blob: c88b02a99f933a4f75fc8bccc26df4a7bdb2a011 [file] [log] [blame]
/*
* Copyright 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* binder_test.cpp - unit tests for netd binder RPCs.
*/
#include <cerrno>
#include <cinttypes>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <set>
#include <vector>
#include <fcntl.h>
#include <ifaddrs.h>
#include <netdb.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <linux/if.h>
#include <linux/if_tun.h>
#include <android-base/macros.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <cutils/multiuser.h>
#include <gtest/gtest.h>
#include <logwrap/logwrap.h>
#include <netutils/ifc.h>
#include "NetdConstants.h"
#include "Stopwatch.h"
#include "android/net/INetd.h"
#include "android/net/UidRange.h"
#include "binder/IServiceManager.h"
#define TUN_DEV "/dev/tun"
using namespace android;
using namespace android::base;
using namespace android::binder;
using android::net::INetd;
using android::net::UidRange;
static const char* IP_RULE_V4 = "-4";
static const char* IP_RULE_V6 = "-6";
class BinderTest : public ::testing::Test {
public:
BinderTest() {
sp<IServiceManager> sm = defaultServiceManager();
sp<IBinder> binder = sm->getService(String16("netd"));
if (binder != nullptr) {
mNetd = interface_cast<INetd>(binder);
}
}
void SetUp() override {
ASSERT_NE(nullptr, mNetd.get());
}
// Static because setting up the tun interface takes about 40ms.
static void SetUpTestCase() {
sTunFd = createTunInterface();
ASSERT_LE(sTunIfName.size(), static_cast<size_t>(IFNAMSIZ));
ASSERT_NE(-1, sTunFd);
}
static void TearDownTestCase() {
// Closing the socket removes the interface and IP addresses.
close(sTunFd);
}
static void fakeRemoteSocketPair(int *clientSocket, int *serverSocket, int *acceptedSocket);
static int createTunInterface();
protected:
sp<INetd> mNetd;
static int sTunFd;
static std::string sTunIfName;
static in6_addr sSrcAddr, sDstAddr;
static char sSrcStr[], sDstStr[];
};
int BinderTest::sTunFd;
std::string BinderTest::sTunIfName;
in6_addr BinderTest::sSrcAddr;
in6_addr BinderTest::sDstAddr;
char BinderTest::sSrcStr[INET6_ADDRSTRLEN];
char BinderTest::sDstStr[INET6_ADDRSTRLEN];
class TimedOperation : public Stopwatch {
public:
explicit TimedOperation(const std::string &name): mName(name) {}
virtual ~TimedOperation() {
fprintf(stderr, " %s: %6.1f ms\n", mName.c_str(), timeTaken());
}
private:
std::string mName;
};
TEST_F(BinderTest, TestIsAlive) {
TimedOperation t("isAlive RPC");
bool isAlive = false;
mNetd->isAlive(&isAlive);
ASSERT_TRUE(isAlive);
}
static int randomUid() {
return 100000 * arc4random_uniform(7) + 10000 + arc4random_uniform(5000);
}
static std::vector<std::string> runCommand(const std::string& command) {
std::vector<std::string> lines;
FILE *f;
if ((f = popen(command.c_str(), "r")) == nullptr) {
perror("popen");
return lines;
}
char *line = nullptr;
size_t bufsize = 0;
ssize_t linelen = 0;
while ((linelen = getline(&line, &bufsize, f)) >= 0) {
lines.push_back(std::string(line, linelen));
free(line);
line = nullptr;
}
pclose(f);
return lines;
}
static std::vector<std::string> listIpRules(const char *ipVersion) {
