutes: false}) "
"-> ServiceSpecificException(17, \"File exists\")",
"networkCreate.*65123.*17"});
EXPECT_TRUE(mNetd->networkAddInterface(TEST_DUMP_NETID, sTun.name()).isOk());
testData.push_back({StringPrintf("networkAddInterface(65123, %s)", sTun.name().c_str()),
StringPrintf("networkAddInterface.*65123.*%s", sTun.name().c_str())});
android::net::RouteInfoParcel parcel;
parcel.ifName = sTun.name();
parcel.destination = "2001:db8:dead:beef::/64";
parcel.nextHop = "fe80::dead:beef";
parcel.mtu = 1234;
EXPECT_TRUE(mNetd->networkAddRouteParcel(TEST_DUMP_NETID, parcel).isOk());
testData.push_back(
{StringPrintf("networkAddRouteParcel(65123, RouteInfoParcel{destination:"
" 2001:db8:dead:beef::/64, ifName: %s, nextHop: fe80::dead:beef,"
" mtu: 1234})",
sTun.name().c_str()),
"networkAddRouteParcel.*65123.*dead:beef"});
EXPECT_TRUE(mNetd->networkDestroy(TEST_DUMP_NETID).isOk());
testData.push_back({"networkDestroy(65123)", "networkDestroy.*65123"});
// Send the service dump request to netd.
std::vector<std::string> lines = {};
android::status_t ret = dumpService(binder, {}, lines);
ASSERT_EQ(android::OK, ret) << "Error dumping service: " << android::statusToString(ret);
// Basic regexp to match dump output lines. Matches the beginning and end of the line, and
// puts the output of the command itself into the first match group.
// Example: " 11-05 00:23:39.481 myCommand(args) <2.02ms>".
const std::basic_regex lineRegex(
"^ [0-9]{2}-[0-9]{2} [0-9]{2}:[0-9]{2}:[0-9]{2}[.][0-9]{3} "
"(.*)"
" <[0-9]+[.][0-9]{2}ms>$");
// For each element of testdata, check that the expected output appears in the dump output.
// If not, fail the test and use hintRegex to print similar lines to assist in debugging.
for (const TestData& td : testData) {
const bool found = std::any_of(lines.begin(), lines.end(), [&](const std::string& line) {
std::smatch match;
if (!std::regex_match(line, match, lineRegex)) return false;
return (match.size() == 2) && (match[1].str() == td.output);
});
EXPECT_TRUE(found) << "Didn't find line '" << td.output << "' in dumpsys output.";
if (found) continue;
std::cerr << "Similar lines" << std::endl;
for (const auto& line : lines) {
if (std::regex_search(line, std::basic_regex(td.hintRegex))) {
std::cerr << line << std::endl;
}
}
}
}
namespace {
// aliases for better reading
#define SYSTEM_DEFAULT_NETID TEST_NETID1
#define APP_DEFAULT_NETID TEST_NETID2
#define VPN_NETID TEST_NETID3
void verifyAppUidRules(std::vector<bool>&& expectedResults, std::vector<UidRangeParcel>& uidRanges,
const std::string& iface, int32_t subPriority) {
ASSERT_EQ(expectedResults.size(), uidRanges.size());
if (iface.size()) {
std::string action = StringPrintf("lookup %s ", iface.c_str());
std::string action_local = StringPrintf("lookup %s_local ", iface.c_str());
for (unsigned long i = 0; i < uidRanges.size(); i++) {
EXPECT_EQ(expectedResults[i],
ipRuleExistsForRange(RULE_PRIORITY_UID_EXPLICIT_NETWORK + subPriority,
uidRanges[i], action));
EXPECT_EQ(expectedResults[i],
ipRuleExistsForRange(RULE_PRIORITY_UID_IMPLICIT_NETWORK + subPriority,
uidRanges[i], action));
EXPECT_EQ(expectedResults[i],
ipRuleExistsForRange(RULE_PRIORITY_UID_DEFAULT_NETWORK + subPriority,
uidRanges[i], action));
EXPECT_EQ(expectedResults[i], ipRuleExistsForRange(RULE_PRIORITY_UID_LOCAL_ROUTES,
uidRanges[i], action_local));
}
} else {
std::string action = "unreachable";
for (unsigned long i = 0; i < uidRanges.size(); i++) {
EXPECT_EQ(expectedResults[i],
ipRuleExistsForRange(RULE_PRIORITY_UID_EXPLICIT_NETWORK + subPriority,
uidRanges[i], action));
EXPECT_EQ(expectedResults[i],
ipRuleExistsForRange(RULE_PRIORITY_UID_IMPLICIT_NETWORK + subPriority,
uidRanges[i], action));
EXPECT_EQ(expectedResults[i],
ipRuleExistsForRange(RULE_PRIORITY_UID_DEFAULT_UNREACHABLE + subPriority,
uidRanges[i], action));
}
}
}
void verifyAppUidRules(std::vector<bool>&& expectedResults, NativeUidRangeConfig& uidRangeConfig,
const std::string& iface) {
verifyAppUidRules(std::move(expectedResults), uidRangeConfig.uidRanges, iface,
uidRangeConfig.subPriority);
}
void verifyVpnUidRules(std::vector<bool>&& expectedResults, NativeUidRangeConfig& uidRangeConfig,
const std::string& iface, bool secure, bool excludeLocalRoutes) {
ASSERT_EQ(expectedResults.size(), uidRangeConfig.uidRanges.size());
std::string action = StringPrintf("lookup %s ", iface.c_str());
int32_t priority;
if (secure) {
priority = RULE_PRIORITY_SECURE_VPN;
} else {
// Set to no local exclusion here to reflect the default value of local exclusion.
priority = excludeLocalRoutes ? RULE_PRIORITY_BYPASSABLE_VPN_LOCAL_EXCLUSION
: RULE_PRIORITY_BYPASSABLE_VPN_NO_LOCAL_EXCLUSION;
}
for (unsigned long i = 0; i < uidRangeConfig.uidRanges.size(); i++) {
EXPECT_EQ(expectedResults[i], ipRuleExistsForRange(priority + uidRangeConfig.subPriority,
uidRangeConfig.uidRanges[i], action));
EXPECT_EQ(expectedResults[i],
ipRuleExistsForRange(RULE_PRIORITY_EXPLICIT_NETWORK + uidRangeConfig.subPriority,
uidRangeConfig.uidRanges[i], action));
EXPECT_EQ(expectedResults[i],
ipRuleExistsForRange(RULE_PRIORITY_OUTPUT_INTERFACE + uidRangeConfig.subPriority,
uidRangeConfig.uidRanges[i], action, iface.c_str()));
}
}
constexpr int SUB_PRIORITY_1 = UidRanges::SUB_PRIORITY_HIGHEST + 1;
constexpr int SUB_PRIORITY_2 = UidRanges::SUB_PRIORITY_HIGHEST + 2;
constexpr int IMPLICITLY_SELECT = 0;
constexpr int EXPLICITLY_SELECT = 1;
constexpr int UNCONNECTED_SOCKET = 2;
// 1. Send data with the specified UID, on a connected or unconnected socket.
// 2. Verify if data is received from the specified fd. The fd should belong to a TUN, which has
// been assigned to the test network.
// 3. Verify if fwmark of data is correct.
// Note: This is a helper function used by per-app default network tests. It does not implement full
// fwmark logic in netd, and it's currently sufficient. Extension may be required for more
// complicated tests.
