blob: d44e092d5e521a1099999c1856fc83a508ace64a [file] [log] [blame]
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* ClatdControllerTest.cpp - unit tests for ClatdController.cpp
*/
#include <arpa/inet.h>
#include <netinet/in.h>
#include <string>
#include <gtest/gtest.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <linux/if_packet.h>
#include <netutils/ifc.h>
extern "C" {
#include <checksum.h>
}
#include "ClatdController.h"
#include "IptablesBaseTest.h"
#include "NetworkController.h"
#include "tun_interface.h"
static const char kIPv4LocalAddr[] = "192.0.0.4";
namespace android {
namespace net {
using android::base::StringPrintf;
using android::net::TunInterface;
// Mock functions for isIpv4AddressFree.
bool neverFree(in_addr_t /* addr */) {
return 0;
}
bool alwaysFree(in_addr_t /* addr */) {
return 1;
}
bool only2Free(in_addr_t addr) {
return (ntohl(addr) & 0xff) == 2;
}
bool over6Free(in_addr_t addr) {
return (ntohl(addr) & 0xff) >= 6;
}
bool only10Free(in_addr_t addr) {
return (ntohl(addr) & 0xff) == 10;
}
class ClatdControllerTest : public IptablesBaseTest {
public:
ClatdControllerTest() : mClatdCtrl(nullptr) {
ClatdController::iptablesRestoreFunction = fakeExecIptablesRestore;
}
void SetUp() { resetIpv4AddressFreeFunc(); }
protected:
ClatdController mClatdCtrl;
void setIpv4AddressFreeFunc(bool (*func)(in_addr_t)) {
ClatdController::isIpv4AddressFreeFunc = func;
}
void resetIpv4AddressFreeFunc() {
ClatdController::isIpv4AddressFreeFunc = ClatdController::isIpv4AddressFree;
}
in_addr_t selectIpv4Address(const in_addr a, int16_t b) {
return ClatdController::selectIpv4Address(a, b);
}
void makeChecksumNeutral(in6_addr* a, const in_addr b, const in6_addr& c) {
ClatdController::makeChecksumNeutral(a, b, c);
}
int detect_mtu(const struct in6_addr* a, uint32_t b, uint32_t c) {
return mClatdCtrl.detect_mtu(a, b, c);
}
int configure_tun_ip(const char* a, const char* b, int c) {
std::lock_guard guard(mClatdCtrl.mutex);
return mClatdCtrl.configure_tun_ip(a, b, c);
}
int configure_clat_ipv6_address(ClatdController::ClatdTracker* a,
ClatdController::tun_data* b) {
std::lock_guard guard(mClatdCtrl.mutex);
return mClatdCtrl.configure_clat_ipv6_address(a, b);
}
};
TEST_F(ClatdControllerTest, SelectIpv4Address) {
struct in_addr addr;
inet_pton(AF_INET, kIPv4LocalAddr, &addr);
// If no addresses are free, return INADDR_NONE.
setIpv4AddressFreeFunc(neverFree);
EXPECT_EQ(INADDR_NONE, selectIpv4Address(addr, 29));
EXPECT_EQ(INADDR_NONE, selectIpv4Address(addr, 16));
// If the configured address is free, pick that. But a prefix that's too big is invalid.
setIpv4AddressFreeFunc(alwaysFree);
EXPECT_EQ(inet_addr(kIPv4LocalAddr), selectIpv4Address(addr, 29));
EXPECT_EQ(inet_addr(kIPv4LocalAddr), selectIpv4Address(addr, 20));
EXPECT_EQ(INADDR_NONE, selectIpv4Address(addr, 15));
// A prefix length of 32 works, but anything above it is invalid.
EXPECT_EQ(inet_addr(kIPv4LocalAddr), selectIpv4Address(addr, 32));
EXPECT_EQ(INADDR_NONE, selectIpv4Address(addr, 33));
// If another address is free, pick it.
setIpv4AddressFreeFunc(over6Free);
EXPECT_EQ(inet_addr("192.0.0.6"), selectIpv4Address(addr, 29));
// Check that we wrap around to addresses that are lower than the first address.
setIpv4AddressFreeFunc(only2Free);
EXPECT_EQ(inet_addr("192.0.0.2"), selectIpv4Address(addr, 29));
EXPECT_EQ(INADDR_NONE, selectIpv4Address(addr, 30));
// If a free address exists outside the prefix, we don't pick it.
setIpv4AddressFreeFunc(only10Free);
EXPECT_EQ(INADDR_NONE, selectIpv4Address(addr, 29));
EXPECT_EQ(inet_addr("192.0.0.10"), selectIpv4Address(addr, 24));
// Now try using the real function which sees if IP addresses are free using bind().