std::string command = StringPrintf("%s %s rule list", IP_PATH, ipVersion);
return runCommand(command);
}
static std::vector<std::string> listIptablesRule(const char *binary, const char *chainName) {
std::string command = StringPrintf("%s -w -n -L %s", binary, chainName);
return runCommand(command);
}
static int iptablesRuleLineLength(const char *binary, const char *chainName) {
return listIptablesRule(binary, chainName).size();
}
TEST_F(BinderTest, TestFirewallReplaceUidChain) {
std::string chainName = StringPrintf("netd_binder_test_%u", arc4random_uniform(10000));
const int kNumUids = 500;
std::vector<int32_t> noUids(0);
std::vector<int32_t> uids(kNumUids);
for (int i = 0; i < kNumUids; i++) {
uids[i] = randomUid();
}
bool ret;
{
TimedOperation op(StringPrintf("Programming %d-UID whitelist chain", kNumUids));
mNetd->firewallReplaceUidChain(String16(chainName.c_str()), true, uids, &ret);
}
EXPECT_EQ(true, ret);
EXPECT_EQ((int) uids.size() + 6, iptablesRuleLineLength(IPTABLES_PATH, chainName.c_str()));
EXPECT_EQ((int) uids.size() + 12, iptablesRuleLineLength(IP6TABLES_PATH, chainName.c_str()));
{
TimedOperation op("Clearing whitelist chain");
mNetd->firewallReplaceUidChain(String16(chainName.c_str()), false, noUids, &ret);
}
EXPECT_EQ(true, ret);
EXPECT_EQ(4, iptablesRuleLineLength(IPTABLES_PATH, chainName.c_str()));
EXPECT_EQ(4, iptablesRuleLineLength(IP6TABLES_PATH, chainName.c_str()));
{
TimedOperation op(StringPrintf("Programming %d-UID blacklist chain", kNumUids));
mNetd->firewallReplaceUidChain(String16(chainName.c_str()), false, uids, &ret);
}
EXPECT_EQ(true, ret);
EXPECT_EQ((int) uids.size() + 4, iptablesRuleLineLength(IPTABLES_PATH, chainName.c_str()));
EXPECT_EQ((int) uids.size() + 4, iptablesRuleLineLength(IP6TABLES_PATH, chainName.c_str()));
{
TimedOperation op("Clearing blacklist chain");
mNetd->firewallReplaceUidChain(String16(chainName.c_str()), false, noUids, &ret);
}
EXPECT_EQ(true, ret);
EXPECT_EQ(4, iptablesRuleLineLength(IPTABLES_PATH, chainName.c_str()));
EXPECT_EQ(4, iptablesRuleLineLength(IP6TABLES_PATH, chainName.c_str()));
// Check that the call fails if iptables returns an error.
std::string veryLongStringName = "netd_binder_test_UnacceptablyLongIptablesChainName";
mNetd->firewallReplaceUidChain(String16(veryLongStringName.c_str()), true, noUids, &ret);
EXPECT_EQ(false, ret);
}
static int bandwidthDataSaverEnabled(const char *binary) {
std::vector<std::string> lines = listIptablesRule(binary, "bw_data_saver");
// Output looks like this:
//
// Chain bw_data_saver (1 references)
// target prot opt source destination
// RETURN all -- 0.0.0.0/0 0.0.0.0/0
EXPECT_EQ(3U, lines.size());
if (lines.size() != 3) return -1;
EXPECT_TRUE(android::base::StartsWith(lines[2], "RETURN ") ||
android::base::StartsWith(lines[2], "REJECT "));
return android::base::StartsWith(lines[2], "REJECT");
}
bool enableDataSaver(sp<INetd>& netd, bool enable) {
TimedOperation op(enable ? " Enabling data saver" : "Disabling data saver");
bool ret;
netd->bandwidthEnableDataSaver(enable, &ret);
return ret;
}
int getDataSaverState() {
const int enabled4 = bandwidthDataSaverEnabled(IPTABLES_PATH);