void expectPacketSentOnNetId(uid_t uid, unsigned netId, int fd, int selectionMode) {
Fwmark fwmark;
const bool doConnect = (selectionMode != UNCONNECTED_SOCKET);
EXPECT_TRUE(sendIPv6PacketFromUid(uid, V6_ADDR, &fwmark, fd, doConnect));
Fwmark expected;
expected.netId = netId;
expected.explicitlySelected = (selectionMode == EXPLICITLY_SELECT);
if (uid == AID_ROOT && selectionMode == EXPLICITLY_SELECT) {
expected.protectedFromVpn = true;
} else {
expected.protectedFromVpn = false;
}
if (selectionMode == UNCONNECTED_SOCKET) {
expected.permission = PERMISSION_NONE;
} else {
expected.permission = (uid == AID_ROOT) ? PERMISSION_SYSTEM : PERMISSION_NONE;
}
EXPECT_EQ(expected.intValue, fwmark.intValue);
}
void expectUnreachableError(uid_t uid, unsigned netId, int selectionMode) {
Fwmark fwmark;
const bool doConnect = (selectionMode != UNCONNECTED_SOCKET);
EXPECT_TRUE(sendIPv6PacketFromUidFail(uid, V6_ADDR, &fwmark, doConnect, ENETUNREACH));
Fwmark expected;
expected.netId = netId;
expected.explicitlySelected = (selectionMode == EXPLICITLY_SELECT);
if (uid == AID_ROOT && selectionMode == EXPLICITLY_SELECT) {
expected.protectedFromVpn = true;
} else {
expected.protectedFromVpn = false;
}
if (selectionMode == UNCONNECTED_SOCKET) {
expected.permission = PERMISSION_NONE;
} else {
expected.permission = (uid == AID_ROOT) ? PERMISSION_SYSTEM : PERMISSION_NONE;
}
EXPECT_EQ(expected.intValue, fwmark.intValue);
}
} // namespace
// Verify how the API handle overlapped UID ranges
TEST_F(NetdBinderTest, PerAppDefaultNetwork_OverlappedUidRanges) {
const auto& config = makeNativeNetworkConfig(APP_DEFAULT_NETID, NativeNetworkType::PHYSICAL,
INetd::PERMISSION_NONE, false, false);
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(APP_DEFAULT_NETID, sTun.name()).isOk());
std::vector<UidRangeParcel> uidRanges = {makeUidRangeParcel(BASE_UID + 1, BASE_UID + 1),
makeUidRangeParcel(BASE_UID + 10, BASE_UID + 12)};
EXPECT_TRUE(mNetd->networkAddUidRanges(APP_DEFAULT_NETID, uidRanges).isOk());
binder::Status status;
status = mNetd->networkAddUidRanges(APP_DEFAULT_NETID,
{makeUidRangeParcel(BASE_UID + 1, BASE_UID + 1)});
EXPECT_TRUE(status.isOk());
status = mNetd->networkAddUidRanges(APP_DEFAULT_NETID,
{makeUidRangeParcel(BASE_UID + 9, BASE_UID + 10)});
EXPECT_TRUE(status.isOk());
status = mNetd->networkAddUidRanges(APP_DEFAULT_NETID,
{makeUidRangeParcel(BASE_UID + 11, BASE_UID + 11)});
EXPECT_TRUE(status.isOk());
status = mNetd->networkAddUidRanges(APP_DEFAULT_NETID,
{makeUidRangeParcel(BASE_UID + 12, BASE_UID + 13)});
EXPECT_TRUE(status.isOk());
status = mNetd->networkAddUidRanges(APP_DEFAULT_NETID,
{makeUidRangeParcel(BASE_UID + 9, BASE_UID + 13)});
EXPECT_TRUE(status.isOk());
std::vector<UidRangeParcel> selfOverlappedUidRanges = {
makeUidRangeParcel(BASE_UID + 20, BASE_UID + 20),
makeUidRangeParcel(BASE_UID + 20, BASE_UID + 21)};
status = mNetd->networkAddUidRanges(APP_DEFAULT_NETID, selfOverlappedUidRanges);
EXPECT_FALSE(status.isOk());
EXPECT_EQ(EINVAL, status.serviceSpecificErrorCode());
}
// Verify whether IP rules for app default network are correctly configured.
TEST_F(NetdBinderTest, PerAppDefaultNetwork_VerifyIpRules) {
const auto& config = makeNativeNetworkConfig(APP_DEFAULT_NETID, NativeNetworkType::PHYSICAL,
INetd::PERMISSION_NONE, false, false);
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(APP_DEFAULT_NETID, sTun.name()).isOk());
std::vector<UidRangeParcel> uidRanges = {makeUidRangeParcel(BASE_UID + 8005, BASE_UID + 8012),
makeUidRangeParcel(BASE_UID + 8090, BASE_UID + 8099)};
EXPECT_TRUE(mNetd->networkAddUidRanges(APP_DEFAULT_NETID, uidRanges).isOk());
verifyAppUidRules({true, true} /*expectedResults*/, uidRanges, sTun.name(),
UidRanges::SUB_PRIORITY_HIGHEST);
EXPECT_TRUE(mNetd->networkRemoveUidRanges(APP_DEFAULT_NETID, {uidRanges.at(0)}).isOk());
verifyAppUidRules({false, true} /*expectedResults*/, uidRanges, sTun.name(),
UidRanges::SUB_PRIORITY_HIGHEST);
EXPECT_TRUE(mNetd->networkRemoveUidRanges(APP_DEFAULT_NETID, {uidRanges.at(1)}).isOk());
verifyAppUidRules({false, false} /*expectedResults*/, uidRanges, sTun.name(),
UidRanges::SUB_PRIORITY_HIGHEST);
EXPECT_TRUE(mNetd->networkAddUidRanges(INetd::UNREACHABLE_NET_ID, uidRanges).isOk());
verifyAppUidRules({true, true} /*expectedResults*/, uidRanges, "",
UidRanges::SUB_PRIORITY_HIGHEST);
EXPECT_TRUE(mNetd->networkRemoveUidRanges(INetd::UNREACHABLE_NET_ID, {uidRanges.at(0)}).isOk());
verifyAppUidRules({false, true} /*expectedResults*/, uidRanges, "",
UidRanges::SUB_PRIORITY_HIGHEST);
EXPECT_TRUE(mNetd->networkRemoveUidRanges(INetd::UNREACHABLE_NET_ID, {uidRanges.at(1)}).isOk());
verifyAppUidRules({false, false} /*expectedResults*/, uidRanges, "",
UidRanges::SUB_PRIORITY_HIGHEST);
}
// Verify whether packets go through the right network with and without per-app default network.
// Meaning of Fwmark bits (from Fwmark.h):
// 0x0000ffff - Network ID
// 0x00010000 - Explicit mark bit
// 0x00020000 - VPN protect bit
// 0x000c0000 - Permission bits
TEST_F(NetdBinderTest, PerAppDefaultNetwork_ImplicitlySelectNetwork) {
createDefaultAndOtherPhysicalNetwork(SYSTEM_DEFAULT_NETID, APP_DEFAULT_NETID);
int systemDefaultFd = sTun.getFdForTesting();
int appDefaultFd = sTun2.getFdForTesting();
// Connections go through the system default network.
expectPacketSentOnNetId(AID_ROOT, SYSTEM_DEFAULT_NETID, systemDefaultFd, IMPLICITLY_SELECT);
expectPacketSentOnNetId(TEST_UID1, SYSTEM_DEFAULT_NETID, systemDefaultFd, IMPLICITLY_SELECT);
// Add TEST_UID1 to per-app default network.
EXPECT_TRUE(mNetd->networkAddUidRanges(APP_DEFAULT_NETID,
{makeUidRangeParcel(TEST_UID1, TEST_UID1)})
.isOk());
expectPacketSentOnNetId(AID_ROOT, SYSTEM_DEFAULT_NETID, systemDefaultFd, IMPLICITLY_SELECT);
expectPacketSentOnNetId(TEST_UID1, APP_DEFAULT_NETID, appDefaultFd, IMPLICITLY_SELECT);
// Remove TEST_UID1 from per-app default network.
EXPECT_TRUE(mNetd->networkRemoveUidRanges(APP_DEFAULT_NETID,
{makeUidRangeParcel(TEST_UID1, TEST_UID1)})
.isOk());
expectPacketSentOnNetId(AID_ROOT, SYSTEM_DEFAULT_NETID, systemDefaultFd, IMPLICITLY_SELECT);
expectPacketSentOnNetId(TEST_UID1, SYSTEM_DEFAULT_NETID, systemDefaultFd, IMPLICITLY_SELECT);
// Prohibit TEST_UID1 from using the default network.
EXPECT_TRUE(mNetd->networkAddUidRanges(INetd::UNREACHABLE_NET_ID,
{makeUidRangeParcel(TEST_UID1, TEST_UID1)})
.isOk());
expectPacketSentOnNetId(AID_ROOT, SYSTEM_DEFAULT_NETID, systemDefaultFd, IMPLICITLY_SELECT);
expectUnreachableError(TEST_UID1, INetd::UNREACHABLE_NET_ID, IMPLICITLY_SELECT);
// restore IP rules
EXPECT_TRUE(mNetd->networkRemoveUidRanges(INetd::UNREACHABLE_NET_ID,
{makeUidRangeParcel(TEST_UID1, TEST_UID1)})
.isOk());
}
// Verify whether packets go through the right network when app explicitly selects a network.
TEST_F(NetdBinderTest, PerAppDefaultNetwork_ExplicitlySelectNetwork) {
createDefaultAndOtherPhysicalNetwork(SYSTEM_DEFAULT_NETID, APP_DEFAULT_NETID);
int systemDefaultFd = sTun.getFdForTesting();
int appDefaultFd = sTun2.getFdForTesting();
// Explicitly select the system default network.
setNetworkForProcess(SYSTEM_DEFAULT_NETID);
// Connections go through the system default network.
expectPacketSentOnNetId(AID_ROOT, SYSTEM_DEFAULT_NETID, systemDefaultFd, EXPLICITLY_SELECT);
expectPacketSentOnNetId(TEST_UID1, SYSTEM_DEFAULT_NETID, systemDefaultFd, EXPLICITLY_SELECT);
// Set TEST_UID1 to default unreachable, which won't affect the explicitly selected network.
// Connections go through the system default network.
EXPECT_TRUE(mNetd->networkAddUidRanges(INetd::UNREACHABLE_NET_ID,
{makeUidRangeParcel(TEST_UID1, TEST_UID1)})
.isOk());
expectPacketSentOnNetId(AID_ROOT, SYSTEM_DEFAULT_NETID, systemDefaultFd, EXPLICITLY_SELECT);
expectPacketSentOnNetId(TEST_UID1, SYSTEM_DEFAULT_NETID, systemDefaultFd, EXPLICITLY_SELECT);
// restore IP rules
EXPECT_TRUE(mNetd->networkRemoveUidRanges(INetd::UNREACHABLE_NET_ID,
{makeUidRangeParcel(TEST_UID1, TEST_UID1)})
.isOk());
// Add TEST_UID1 to per-app default network, which won't affect the explicitly selected network.