// Assume that the machine running the test has the address 127.0.0.1, but not 8.8.8.8.
resetIpv4AddressFreeFunc();
addr.s_addr = inet_addr("8.8.8.8");
EXPECT_EQ(inet_addr("8.8.8.8"), selectIpv4Address(addr, 29));
addr.s_addr = inet_addr("127.0.0.1");
EXPECT_EQ(inet_addr("127.0.0.2"), selectIpv4Address(addr, 29));
}
TEST_F(ClatdControllerTest, MakeChecksumNeutral) {
// We can't test generateIPv6Address here since it requires manipulating routing, which we can't
// do without talking to the real netd on the system.
uint32_t rand = arc4random_uniform(0xffffffff);
uint16_t rand1 = rand & 0xffff;
uint16_t rand2 = (rand >> 16) & 0xffff;
std::string v6PrefixStr = StringPrintf("2001:db8:%x:%x", rand1, rand2);
std::string v6InterfaceAddrStr = StringPrintf("%s::%x:%x", v6PrefixStr.c_str(), rand2, rand1);
std::string nat64PrefixStr = StringPrintf("2001:db8:%x:%x::", rand2, rand1);
in_addr v4 = {inet_addr(kIPv4LocalAddr)};
in6_addr v6InterfaceAddr;
ASSERT_TRUE(inet_pton(AF_INET6, v6InterfaceAddrStr.c_str(), &v6InterfaceAddr));
in6_addr nat64Prefix;
ASSERT_TRUE(inet_pton(AF_INET6, nat64PrefixStr.c_str(), &nat64Prefix));
// Generate a boatload of random IIDs.
int onebits = 0;
uint64_t prev_iid = 0;
for (int i = 0; i < 100000; i++) {
in6_addr v6 = v6InterfaceAddr;
makeChecksumNeutral(&v6, v4, nat64Prefix);
// Check the generated IP address is in the same prefix as the interface IPv6 address.
EXPECT_EQ(0, memcmp(&v6, &v6InterfaceAddr, 8));
// Check that consecutive IIDs are not the same.
uint64_t iid = *(uint64_t*)(&v6.s6_addr[8]);
ASSERT_TRUE(iid != prev_iid)
<< "Two consecutive random IIDs are the same: " << std::showbase << std::hex << iid
<< "\n";
prev_iid = iid;
// Check that the IID is checksum-neutral with the NAT64 prefix and the
// local prefix.
uint16_t c1 = ip_checksum_finish(ip_checksum_add(0, &v4, sizeof(v4)));
uint16_t c2 = ip_checksum_finish(ip_checksum_add(0, &nat64Prefix, sizeof(nat64Prefix)) +
ip_checksum_add(0, &v6, sizeof(v6)));
if (c1 != c2) {
char v6Str[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6, &v6, v6Str, sizeof(v6Str));
FAIL() << "Bad IID: " << v6Str << " not checksum-neutral with " << kIPv4LocalAddr
<< " and " << nat64PrefixStr.c_str() << std::showbase << std::hex
<< "\n IPv4 checksum: " << c1 << "\n IPv6 checksum: " << c2 << "\n";
}
// Check that IIDs are roughly random and use all the bits by counting the
// total number of bits set to 1 in a random sample of 100000 generated IIDs.