const int enabled6 = bandwidthDataSaverEnabled(IP6TABLES_PATH);
EXPECT_EQ(enabled4, enabled6);
EXPECT_NE(-1, enabled4);
EXPECT_NE(-1, enabled6);
if (enabled4 != enabled6 || (enabled6 != 0 && enabled6 != 1)) {
return -1;
}
return enabled6;
}
TEST_F(BinderTest, TestBandwidthEnableDataSaver) {
const int wasEnabled = getDataSaverState();
ASSERT_NE(-1, wasEnabled);
if (wasEnabled) {
ASSERT_TRUE(enableDataSaver(mNetd, false));
EXPECT_EQ(0, getDataSaverState());
}
ASSERT_TRUE(enableDataSaver(mNetd, false));
EXPECT_EQ(0, getDataSaverState());
ASSERT_TRUE(enableDataSaver(mNetd, true));
EXPECT_EQ(1, getDataSaverState());
ASSERT_TRUE(enableDataSaver(mNetd, true));
EXPECT_EQ(1, getDataSaverState());
if (!wasEnabled) {
ASSERT_TRUE(enableDataSaver(mNetd, false));
EXPECT_EQ(0, getDataSaverState());
}
}
static bool ipRuleExistsForRange(const uint32_t priority, const UidRange& range,
const std::string& action, const char* ipVersion) {
// Output looks like this:
// "12500:\tfrom all fwmark 0x0/0x20000 iif lo uidrange 1000-2000 prohibit"
std::vector<std::string> rules = listIpRules(ipVersion);
std::string prefix = StringPrintf("%" PRIu32 ":", priority);
std::string suffix = StringPrintf(" iif lo uidrange %d-%d %s\n",
range.getStart(), range.getStop(), action.c_str());
for (std::string line : rules) {
if (android::base::StartsWith(line, prefix.c_str())
&& android::base::EndsWith(line, suffix.c_str())) {
return true;
}
}
return false;
}
static bool ipRuleExistsForRange(const uint32_t priority, const UidRange& range,
const std::string& action) {
bool existsIp4 = ipRuleExistsForRange(priority, range, action, IP_RULE_V4);
bool existsIp6 = ipRuleExistsForRange(priority, range, action, IP_RULE_V6);
EXPECT_EQ(existsIp4, existsIp6);
return existsIp4;
}
TEST_F(BinderTest, TestNetworkRejectNonSecureVpn) {
constexpr uint32_t RULE_PRIORITY = 12500;
constexpr int baseUid = AID_USER_OFFSET * 5;
std::vector<UidRange> uidRanges = {
{baseUid + 150, baseUid + 224},
{baseUid + 226, baseUid + 300}
};
const std::vector<std::string> initialRulesV4 = listIpRules(IP_RULE_V4);
const std::vector<std::string> initialRulesV6 = listIpRules(IP_RULE_V6);
// Create two valid rules.
ASSERT_TRUE(mNetd->networkRejectNonSecureVpn(true, uidRanges).isOk());
EXPECT_EQ(initialRulesV4.size() + 2, listIpRules(IP_RULE_V4).size());
EXPECT_EQ(initialRulesV6.size() + 2, listIpRules(IP_RULE_V6).size());
for (auto const& range : uidRanges) {
EXPECT_TRUE(ipRuleExistsForRange(RULE_PRIORITY, range, "prohibit"));
}
// Remove the rules.
ASSERT_TRUE(mNetd->networkRejectNonSecureVpn(false, uidRanges).isOk());
EXPECT_EQ(initialRulesV4.size(), listIpRules(IP_RULE_V4).size());
EXPECT_EQ(initialRulesV6.size(), listIpRules(IP_RULE_V6).size());
for (auto const& range : uidRanges) {
EXPECT_FALSE(ipRuleExistsForRange(RULE_PRIORITY, range, "prohibit"));
}
// Fail to remove the rules a second time after they are already deleted.
binder::Status status = mNetd->networkRejectNonSecureVpn(false, uidRanges);
ASSERT_EQ(binder::Status::EX_SERVICE_SPECIFIC, status.exceptionCode());
EXPECT_EQ(ENOENT, status.serviceSpecificErrorCode());
// All rules should be the same as before.