EXPECT_TRUE(mNetd->networkAddUidRanges(APP_DEFAULT_NETID,
{makeUidRangeParcel(TEST_UID1, TEST_UID1)})
.isOk());
expectPacketSentOnNetId(AID_ROOT, SYSTEM_DEFAULT_NETID, systemDefaultFd, EXPLICITLY_SELECT);
expectPacketSentOnNetId(TEST_UID1, SYSTEM_DEFAULT_NETID, systemDefaultFd, EXPLICITLY_SELECT);
// Explicitly select the per-app default network.
setNetworkForProcess(APP_DEFAULT_NETID);
// Connections go through the per-app default network.
expectPacketSentOnNetId(AID_ROOT, APP_DEFAULT_NETID, appDefaultFd, EXPLICITLY_SELECT);
expectPacketSentOnNetId(TEST_UID1, APP_DEFAULT_NETID, appDefaultFd, EXPLICITLY_SELECT);
}
// Verify whether packets go through the right network if app does not implicitly or explicitly
// select any network.
TEST_F(NetdBinderTest, PerAppDefaultNetwork_UnconnectedSocket) {
createDefaultAndOtherPhysicalNetwork(SYSTEM_DEFAULT_NETID, APP_DEFAULT_NETID);
int systemDefaultFd = sTun.getFdForTesting();
int appDefaultFd = sTun2.getFdForTesting();
// Connections go through the system default network.
expectPacketSentOnNetId(AID_ROOT, NETID_UNSET, systemDefaultFd, UNCONNECTED_SOCKET);
expectPacketSentOnNetId(TEST_UID1, NETID_UNSET, systemDefaultFd, UNCONNECTED_SOCKET);
// Add TEST_UID1 to per-app default network. Traffic should go through the per-app default
// network if UID is in range. Otherwise, go through the system default network.
EXPECT_TRUE(mNetd->networkAddUidRanges(APP_DEFAULT_NETID,
{makeUidRangeParcel(TEST_UID1, TEST_UID1)})
.isOk());
expectPacketSentOnNetId(AID_ROOT, NETID_UNSET, systemDefaultFd, UNCONNECTED_SOCKET);
expectPacketSentOnNetId(TEST_UID1, NETID_UNSET, appDefaultFd, UNCONNECTED_SOCKET);
// Set TEST_UID1's default network to unreachable. Its traffic should still go through the
// per-app default network. Other traffic go through the system default network.
// PS: per-app default network take precedence over unreachable network. This should happens
// only in the transition period when both rules are briefly set.
EXPECT_TRUE(mNetd->networkAddUidRanges(INetd::UNREACHABLE_NET_ID,
{makeUidRangeParcel(TEST_UID1, TEST_UID1)})
.isOk());
expectPacketSentOnNetId(AID_ROOT, NETID_UNSET, systemDefaultFd, UNCONNECTED_SOCKET);
expectPacketSentOnNetId(TEST_UID1, NETID_UNSET, appDefaultFd, UNCONNECTED_SOCKET);
// Remove TEST_UID1's default network from OEM-paid network. Its traffic should get ENETUNREACH
// error. Other traffic still go through the system default network.
EXPECT_TRUE(mNetd->networkRemoveUidRanges(APP_DEFAULT_NETID,
{makeUidRangeParcel(TEST_UID1, TEST_UID1)})
.isOk());
expectPacketSentOnNetId(AID_ROOT, NETID_UNSET, systemDefaultFd, UNCONNECTED_SOCKET);
expectUnreachableError(TEST_UID1, NETID_UNSET, UNCONNECTED_SOCKET);
// restore IP rules
EXPECT_TRUE(mNetd->networkRemoveUidRanges(INetd::UNREACHABLE_NET_ID,
{makeUidRangeParcel(TEST_UID1, TEST_UID1)})
.isOk());
}
TEST_F(NetdBinderTest, PerAppDefaultNetwork_PermissionCheck) {
createPhysicalNetwork(APP_DEFAULT_NETID, sTun2.name(), INetd::PERMISSION_SYSTEM);
{ // uid is not in app range. Can not set network for process.
ScopedUidChange scopedUidChange(TEST_UID1);
EXPECT_EQ(-EACCES, setNetworkForProcess(APP_DEFAULT_NETID));
}
EXPECT_TRUE(mNetd->networkAddUidRanges(APP_DEFAULT_NETID,
{makeUidRangeParcel(TEST_UID1, TEST_UID1)})
.isOk());
{ // uid is in app range. Can set network for process.
ScopedUidChange scopedUidChange(TEST_UID1);
EXPECT_EQ(0, setNetworkForProcess(APP_DEFAULT_NETID));
}
}
class VpnParameterizedTest : public NetdBinderTest, public testing::WithParamInterface<bool> {};
// Exercise secure and bypassable VPN.
INSTANTIATE_TEST_SUITE_P(PerAppDefaultNetwork, VpnParameterizedTest, testing::Bool(),
[](const testing::TestParamInfo<bool>& info) {
return info.param ? "SecureVPN" : "BypassableVPN";
});
// Verify per-app default network + VPN.
TEST_P(VpnParameterizedTest, ImplicitlySelectNetwork) {
const bool isSecureVPN = GetParam();
createVpnAndAppDefaultNetworkWithUid(
SYSTEM_DEFAULT_NETID, APP_DEFAULT_NETID, VPN_NETID, isSecureVPN,
{makeUidRangeParcel(TEST_UID2, TEST_UID1)} /* app range */,
{makeUidRangeParcel(TEST_UID3, TEST_UID2)} /* VPN range */);
int systemDefaultFd = sTun.getFdForTesting();
int appDefaultFd = sTun2.getFdForTesting();
int vpnFd = sTun3.getFdForTesting();
// uid is neither in app range, nor in VPN range. Traffic goes through system default network.
expectPacketSentOnNetId(AID_ROOT, SYSTEM_DEFAULT_NETID, systemDefaultFd, IMPLICITLY_SELECT);
// uid is in VPN range, not in app range. Traffic goes through VPN.
expectPacketSentOnNetId(TEST_UID3, (isSecureVPN ? SYSTEM_DEFAULT_NETID : VPN_NETID), vpnFd,
IMPLICITLY_SELECT);
// uid is in app range, not in VPN range. Traffic goes through per-app default network.
expectPacketSentOnNetId(TEST_UID1, APP_DEFAULT_NETID, appDefaultFd, IMPLICITLY_SELECT);
// uid is in both app and VPN range. Traffic goes through VPN.
expectPacketSentOnNetId(TEST_UID2, (isSecureVPN ? APP_DEFAULT_NETID : VPN_NETID), vpnFd,
IMPLICITLY_SELECT);
}
class VpnAndSelectNetworkParameterizedTest
: public NetdBinderTest,
public testing::WithParamInterface<std::tuple<bool, int>> {};
// Exercise the combination of different VPN types and different user selected networks. e.g.
// secure VPN + select on system default network
// secure VPN + select on app default network
// secure VPN + select on VPN
// bypassable VPN + select on system default network
// ...
INSTANTIATE_TEST_SUITE_P(PerAppDefaultNetwork, VpnAndSelectNetworkParameterizedTest,
testing::Combine(testing::Bool(),
testing::Values(SYSTEM_DEFAULT_NETID, APP_DEFAULT_NETID,
VPN_NETID)),
[](const testing::TestParamInfo<std::tuple<bool, int>>& info) {
const std::string vpnType = std::get<0>(info.param)
? std::string("SecureVPN")
: std::string("BypassableVPN");
std::string selectedNetwork;
switch (std::get<1>(info.param)) {
case SYSTEM_DEFAULT_NETID:
selectedNetwork = "SystemDefaultNetwork";
break;
case APP_DEFAULT_NETID:
selectedNetwork = "AppDefaultNetwork";
break;
case VPN_NETID:
selectedNetwork = "VPN";
break;
default:
selectedNetwork = "InvalidParameter"; // Should not happen.
}
return vpnType + "_select" + selectedNetwork;
});
TEST_P(VpnAndSelectNetworkParameterizedTest, ExplicitlySelectNetwork) {
bool isSecureVPN;
int selectedNetId;
std::tie(isSecureVPN, selectedNetId) = GetParam();
createVpnAndAppDefaultNetworkWithUid(
SYSTEM_DEFAULT_NETID, APP_DEFAULT_NETID, VPN_NETID, isSecureVPN,
{makeUidRangeParcel(TEST_UID2, TEST_UID1)} /* app range */,
{makeUidRangeParcel(TEST_UID3, TEST_UID2)} /* VPN range */);
int expectedFd = -1;
switch (selectedNetId) {
case SYSTEM_DEFAULT_NETID:
expectedFd = sTun.getFdForTesting();
break;
case APP_DEFAULT_NETID:
expectedFd = sTun2.getFdForTesting();
break;
case VPN_NETID:
expectedFd = sTun3.getFdForTesting();
break;
default:
GTEST_LOG_(ERROR) << "unexpected netId:" << selectedNetId; // Should not happen.
}
// In all following permutations, Traffic should go through the specified network if a process
// can select network for itself. The fwmark should contain process UID and the explicit select
// bit.
{ // uid is neither in app range, nor in VPN range. Permission bits, protect bit, and explicit
// select bit are all set because of AID_ROOT.
ScopedUidChange scopedUidChange(AID_ROOT);
EXPECT_EQ(0, setNetworkForProcess(selectedNetId));
expectPacketSentOnNetId(AID_ROOT, selectedNetId, expectedFd, EXPLICITLY_SELECT);
}
{ // uid is in VPN range, not in app range.