onebits += __builtin_popcountll(*(uint64_t*)&iid);
}
EXPECT_LE(3190000, onebits);
EXPECT_GE(3210000, onebits);
}
TEST_F(ClatdControllerTest, DetectMtu) {
// ::1 with bottom 32 bits set to 1 is still ::1 which routes via lo with mtu of 64KiB
ASSERT_EQ(detect_mtu(&in6addr_loopback, htonl(1), 0 /*MARK_UNSET*/), 65536);
}
// Get the first IPv4 address for a given interface name
in_addr* getinterface_ip(const char* interface) {
ifaddrs *ifaddr, *ifa;
in_addr* retval = nullptr;
if (getifaddrs(&ifaddr) == -1) return nullptr;
for (ifa = ifaddr; ifa != nullptr; ifa = ifa->ifa_next) {
if (ifa->ifa_addr == nullptr) continue;
if ((strcmp(ifa->ifa_name, interface) == 0) && (ifa->ifa_addr->sa_family == AF_INET)) {
retval = (in_addr*)malloc(sizeof(in_addr));
if (retval) {
const sockaddr_in* sin = reinterpret_cast<sockaddr_in*>(ifa->ifa_addr);
*retval = sin->sin_addr;
}
break;
}
}
freeifaddrs(ifaddr);
return retval;
}
TEST_F(ClatdControllerTest, ConfigureTunIpManual) {
// Create an interface for configure_tun_ip to configure and bring up.
TunInterface v4Iface;
ASSERT_EQ(0, v4Iface.init());
configure_tun_ip(v4Iface.name().c_str(), "192.0.2.1" /* v4Str */, 1472 /* mtu */);
in_addr* ip = getinterface_ip(v4Iface.name().c_str());
ASSERT_NE(nullptr, ip);
EXPECT_EQ(inet_addr("192.0.2.1"), ip->s_addr);
free(ip);
v4Iface.destroy();
}
ClatdController::tun_data makeTunData() {
// Create some fake but realistic-looking sockets so configure_clat_ipv6_address doesn't balk.
return {
.read_fd6 = socket(AF_PACKET, SOCK_DGRAM | SOCK_CLOEXEC, htons(ETH_P_IPV6)),
.write_fd6 = socket(AF_INET6, SOCK_RAW | SOCK_NONBLOCK | SOCK_CLOEXEC, IPPROTO_RAW),
.fd4 = socket(AF_UNIX, SOCK_DGRAM | SOCK_CLOEXEC, 0),
};
}
void cleanupTunData(ClatdController::tun_data* tunnel) {
close(tunnel->write_fd6);
close(tunnel->read_fd6);
close(tunnel->fd4);
}
TEST_F(ClatdControllerTest, ConfigureIpv6Address) {
// Create an interface for configure_clat_ipv6_address to attach socket filter to.
TunInterface v6Iface;
ASSERT_EQ(0, v6Iface.init());
ClatdController::tun_data tunnel = makeTunData();
// Only initialize valid value to configure_clat_ipv6_address() required fields
// {ifIndex, v6, v6Str}. The uninitialized fields have initialized with invalid
// value just in case.
ClatdController::ClatdTracker tracker = {
.pid = -1, // unused
.ifIndex = 0, // initialize later
.iface = "", // unused
.v4ifIndex = 0, // unused
.v4iface = "", // unused
.fwmark.intValue = 0, // unused
.fwmarkString = "0x0", // unused
.v4 = {}, // unused
.v4Str = "", // unused
.v6 = {}, // initialize later
.v6Str = "", // initialize later
.pfx96 = {}, // unused
.pfx96String = "", // unused
};
tracker.ifIndex = static_cast<unsigned int>(v6Iface.ifindex());
const char* addrStr = "2001:db8::f00";
ASSERT_EQ(1, inet_pton(AF_INET6, addrStr, &tracker.v6));
strlcpy(tracker.v6Str, addrStr, sizeof(tracker.v6Str));
ASSERT_EQ(0, configure_clat_ipv6_address(&tracker, &tunnel));
// Check that the packet socket is bound to the interface. We can't check the socket filter
// because there is no way to fetch it from the kernel.
sockaddr_ll sll;
socklen_t len = sizeof(sll);
ASSERT_EQ(0, getsockname(tunnel.read_fd6, reinterpret_cast<sockaddr*>(&sll), &len));
EXPECT_EQ(htons(ETH_P_IPV6), sll.sll_protocol);
EXPECT_EQ(sll.sll_ifindex, v6Iface.ifindex());
v6Iface.destroy();
cleanupTunData(&tunnel);
}
} // namespace net
} // namespace android