EXPECT_EQ(initialRulesV4, listIpRules(IP_RULE_V4));
EXPECT_EQ(initialRulesV6, listIpRules(IP_RULE_V6));
}
int BinderTest::createTunInterface() {
// Generate a random ULA address pair.
arc4random_buf(&sSrcAddr, sizeof(sSrcAddr));
sSrcAddr.s6_addr[0] = 0xfd;
memcpy(&sDstAddr, &sSrcAddr, sizeof(sDstAddr));
sDstAddr.s6_addr[15] ^= 1;
// Convert the addresses to strings because that's what ifc_add_address takes.
sockaddr_in6 src6 = { .sin6_family = AF_INET6, .sin6_addr = sSrcAddr, };
sockaddr_in6 dst6 = { .sin6_family = AF_INET6, .sin6_addr = sDstAddr, };
int flags = NI_NUMERICHOST;
if (getnameinfo((sockaddr *) &src6, sizeof(src6), sSrcStr, sizeof(sSrcStr), NULL, 0, flags) ||
getnameinfo((sockaddr *) &dst6, sizeof(dst6), sDstStr, sizeof(sDstStr), NULL, 0, flags)) {
return -1;
}
// Create a tun interface with a name based on our PID.
sTunIfName = StringPrintf("netdtest%u", getpid());
struct ifreq ifr = {
.ifr_ifru = { .ifru_flags = IFF_TUN },
};
snprintf(ifr.ifr_name, sizeof(ifr.ifr_name), "%s", sTunIfName.c_str());
int fd = open(TUN_DEV, O_RDWR | O_NONBLOCK | O_CLOEXEC);
EXPECT_NE(-1, fd) << TUN_DEV << ": " << strerror(errno);
if (fd == -1) return fd;
int ret = ioctl(fd, TUNSETIFF, &ifr, sizeof(ifr));
EXPECT_EQ(0, ret) << "TUNSETIFF: " << strerror(errno);
if (ret) {
close(fd);
return -1;
}
if (ifc_add_address(ifr.ifr_name, sSrcStr, 64) ||
ifc_add_address(ifr.ifr_name, sDstStr, 64)) {
close(fd);
return -1;
}
return fd;
}
// Create a socket pair that isLoopbackSocket won't think is local.
void BinderTest::fakeRemoteSocketPair(int *clientSocket, int *serverSocket, int *acceptedSocket) {
*serverSocket = socket(AF_INET6, SOCK_STREAM, 0);
struct sockaddr_in6 server6 = { .sin6_family = AF_INET6, .sin6_addr = sDstAddr };
ASSERT_EQ(0, bind(*serverSocket, (struct sockaddr *) &server6, sizeof(server6)));
socklen_t addrlen = sizeof(server6);
ASSERT_EQ(0, getsockname(*serverSocket, (struct sockaddr *) &server6, &addrlen));
ASSERT_EQ(0, listen(*serverSocket, 10));
*clientSocket = socket(AF_INET6, SOCK_STREAM, 0);
struct sockaddr_in6 client6 = { .sin6_family = AF_INET6, .sin6_addr = sSrcAddr };
ASSERT_EQ(0, bind(*clientSocket, (struct sockaddr *) &client6, sizeof(client6)));
ASSERT_EQ(0, connect(*clientSocket, (struct sockaddr *) &server6, sizeof(server6)));
ASSERT_EQ(0, getsockname(*clientSocket, (struct sockaddr *) &client6, &addrlen));
*acceptedSocket = accept(*serverSocket, (struct sockaddr *) &server6, &addrlen);
ASSERT_NE(-1, *acceptedSocket);
ASSERT_EQ(0, memcmp(&client6, &server6, sizeof(client6)));
}
void checkSocketpairOpen(int clientSocket, int acceptedSocket) {
char buf[4096];
EXPECT_EQ(4, write(clientSocket, "foo", sizeof("foo")));
EXPECT_EQ(4, read(acceptedSocket, buf, sizeof(buf)));
EXPECT_EQ(0, memcmp(buf, "foo", sizeof("foo")));
}
void checkSocketpairClosed(int clientSocket, int acceptedSocket) {
// Check that the client socket was closed with ECONNABORTED.