ScopedUidChange scopedUidChange(TEST_UID3);
// Cannot select non-VPN networks when uid is subject to secure VPN.
if (isSecureVPN && selectedNetId != VPN_NETID) {
EXPECT_EQ(-EPERM, setNetworkForProcess(selectedNetId));
} else {
EXPECT_EQ(0, setNetworkForProcess(selectedNetId));
expectPacketSentOnNetId(TEST_UID3, selectedNetId, expectedFd, EXPLICITLY_SELECT);
}
}
{ // uid is in app range, not in VPN range.
ScopedUidChange scopedUidChange(TEST_UID1);
// Cannot select the VPN because the VPN does not applies to the UID.
if (selectedNetId == VPN_NETID) {
EXPECT_EQ(-EPERM, setNetworkForProcess(selectedNetId));
} else {
EXPECT_EQ(0, setNetworkForProcess(selectedNetId));
expectPacketSentOnNetId(TEST_UID1, selectedNetId, expectedFd, EXPLICITLY_SELECT);
}
}
{ // uid is in both app range and VPN range.
ScopedUidChange scopedUidChange(TEST_UID2);
// Cannot select non-VPN networks when uid is subject to secure VPN.
if (isSecureVPN && selectedNetId != VPN_NETID) {
EXPECT_EQ(-EPERM, setNetworkForProcess(selectedNetId));
} else {
EXPECT_EQ(0, setNetworkForProcess(selectedNetId));
expectPacketSentOnNetId(TEST_UID2, selectedNetId, expectedFd, EXPLICITLY_SELECT);
}
}
}
TEST_P(VpnParameterizedTest, UnconnectedSocket) {
const bool isSecureVPN = GetParam();
createVpnAndAppDefaultNetworkWithUid(
SYSTEM_DEFAULT_NETID, APP_DEFAULT_NETID, VPN_NETID, isSecureVPN,
{makeUidRangeParcel(TEST_UID2, TEST_UID1)} /* app range */,
{makeUidRangeParcel(TEST_UID3, TEST_UID2)} /* VPN range */);
int systemDefaultFd = sTun.getFdForTesting();
int appDefaultFd = sTun2.getFdForTesting();
int vpnFd = sTun3.getFdForTesting();
// uid is neither in app range, nor in VPN range. Traffic goes through system default network.
expectPacketSentOnNetId(AID_ROOT, NETID_UNSET, systemDefaultFd, UNCONNECTED_SOCKET);
// uid is in VPN range, not in app range. Traffic goes through VPN.
expectPacketSentOnNetId(TEST_UID3, NETID_UNSET, vpnFd, UNCONNECTED_SOCKET);
// uid is in app range, not in VPN range. Traffic goes through per-app default network.
expectPacketSentOnNetId(TEST_UID1, NETID_UNSET, appDefaultFd, UNCONNECTED_SOCKET);
// uid is in both app and VPN range. Traffic goes through VPN.
expectPacketSentOnNetId(TEST_UID2, NETID_UNSET, vpnFd, UNCONNECTED_SOCKET);
}
class VpnLocalRoutesParameterizedTest
: public NetdBinderTest,
public testing::WithParamInterface<std::tuple<int, int, bool, bool, bool, bool>> {
protected:
// Local/non-local addresses based on the route added above.
in_addr V4_LOCAL_ADDR = {htonl(0xC0A80008)}; // 192.168.0.8
in_addr V4_APP_LOCAL_ADDR = {htonl(0xAC100008)}; // 172.16.0.8
in_addr V4_GLOBAL_ADDR = {htonl(0x08080808)}; // 8.8.8.8
in6_addr V6_LOCAL_ADDR = {
{// 2001:db8:cafe::1
.u6_addr8 = {0x20, 0x01, 0x0d, 0xb8, 0xca, 0xfe, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}}};
in6_addr V6_APP_LOCAL_ADDR = {
{// 2607:f0d0:1234::4
.u6_addr8 = {0x26, 0x07, 0xf0, 0xd0, 0x12, 0x34, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4}}};
in6_addr V6_GLOBAL_ADDR = {
{// 2607:1234:1002::4
.u6_addr8 = {0x26, 0x07, 0x12, 0x34, 0x10, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4}}};
};
const int SEND_TO_GLOBAL = 0;
const int SEND_TO_SYSTEM_LOCAL = 1;
const int SEND_TO_APP_LOCAL = 2;
// Exercise the combination of different explicitly selected network, different uid, local/non-local
// address on local route exclusion VPN. E.g.
// explicitlySelected systemDefault + uid in VPN range + no app default + non local address
// explicitlySelected systemDefault + uid in VPN range + has app default + non local address
// explicitlySelected systemDefault + uid in VPN range + has app default + local address
// explicitlySelected appDefault + uid not in VPN range + has app default + non local address
INSTANTIATE_TEST_SUITE_P(
PerAppDefaultNetwork, VpnLocalRoutesParameterizedTest,
testing::Combine(testing::Values(SYSTEM_DEFAULT_NETID, APP_DEFAULT_NETID, NETID_UNSET),
testing::Values(SEND_TO_GLOBAL, SEND_TO_SYSTEM_LOCAL, SEND_TO_APP_LOCAL),
testing::Bool(), testing::Bool(), testing::Bool(), testing::Bool()),
[](const testing::TestParamInfo<std::tuple<int, int, bool, bool, bool, bool>>& info) {
std::string explicitlySelected;
switch (std::get<0>(info.param)) {
case SYSTEM_DEFAULT_NETID:
explicitlySelected = "explicitlySelectedSystemDefault";
break;
case APP_DEFAULT_NETID:
explicitlySelected = "explicitlySelectedAppDefault";
break;
case NETID_UNSET:
explicitlySelected = "implicitlySelected";
break;
default:
explicitlySelected = "InvalidParameter"; // Should not happen.
}
std::string sendToAddr;
switch (std::get<1>(info.param)) {
case SEND_TO_GLOBAL:
sendToAddr = "GlobalAddr";
break;
case SEND_TO_SYSTEM_LOCAL:
sendToAddr = "SystemLocal";
break;
case SEND_TO_APP_LOCAL:
sendToAddr = "AppLocal";
break;
default:
sendToAddr = "InvalidAddr"; // Should not happen.
}
const std::string isSubjectToVpn = std::get<2>(info.param)
? std::string("SubjectToVpn")
: std::string("NotSubjectToVpn");
const std::string hasAppDefaultNetwork = std::get<3>(info.param)
? std::string("HasAppDefault")
: std::string("NothasAppDefault");
const std::string testV6 =
std::get<4>(info.param) ? std::string("v6") : std::string("v4");
// Apply the same or different local address in app default and system default.
const std::string differentLocalAddr = std::get<5>(info.param)
? std::string("DifferentLocalAddr")
: std::string("SameLocalAddr");
return explicitlySelected + "_uid" + isSubjectToVpn + hasAppDefaultNetwork +
"Range_with" + testV6 + sendToAddr + differentLocalAddr;
});
int getTargetIfaceForLocalRoutesExclusion(bool isSubjectToVpn, bool hasAppDefaultNetwork,
bool differentLocalAddr, int sendToAddr,
int selectedNetId, int fallthroughFd, int appDefaultFd,
int vpnFd) {
int expectedIface;
// Setup the expected interface based on the condition.
if (isSubjectToVpn && hasAppDefaultNetwork) {
switch (sendToAddr) {
case SEND_TO_GLOBAL:
expectedIface = vpnFd;
break;
case SEND_TO_SYSTEM_LOCAL:
// Go to app default if the app default and system default are the same range
// TODO(b/237351736): It should go to VPN if the system local and app local are
// different.
expectedIface = differentLocalAddr ? fallthroughFd : appDefaultFd;
break;
case SEND_TO_APP_LOCAL:
expectedIface = appDefaultFd;
break;
default:
expectedIface = -1; // should not happen
}
} else if (isSubjectToVpn && !hasAppDefaultNetwork) {
switch (sendToAddr) {
case SEND_TO_GLOBAL:
expectedIface = vpnFd;
break;
case SEND_TO_SYSTEM_LOCAL:
// TODO(b/237351736): It should go to app default if the system local and app local
// are different.
expectedIface = fallthroughFd;
break;
case SEND_TO_APP_LOCAL:
// Go to system default if the system default and app default are the same range.
expectedIface = differentLocalAddr ? vpnFd : fallthroughFd;
break;
default:
expectedIface = -1; // should not happen
}
} else if (!isSubjectToVpn && hasAppDefaultNetwork) {
expectedIface = appDefaultFd;
} else { // !isVpnUidRange && !isAppDefaultRange
expectedIface = fallthroughFd;
}
// Override the target if it's explicitly selected.
switch (selectedNetId) {
case SYSTEM_DEFAULT_NETID:
expectedIface = fallthroughFd;
break;
case APP_DEFAULT_NETID:
expectedIface = appDefaultFd;
break;
default:
break;
// Based on the uid range.
}
return expectedIface;
}
// This routing configurations verify the worst case where both physical networks and vpn
// network have the same local address.
// This also set as system default routing for verifying different app default and system
// default routing.
std::vector<std::string> V6_ROUTES = {"2001:db8:cafe::/48", "::/0"};
std::vector<std::string> V4_ROUTES = {"192.168.0.0/16", "0.0.0.0/0"};
// Routing configuration used for verifying different app default and system default routing
// configuration
std::vector<std::string> V6_APP_DEFAULT_ROUTES = {"2607:f0d0:1234::/48", "::/0"};
std::vector<std::string> V4_APP_DEFAULT_ROUTES = {"172.16.0.0/16", "0.0.0.0/0"};
void NetdBinderTest::setupNetworkRoutesForVpnAndDefaultNetworks(
int systemDefaultNetId, int appDefaultNetId, int vpnNetId, int otherNetId, bool secure,
bool excludeLocalRoutes, bool testV6, bool differentLocalAddr,
std::vector<UidRangeParcel>&& appDefaultUidRanges,
std::vector<UidRangeParcel>&& vpnUidRanges) {
// Create a physical network on sTun, and set it as the system default network
createAndSetDefaultNetwork(systemDefaultNetId, sTun.name());
// Routes are configured to system default, app default and vpn network to verify if the packets
// are routed correctly.
// Setup system default routing.
std::vector<std::string> systemDefaultRoutes = testV6 ? V6_ROUTES : V4_ROUTES;
for (const auto& route : systemDefaultRoutes) {
EXPECT_TRUE(mNetd->networkAddRoute(systemDefaultNetId, sTun.name(), route, "").isOk());
}
// Create another physical network on sTun2 as per app default network
createPhysicalNetwork(appDefaultNetId, sTun2.name());
// Setup app default routing.
std::vector<std::string> appDefaultRoutes =
testV6 ? (differentLocalAddr ? V6_APP_DEFAULT_ROUTES : V6_ROUTES)
: (differentLocalAddr ? V4_APP_DEFAULT_ROUTES : V4_ROUTES);
for (const auto& route : appDefaultRoutes) {
EXPECT_TRUE(mNetd->networkAddRoute(appDefaultNetId, sTun2.name(), route, "").isOk());
}
// Create a bypassable VPN on sTun3.
auto config = makeNativeNetworkConfig(vpnNetId, NativeNetworkType::VIRTUAL,
INetd::PERMISSION_NONE, secure, excludeLocalRoutes);
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(vpnNetId, sTun3.name()).isOk());
// Setup vpn routing.
std::vector<std::string> vpnRoutes = testV6 ? V6_ROUTES : V4_ROUTES;
for (const auto& route : vpnRoutes) {
EXPECT_TRUE(mNetd->networkAddRoute(vpnNetId, sTun3.name(), route, "").isOk());
}
// Create another interface that is neither system default nor the app default to make sure
// the traffic won't be mis-routed.
createPhysicalNetwork(otherNetId, sTun4.name());
// Add per-app uid ranges.
EXPECT_TRUE(mNetd->networkAddUidRanges(appDefaultNetId, appDefaultUidRanges).isOk());
// Add VPN uid ranges.
EXPECT_TRUE(mNetd->networkAddUidRanges(vpnNetId, vpnUidRanges).isOk());
}
// Routes are in approximately the following order for bypassable VPNs that allow local network
// access:
// - Per-app default local routes (UID guarded)
// - System-wide default local routes
// - VPN catch-all routes (UID guarded)
// - Per-app default global routes (UID guarded)
// - System-wide default global routes
TEST_P(VpnLocalRoutesParameterizedTest, localRoutesExclusion) {
int selectedNetId;
int sendToAddr;
bool isSubjectToVpn;
bool hasAppDefaultNetwork;
bool testV6;
bool differentLocalAddr;
std::tie(selectedNetId, sendToAddr, isSubjectToVpn, hasAppDefaultNetwork, testV6,
differentLocalAddr) = GetParam();
// std::vector<std::string> routes = testV6 ? V6_ROUTES : V4_ROUTES;
setupNetworkRoutesForVpnAndDefaultNetworks(
SYSTEM_DEFAULT_NETID, APP_DEFAULT_NETID, VPN_NETID, TEST_NETID4, false /* secure */,
true /* excludeLocalRoutes */, testV6,
// Add a local route first to setup local table.
differentLocalAddr, {makeUidRangeParcel(TEST_UID2, TEST_UID1)},
{makeUidRangeParcel(TEST_UID3, TEST_UID2)});
int fallthroughFd = sTun.getFdForTesting();
int appDefaultFd = sTun2.getFdForTesting();
int vpnFd = sTun3.getFdForTesting();
// Explicitly select network
setNetworkForProcess(selectedNetId);
int targetUid;
// Setup the expected testing uid
if (isSubjectToVpn && hasAppDefaultNetwork) {
targetUid = TEST_UID2;
} else if (isSubjectToVpn && !hasAppDefaultNetwork) {
targetUid = TEST_UID3;
} else if (!isSubjectToVpn && hasAppDefaultNetwork) {
targetUid = TEST_UID1;
} else {
targetUid = AID_ROOT;
}
// Get target interface for the traffic.
int targetIface = getTargetIfaceForLocalRoutesExclusion(
isSubjectToVpn, hasAppDefaultNetwork, differentLocalAddr, sendToAddr, selectedNetId,
fallthroughFd, appDefaultFd, vpnFd);
// Verify the packets are sent to the expected interface.
Fwmark fwmark;
if (testV6) {
in6_addr addr;
switch (sendToAddr) {
case SEND_TO_GLOBAL:
addr = V6_GLOBAL_ADDR;
break;
case SEND_TO_SYSTEM_LOCAL:
addr = V6_LOCAL_ADDR;
break;
case SEND_TO_APP_LOCAL:
addr = differentLocalAddr ? V6_APP_LOCAL_ADDR : V6_LOCAL_ADDR;
break;
default:
break;
// should not happen
}
EXPECT_TRUE(sendIPv6PacketFromUid(targetUid, addr, &fwmark, targetIface));
} else {
in_addr addr;
switch (sendToAddr) {
case SEND_TO_GLOBAL:
addr = V4_GLOBAL_ADDR;
break;
case SEND_TO_SYSTEM_LOCAL:
addr = V4_LOCAL_ADDR;
break;
case SEND_TO_APP_LOCAL:
addr = differentLocalAddr ? V4_APP_LOCAL_ADDR : V4_LOCAL_ADDR;
break;
default:
break;
// should not happen
}
EXPECT_TRUE(sendIPv4PacketFromUid(targetUid, addr, &fwmark, targetIface));
}
}
TEST_F(NetdBinderTest, NetworkCreate) {
auto config = makeNativeNetworkConfig(TEST_NETID1, NativeNetworkType::PHYSICAL,
INetd::PERMISSION_NONE, false, false);
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
EXPECT_TRUE(mNetd->networkDestroy(config.netId).isOk());
config.networkType = NativeNetworkType::VIRTUAL;
config.secure = true;
config.vpnType = NativeVpnType::OEM;
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
// invalid network type
auto wrongConfig = makeNativeNetworkConfig(TEST_NETID2, static_cast<NativeNetworkType>(-1),
INetd::PERMISSION_NONE, false, false);
EXPECT_EQ(EINVAL, mNetd->networkCreate(wrongConfig).serviceSpecificErrorCode());
// invalid VPN type
wrongConfig.networkType = NativeNetworkType::VIRTUAL;
wrongConfig.vpnType = static_cast<NativeVpnType>(-1);
EXPECT_EQ(EINVAL, mNetd->networkCreate(wrongConfig).serviceSpecificErrorCode());
}
// Verifies valid and invalid inputs on networkAddUidRangesParcel method.
TEST_F(NetdBinderTest, UidRangeSubPriority_ValidateInputs) {
createVpnAndOtherPhysicalNetwork(SYSTEM_DEFAULT_NETID, APP_DEFAULT_NETID, VPN_NETID,
/*isSecureVPN=*/true);
// Invalid priority -10 on a physical network.
NativeUidRangeConfig uidRangeConfig =
makeNativeUidRangeConfig(APP_DEFAULT_NETID, {makeUidRangeParcel(BASE_UID, BASE_UID)},
UidRanges::SUB_PRIORITY_HIGHEST - 10);
binder::Status status = mNetd->networkAddUidRangesParcel(uidRangeConfig);
EXPECT_FALSE(status.isOk());
EXPECT_EQ(EINVAL, status.serviceSpecificErrorCode());
// Invalid priority 1000 on a physical network.
uidRangeConfig.subPriority = UidRanges::SUB_PRIORITY_NO_DEFAULT + 1;
status = mNetd->networkAddUidRangesParcel(uidRangeConfig);
EXPECT_FALSE(status.isOk());
EXPECT_EQ(EINVAL, status.serviceSpecificErrorCode());
// Virtual networks support only default priority.
uidRangeConfig.netId = VPN_NETID;
uidRangeConfig.subPriority = SUB_PRIORITY_1;
status = mNetd->networkAddUidRangesParcel(uidRangeConfig);
EXPECT_FALSE(status.isOk());
EXPECT_EQ(EINVAL, status.serviceSpecificErrorCode());
// For a single network, identical UID ranges with different priorities are allowed.
uidRangeConfig.netId = APP_DEFAULT_NETID;
uidRangeConfig.subPriority = SUB_PRIORITY_1;
EXPECT_TRUE(mNetd->networkAddUidRangesParcel(uidRangeConfig).isOk());
uidRangeConfig.subPriority = SUB_PRIORITY_2;
EXPECT_TRUE(mNetd->networkAddUidRangesParcel(uidRangeConfig).isOk());
// Overlapping ranges is invalid.
uidRangeConfig.uidRanges = {makeUidRangeParcel(BASE_UID + 1, BASE_UID + 1),
makeUidRangeParcel(BASE_UID + 1, BASE_UID + 1)};
status = mNetd->networkAddUidRangesParcel(uidRangeConfig);
EXPECT_FALSE(status.isOk());
EXPECT_EQ(EINVAL, status.serviceSpecificErrorCode());
}
// Examines whether IP rules for app default network with subsidiary priorities are correctly added
// and removed.
TEST_F(NetdBinderTest, UidRangeSubPriority_VerifyPhysicalNwIpRules) {
createPhysicalNetwork(TEST_NETID1, sTun.name());
EXPECT_TRUE(mNetd->networkAddRoute(TEST_NETID1, sTun.name(), "::/0", "").isOk());
createPhysicalNetwork(TEST_NETID2, sTun2.name());
EXPECT_TRUE(mNetd->networkAddRoute(TEST_NETID2, sTun2.name(), "::/0", "").isOk());
// Adds priority 1 setting
NativeUidRangeConfig uidRangeConfig1 = makeNativeUidRangeConfig(
TEST_NETID1, {makeUidRangeParcel(BASE_UID, BASE_UID)}, SUB_PRIORITY_1);
EXPECT_TRUE(mNetd->networkAddUidRangesParcel(uidRangeConfig1).isOk());
verifyAppUidRules({true}, uidRangeConfig1, sTun.name());
// Adds priority 2 setting
NativeUidRangeConfig uidRangeConfig2 = makeNativeUidRangeConfig(
TEST_NETID2, {makeUidRangeParcel(BASE_UID + 1, BASE_UID + 1)}, SUB_PRIORITY_2);
EXPECT_TRUE(mNetd->networkAddUidRangesParcel(uidRangeConfig2).isOk());
verifyAppUidRules({true}, uidRangeConfig2, sTun2.name());
// Adds another priority 2 setting
NativeUidRangeConfig uidRangeConfig3 = makeNativeUidRangeConfig(
INetd::UNREACHABLE_NET_ID, {makeUidRangeParcel(BASE_UID + 2, BASE_UID + 2)},
SUB_PRIORITY_2);
EXPECT_TRUE(mNetd->networkAddUidRangesParcel(uidRangeConfig3).isOk());
verifyAppUidRules({true}, uidRangeConfig3, "");
// Removes.
EXPECT_TRUE(mNetd->networkRemoveUidRangesParcel(uidRangeConfig1).isOk());
verifyAppUidRules({false}, uidRangeConfig1, sTun.name());
verifyAppUidRules({true}, uidRangeConfig2, sTun2.name());
verifyAppUidRules({true}, uidRangeConfig3, "");
EXPECT_TRUE(mNetd->networkRemoveUidRangesParcel(uidRangeConfig2).isOk());
verifyAppUidRules({false}, uidRangeConfig1, sTun.name());
verifyAppUidRules({false}, uidRangeConfig2, sTun2.name());
verifyAppUidRules({true}, uidRangeConfig3, "");
EXPECT_TRUE(mNetd->networkRemoveUidRangesParcel(uidRangeConfig3).isOk());
verifyAppUidRules({false}, uidRangeConfig1, sTun.name());
verifyAppUidRules({false}, uidRangeConfig2, sTun2.name());
verifyAppUidRules({false}, uidRangeConfig3, "");
}
// Verify uid range rules on virtual network.
TEST_P(VpnParameterizedTest, UidRangeSubPriority_VerifyVpnIpRules) {
const bool isSecureVPN = GetParam();
constexpr int VPN_NETID2 = TEST_NETID2;
// Create 2 VPNs, using sTun and sTun2.
auto config = makeNativeNetworkConfig(VPN_NETID, NativeNetworkType::VIRTUAL,
INetd::PERMISSION_NONE, isSecureVPN, false);
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(VPN_NETID, sTun.name()).isOk());
config = makeNativeNetworkConfig(VPN_NETID2, NativeNetworkType::VIRTUAL, INetd::PERMISSION_NONE,
isSecureVPN, false);
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(VPN_NETID2, sTun2.name()).isOk());
// Assign uid ranges to different VPNs. Check if rules match.
NativeUidRangeConfig uidRangeConfig1 = makeNativeUidRangeConfig(
VPN_NETID, {makeUidRangeParcel(BASE_UID, BASE_UID)}, UidRanges::SUB_PRIORITY_HIGHEST);
EXPECT_TRUE(mNetd->networkAddUidRangesParcel(uidRangeConfig1).isOk());
verifyVpnUidRules({true}, uidRangeConfig1, sTun.name(), isSecureVPN, false);
NativeUidRangeConfig uidRangeConfig2 =
makeNativeUidRangeConfig(VPN_NETID2, {makeUidRangeParcel(BASE_UID + 1, BASE_UID + 1)},
UidRanges::SUB_PRIORITY_HIGHEST);
EXPECT_TRUE(mNetd->networkAddUidRangesParcel(uidRangeConfig2).isOk());
verifyVpnUidRules({true}, uidRangeConfig2, sTun2.name(), isSecureVPN, false);
// Remove uid configs one-by-one. Check if rules match.
EXPECT_TRUE(mNetd->networkRemoveUidRangesParcel(uidRangeConfig1).isOk());
verifyVpnUidRules({false}, uidRangeConfig1, sTun.name(), isSecureVPN, false);
verifyVpnUidRules({true}, uidRangeConfig2, sTun2.name(), isSecureVPN, false);
EXPECT_TRUE(mNetd->networkRemoveUidRangesParcel(uidRangeConfig2).isOk());
verifyVpnUidRules({false}, uidRangeConfig1, sTun.name(), isSecureVPN, false);
verifyVpnUidRules({false}, uidRangeConfig2, sTun2.name(), isSecureVPN, false);
}
// Verify VPN ip rule on bypassable/secureVPN virtual network with local routes excluded
TEST_P(VpnParameterizedTest, VerifyVpnIpRules_excludeLocalRoutes) {
const bool isSecureVPN = GetParam();
// Create VPN with local route excluded
auto config = makeNativeNetworkConfig(VPN_NETID, NativeNetworkType::VIRTUAL,
INetd::PERMISSION_NONE, isSecureVPN, true);
EXPECT_TRUE(mNetd->networkCreate(config).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(VPN_NETID, sTun.name()).isOk());
// Assign uid ranges to VPN. Check if rules match.
NativeUidRangeConfig uidRangeConfig1 = makeNativeUidRangeConfig(
VPN_NETID, {makeUidRangeParcel(BASE_UID, BASE_UID)}, UidRanges::SUB_PRIORITY_HIGHEST);
EXPECT_TRUE(mNetd->networkAddUidRangesParcel(uidRangeConfig1).isOk());
verifyVpnUidRules({true}, uidRangeConfig1, sTun.name(), isSecureVPN, true);
// Remove uid configs. Check if rules match.
EXPECT_TRUE(mNetd->networkRemoveUidRangesParcel(uidRangeConfig1).isOk());
verifyVpnUidRules({false}, uidRangeConfig1, sTun.name(), isSecureVPN, true);
}
// Verify if packets go through the right network when subsidiary priority and VPN works together.
//
// Test config:
// +----------+------------------------+-------------------------------------------+
// | Priority | UID | Assigned Network |
// +----------+------------------------+-------------------------------------------+
// | 0 | TEST_UID1 | VPN bypassable (VPN_NETID) |
// +----------+------------------------+-------------------------------------------+
// | 1 | TEST_UID1, TEST_UID2, | Physical Network 1 (APP_DEFAULT_1_NETID) |
// | 1 | TEST_UID3 | Physical Network 2 (APP_DEFAULT_2_NETID) |
// | 1 | TEST_UID5 | Unreachable Network (UNREACHABLE_NET_ID) |
// +----------+------------------------+-------------------------------------------+
// | 2 | TEST_UID3 | Physical Network 1 (APP_DEFAULT_1_NETID) |
// | 2 | TEST_UID4, TEST_UID5 | Physical Network 2 (APP_DEFAULT_2_NETID) |
// +----------+------------------------+-------------------------------------------+
//
// Expected results:
// +-----------+------------------------+
// | UID | Using Network |
// +-----------+------------------------+
// | TEST_UID1 | VPN |
// | TEST_UID2 | Physical Network 1 |
// | TEST_UID3 | Physical Network 2 |
// | TEST_UID4 | Physical Network 2 |
// | TEST_UID5 | Unreachable Network |
// | TEST_UID6 | System Default Network |
// +-----------+------------------------+
//
// SYSTEM_DEFAULT_NETID uses sTun.
// APP_DEFAULT_1_NETID uses sTun2.
// VPN_NETID uses sTun3.
// APP_DEFAULT_2_NETID uses sTun4.
//
TEST_F(NetdBinderTest, UidRangeSubPriority_ImplicitlySelectNetwork) {
constexpr int APP_DEFAULT_1_NETID = TEST_NETID2;
constexpr int APP_DEFAULT_2_NETID = TEST_NETID4;
static const struct TestData {
uint32_t subPriority;
std::vector<UidRangeParcel> uidRanges;
unsigned int netId;
} kTestData[] = {
{UidRanges::SUB_PRIORITY_HIGHEST, {makeUidRangeParcel(TEST_UID1)}, VPN_NETID},
{SUB_PRIORITY_1,
{makeUidRangeParcel(TEST_UID1), makeUidRangeParcel(TEST_UID2)},
APP_DEFAULT_1_NETID},
{SUB_PRIORITY_1, {makeUidRangeParcel(TEST_UID3)}, APP_DEFAULT_2_NETID},
{SUB_PRIORITY_1, {makeUidRangeParcel(TEST_UID5)}, INetd::UNREACHABLE_NET_ID},
{SUB_PRIORITY_2, {makeUidRangeParcel(TEST_UID3)}, APP_DEFAULT_1_NETID},
{SUB_PRIORITY_2,
{makeUidRangeParcel(TEST_UID4), makeUidRangeParcel(TEST_UID5)},
APP_DEFAULT_2_NETID},
};
// Creates 4 networks.
createVpnAndOtherPhysicalNetwork(SYSTEM_DEFAULT_NETID, APP_DEFAULT_1_NETID, VPN_NETID,
/*isSecureVPN=*/false);
createPhysicalNetwork(APP_DEFAULT_2_NETID, sTun4.name());
EXPECT_TRUE(mNetd->networkAddRoute(APP_DEFAULT_2_NETID, sTun4.name(), "::/0", "").isOk());
for (const auto& td : kTestData) {
NativeUidRangeConfig uidRangeConfig =
makeNativeUidRangeConfig(td.netId, td.uidRanges, td.subPriority);
EXPECT_TRUE(mNetd->networkAddUidRangesParcel(uidRangeConfig).isOk());
}
int systemDefaultFd = sTun.getFdForTesting();
int appDefault_1_Fd = sTun2.getFdForTesting();
int vpnFd = sTun3.getFdForTesting();
int appDefault_2_Fd = sTun4.getFdForTesting();
// Verify routings.
expectPacketSentOnNetId(TEST_UID1, VPN_NETID, vpnFd, IMPLICITLY_SELECT);
expectPacketSentOnNetId(TEST_UID2, APP_DEFAULT_1_NETID, appDefault_1_Fd, IMPLICITLY_SELECT);
expectPacketSentOnNetId(TEST_UID3, APP_DEFAULT_2_NETID, appDefault_2_Fd, IMPLICITLY_SELECT);
expectPacketSentOnNetId(TEST_UID4, APP_DEFAULT_2_NETID, appDefault_2_Fd, IMPLICITLY_SELECT);
expectUnreachableError(TEST_UID5, INetd::UNREACHABLE_NET_ID, IMPLICITLY_SELECT);
expectPacketSentOnNetId(TEST_UID6, SYSTEM_DEFAULT_NETID, systemDefaultFd, IMPLICITLY_SELECT);
// Remove test rules from the unreachable network.
for (const auto& td : kTestData) {
if (td.netId == INetd::UNREACHABLE_NET_ID) {
NativeUidRangeConfig uidRangeConfig =
makeNativeUidRangeConfig(td.netId, td.uidRanges, td.subPriority);
EXPECT_TRUE(mNetd->networkRemoveUidRangesParcel(uidRangeConfig).isOk());
}
}
}
class PerAppNetworkPermissionsTest : public NetdBinderTest {
public:
int bindSocketToNetwork(int sock, int netId, bool explicitlySelected) {
ScopedUidChange uidChange(AID_ROOT);
Fwmark fwmark;
fwmark.explicitlySelected = explicitlySelected;
fwmark.netId = netId;
return setsockopt(sock, SOL_SOCKET, SO_MARK, &(fwmark.intValue), sizeof(fwmark.intValue));
}
void changeNetworkPermissionForUid(int netId, int uid, bool add) {
auto nativeUidRangeConfig = makeNativeUidRangeConfig(netId, {makeUidRangeParcel(uid, uid)},
UidRanges::SUB_PRIORITY_NO_DEFAULT);
ScopedUidChange rootUid(AID_ROOT);
if (add) {
EXPECT_TRUE(mNetd->networkAddUidRangesParcel(nativeUidRangeConfig).isOk());
} else {
EXPECT_TRUE(mNetd->networkRemoveUidRangesParcel(nativeUidRangeConfig).isOk());
}
}
protected:
static inline const sockaddr_in6 TEST_SOCKADDR_IN6 = {
.sin6_family = AF_INET6,
.sin6_port = 42,
.sin6_addr = V6_ADDR,
};
std::array<char, 4096> mTestBuf;
};
TEST_F(PerAppNetworkPermissionsTest, HasExplicitAccess) {
// TEST_NETID1 -> restricted network
createPhysicalNetwork(TEST_NETID1, sTun.name(), INetd::PERMISSION_SYSTEM);
EXPECT_TRUE(mNetd->networkAddRoute(TEST_NETID1, sTun.name(), "::/0", "").isOk());
// Change uid to uid without PERMISSION_SYSTEM
ScopedUidChange testUid(TEST_UID1);
unique_fd sock(socket(AF_INET6, SOCK_DGRAM | SOCK_CLOEXEC, 0));
EXPECT_EQ(bindSocketToNetwork(sock, TEST_NETID1, true /*explicitlySelected*/), 0);
// Test without permissions should fail
EXPECT_EQ(connect(sock, (sockaddr*)&TEST_SOCKADDR_IN6, sizeof(TEST_SOCKADDR_IN6)), -1);
// Test access with permission succeeds and packet is routed correctly
changeNetworkPermissionForUid(TEST_NETID1, TEST_UID1, true /*add*/);
EXPECT_EQ(connect(sock, (sockaddr*)&TEST_SOCKADDR_IN6, sizeof(TEST_SOCKADDR_IN6)), 0);
EXPECT_EQ(send(sock, "foo", sizeof("foo"), 0), (int)sizeof("foo"));
EXPECT_GT(read(sTun.getFdForTesting(), mTestBuf.data(), mTestBuf.size()), 0);
// Test removing permissions.
// Note: Send will still succeed as the destination is cached in
// sock.sk_dest_cache. Try another connect instead.
changeNetworkPermissionForUid(TEST_NETID1, TEST_UID1, false /*add*/);
EXPECT_EQ(-1, connect(sock, (sockaddr*)&TEST_SOCKADDR_IN6, sizeof(TEST_SOCKADDR_IN6)));
}
TEST_F(PerAppNetworkPermissionsTest, HasImplicitAccess) {
// TEST_NETID1 -> restricted network
createPhysicalNetwork(TEST_NETID1, sTun.name(), INetd::PERMISSION_SYSTEM);
EXPECT_TRUE(mNetd->networkAddRoute(TEST_NETID1, sTun.name(), "::/0", "").isOk());
// Change uid to uid without PERMISSION_SYSTEM
ScopedUidChange testUid(TEST_UID1);
unique_fd sock(socket(AF_INET6, SOCK_DGRAM | SOCK_CLOEXEC, 0));
EXPECT_EQ(bindSocketToNetwork(sock, TEST_NETID1, false /*explicitlySelected*/), 0);
// Note: we cannot call connect() when implicitly selecting the network as
// the fwmark would get reset to the default network.
// Call connect which should bind socket to default network
EXPECT_EQ(sendto(sock, "foo", sizeof("foo"), 0, (sockaddr*)&TEST_SOCKADDR_IN6,
sizeof(TEST_SOCKADDR_IN6)),
-1);
// Test access with permission succeeds and packet is routed correctly
changeNetworkPermissionForUid(TEST_NETID1, TEST_UID1, true /*add*/);
EXPECT_EQ(sendto(sock, "foo", sizeof("foo"), 0, (sockaddr*)&TEST_SOCKADDR_IN6,
sizeof(TEST_SOCKADDR_IN6)),
(int)sizeof("foo"));
EXPECT_GT(read(sTun.getFdForTesting(), mTestBuf.data(), mTestBuf.size()), 0);
}
TEST_F(PerAppNetworkPermissionsTest, DoesNotAffectDefaultNetworkSelection) {
// TEST_NETID1 -> default network
// TEST_NETID2 -> restricted network
createPhysicalNetwork(TEST_NETID1, sTun.name(), INetd::PERMISSION_NONE);
createPhysicalNetwork(TEST_NETID2, sTun2.name(), INetd::PERMISSION_SYSTEM);
EXPECT_TRUE(mNetd->networkAddRoute(TEST_NETID1, sTun.name(), "::/0", "").isOk());
EXPECT_TRUE(mNetd->networkAddRoute(TEST_NETID2, sTun2.name(), "::/0", "").isOk());
mNetd->networkSetDefault(TEST_NETID1);
changeNetworkPermissionForUid(TEST_NETID2, TEST_UID1, true /*add*/);
// Change uid to uid without PERMISSION_SYSTEM
ScopedUidChange testUid(TEST_UID1);
unique_fd sock(socket(AF_INET6, SOCK_DGRAM | SOCK_CLOEXEC, 0));
// Connect should select default network
EXPECT_EQ(connect(sock, (sockaddr*)&TEST_SOCKADDR_IN6, sizeof(TEST_SOCKADDR_IN6)), 0);
EXPECT_EQ(send(sock, "foo", sizeof("foo"), 0), (int)sizeof("foo"));
EXPECT_GT(read(sTun.getFdForTesting(), mTestBuf.data(), mTestBuf.size()), 0);
}
TEST_F(PerAppNetworkPermissionsTest, PermissionDoesNotAffectPerAppDefaultNetworkSelection) {
// TEST_NETID1 -> restricted app default network
// TEST_NETID2 -> restricted network
createPhysicalNetwork(TEST_NETID1, sTun.name(), INetd::PERMISSION_SYSTEM);
createPhysicalNetwork(TEST_NETID2, sTun2.name(), INetd::PERMISSION_SYSTEM);
EXPECT_TRUE(mNetd->networkAddRoute(TEST_NETID1, sTun.name(), "::/0", "").isOk());
EXPECT_TRUE(mNetd->networkAddRoute(TEST_NETID2, sTun2.name(), "::/0", "").isOk());
auto nativeUidRangeConfig = makeNativeUidRangeConfig(
TEST_NETID1, {makeUidRangeParcel(TEST_UID1, TEST_UID1)}, 0 /*subPriority*/);
EXPECT_TRUE(mNetd->networkAddUidRangesParcel(nativeUidRangeConfig).isOk());
changeNetworkPermissionForUid(TEST_NETID2, TEST_UID1, true /*add*/);
// Change uid to uid without PERMISSION_SYSTEM
ScopedUidChange testUid(TEST_UID1);
unique_fd sock(socket(AF_INET6, SOCK_DGRAM | SOCK_CLOEXEC, 0));
// Connect should select app default network
EXPECT_EQ(connect(sock, (sockaddr*)&TEST_SOCKADDR_IN6, sizeof(TEST_SOCKADDR_IN6)), 0);
EXPECT_EQ(send(sock, "foo", sizeof("foo"), 0), (int)sizeof("foo"));
EXPECT_GT(read(sTun.getFdForTesting(), mTestBuf.data(), mTestBuf.size()), 0);
}
TEST_F(PerAppNetworkPermissionsTest, PermissionOnlyAffectsUid) {
// TEST_NETID1 -> restricted network
// TEST_NETID2 -> restricted network
createPhysicalNetwork(TEST_NETID1, sTun.name(), INetd::PERMISSION_SYSTEM);
createPhysicalNetwork(TEST_NETID2, sTun2.name(), INetd::PERMISSION_SYSTEM);
EXPECT_TRUE(mNetd->networkAddRoute(TEST_NETID1, sTun.name(), "::/0", "").isOk());
EXPECT_TRUE(mNetd->networkAddRoute(TEST_NETID2, sTun2.name(), "::/0", "").isOk());
// test that neither TEST_UID1, nor TEST_UID2 have access without permission
{
// TEST_UID1
ScopedUidChange testUid(TEST_UID1);
unique_fd sock(socket(AF_INET6, SOCK_DGRAM | SOCK_CLOEXEC, 0));
// TEST_NETID1
EXPECT_EQ(bindSocketToNetwork(sock, TEST_NETID1, true /*explicitlySelected*/), 0);
EXPECT_EQ(connect(sock, (sockaddr*)&TEST_SOCKADDR_IN6, sizeof(TEST_SOCKADDR_IN6)), -1);
// TEST_NETID2
EXPECT_EQ(bindSocketToNetwork(sock, TEST_NETID2, true /*explicitlySelected*/), 0);
EXPECT_EQ(connect(sock, (sockaddr*)&TEST_SOCKADDR_IN6, sizeof(TEST_SOCKADDR_IN6)), -1);
}
{
// TEST_UID2
ScopedUidChange testUid(TEST_UID2);
unique_fd sock(socket(AF_INET6, SOCK_DGRAM | SOCK_CLOEXEC, 0));
// TEST_NETID1
EXPECT_EQ(bindSocketToNetwork(sock, TEST_NETID1, true /*explicitlySelected*/), 0);
EXPECT_EQ(connect(sock, (sockaddr*)&TEST_SOCKADDR_IN6, sizeof(TEST_SOCKADDR_IN6)), -1);
// TEST_NETID2
EXPECT_EQ(bindSocketToNetwork(sock, TEST_NETID2, true /*explicitlySelected*/), 0);
EXPECT_EQ(connect(sock, (sockaddr*)&TEST_SOCKADDR_IN6, sizeof(TEST_SOCKADDR_IN6)), -1);
}
changeNetworkPermissionForUid(TEST_NETID1, TEST_UID1, true);
// test that TEST_UID1 has access to TEST_UID1
{
// TEST_UID1
ScopedUidChange testUid(TEST_UID1);
unique_fd sock(socket(AF_INET6, SOCK_DGRAM | SOCK_CLOEXEC, 0));
// TEST_NETID1
EXPECT_EQ(bindSocketToNetwork(sock, TEST_NETID1, true /*explicitlySelected*/), 0);
EXPECT_EQ(connect(sock, (sockaddr*)&TEST_SOCKADDR_IN6, sizeof(TEST_SOCKADDR_IN6)), 0);
// TEST_NETID2
EXPECT_EQ(bindSocketToNetwork(sock, TEST_NETID2, true /*explicitlySelected*/), 0);
EXPECT_EQ(connect(sock, (sockaddr*)&TEST_SOCKADDR_IN6, sizeof(TEST_SOCKADDR_IN6)), -1);
}
{
// TEST_UID2
ScopedUidChange testUid(TEST_UID2);
unique_fd sock(socket(AF_INET6, SOCK_DGRAM | SOCK_CLOEXEC, 0));
// TEST_NETID1
EXPECT_EQ(bindSocketToNetwork(sock, TEST_NETID1, true /*explicitlySelected*/), 0);
EXPECT_EQ(connect(sock, (sockaddr*)&TEST_SOCKADDR_IN6, sizeof(TEST_SOCKADDR_IN6)), -1);
// TEST_NETID2
EXPECT_EQ(bindSocketToNetwork(sock, TEST_NETID2, true /*explicitlySelected*/), 0);
EXPECT_EQ(connect(sock, (sockaddr*)&TEST_SOCKADDR_IN6, sizeof(TEST_SOCKADDR_IN6)), -1);
}
}
class MDnsBinderTest : public NetNativeTestBase {
public:
class TestMDnsListener : public android::net::mdns::aidl::BnMDnsEventListener {
public:
Status onServiceRegistrationStatus(const RegistrationInfo& /*status*/) override {
// no-op
return Status::ok();
}
Status onServiceDiscoveryStatus(const DiscoveryInfo& /*status*/) override {
// no-op
return Status::ok();
}
Status onServiceResolutionStatus(const ResolutionInfo& /*status*/) override {
// no-op
return Status::ok();
}
Status onGettingServiceAddressStatus(const GetAddressInfo& status) override {
if (status.id == mOperationId) {
std::lock_guard lock(mCvMutex);
mCv.notify_one();
}
return Status::ok();
}
std::condition_variable& getCv() { return mCv; }
std::mutex& getCvMutex() { return mCvMutex; }
void setOperationId(int operationId) { mOperationId = operationId; }
private:
std::mutex mCvMutex;
std::condition_variable mCv;
int mOperationId;
};
MDnsBinderTest() {
sp<IServiceManager> sm = android::defaultServiceManager();
sp<IBinder> binder = sm->getService(String16("mdns"));
if (binder != nullptr) {
mMDns = android::interface_cast<IMDns>(binder);
}
}
void SetUp() override {
ASSERT_NE(nullptr, mMDns.get());
// Start the daemon for mdns operations.
mDaemonStarted = mMDns->startDaemon().isOk();
}
void TearDown() override {
if (mDaemonStarted) mMDns->stopDaemon();
}
std::cv_status getServiceAddress(int operationId, const sp<TestMDnsListener>& listener);
protected:
sp<IMDns> mMDns;
private:
bool mDaemonStarted = false;
};
std::cv_status MDnsBinderTest::getServiceAddress(int operationId,
const sp<TestMDnsListener>& listener) {
GetAddressInfo info;
info.id = operationId;
info.hostname = "Android.local";
info.interfaceIdx = 0;
binder::Status status = mMDns->getServiceAddress(info);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
auto& cv = listener->getCv();
auto& cvMutex = listener->getCvMutex();
std::unique_lock lock(cvMutex);
// Wait for a long time to prevent test flaky.
return cv.wait_for(lock, std::chrono::milliseconds(2500));
}
TEST_F(MDnsBinderTest, EventListenerTest) {
// Start the Binder thread pool.
android::ProcessState::self()->startThreadPool();
// Register a null listener.
binder::Status status = mMDns->registerEventListener(nullptr);
EXPECT_FALSE(status.isOk());
// Unregister a null listener.
status = mMDns->unregisterEventListener(nullptr);
EXPECT_FALSE(status.isOk());
// Register a test listener
auto testListener = android::sp<TestMDnsListener>::make();
status = mMDns->registerEventListener(testListener);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
// Register the duplicated listener
status = mMDns->registerEventListener(testListener);
EXPECT_FALSE(status.isOk());
// Verify the listener can receive callback.
int id = arc4random_uniform(10000); // use random number
testListener->setOperationId(id);
EXPECT_EQ(std::cv_status::no_timeout, getServiceAddress(id, testListener));
// Stop getting address operation to release the service reference on MDnsSd
status = mMDns->stopOperation(id);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
// Unregister the test listener
status = mMDns->unregisterEventListener(testListener);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
// Verify the listener can not receive callback.
testListener->setOperationId(id + 1);
EXPECT_EQ(std::cv_status::timeout, getServiceAddress(id + 1, testListener));
// Stop getting address operation to release the service reference on MDnsSd
status = mMDns->stopOperation(id + 1);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
// Registering and unregistering the listener again should work.
status = mMDns->registerEventListener(testListener);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
status = mMDns->unregisterEventListener(testListener);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
}