int ret = write(clientSocket, "foo", sizeof("foo"));
int err = errno;
EXPECT_EQ(-1, ret);
EXPECT_EQ(ECONNABORTED, err);
// Check that it sent a RST to the server.
ret = write(acceptedSocket, "foo", sizeof("foo"));
err = errno;
EXPECT_EQ(-1, ret);
EXPECT_EQ(ECONNRESET, err);
}
TEST_F(BinderTest, TestSocketDestroy) {
int clientSocket, serverSocket, acceptedSocket;
ASSERT_NO_FATAL_FAILURE(fakeRemoteSocketPair(&clientSocket, &serverSocket, &acceptedSocket));
// Pick a random UID in the system UID range.
constexpr int baseUid = AID_APP - 2000;
static_assert(baseUid > 0, "Not enough UIDs? Please fix this test.");
int uid = baseUid + 500 + arc4random_uniform(1000);
EXPECT_EQ(0, fchown(clientSocket, uid, -1));
// UID ranges that don't contain uid.
std::vector<UidRange> uidRanges = {
{baseUid + 42, baseUid + 449},
{baseUid + 1536, AID_APP - 4},
{baseUid + 498, uid - 1},
{uid + 1, baseUid + 1520},
};
// A skip list that doesn't contain UID.
std::vector<int32_t> skipUids { baseUid + 123, baseUid + 1600 };
// Close sockets. Our test socket should be intact.
EXPECT_TRUE(mNetd->socketDestroy(uidRanges, skipUids).isOk());
checkSocketpairOpen(clientSocket, acceptedSocket);
// UID ranges that do contain uid.
uidRanges = {
{baseUid + 42, baseUid + 449},
{baseUid + 1536, AID_APP - 4},
{baseUid + 498, baseUid + 1520},
};
// Add uid to the skip list.
skipUids.push_back(uid);
// Close sockets. Our test socket should still be intact because it's in the skip list.
EXPECT_TRUE(mNetd->socketDestroy(uidRanges, skipUids).isOk());
checkSocketpairOpen(clientSocket, acceptedSocket);
// Now remove uid from skipUids, and close sockets. Our test socket should have been closed.
skipUids.resize(skipUids.size() - 1);
EXPECT_TRUE(mNetd->socketDestroy(uidRanges, skipUids).isOk());
checkSocketpairClosed(clientSocket, acceptedSocket);
close(clientSocket);
close(serverSocket);
close(acceptedSocket);
}
namespace {
int netmaskToPrefixLength(const uint8_t *buf, size_t buflen) {
if (buf == nullptr) return -1;
int prefixLength = 0;
bool endOfContiguousBits = false;
for (unsigned int i = 0; i < buflen; i++) {
const uint8_t value = buf[i];
// Bad bit sequence: check for a contiguous set of bits from the high
// end by verifying that the inverted value + 1 is a power of 2
// (power of 2 iff. (v & (v - 1)) == 0).
const uint8_t inverse = ~value + 1;
if ((inverse & (inverse - 1)) != 0) return -1;
prefixLength += (value == 0) ? 0 : CHAR_BIT - ffs(value) + 1;
// Bogus netmask.
if (endOfContiguousBits && value != 0) return -1;
if (value != 0xff) endOfContiguousBits = true;
}
return prefixLength;
}
template<typename T>
int netmaskToPrefixLength(const T *p) {
return netmaskToPrefixLength(reinterpret_cast<const uint8_t*>(p), sizeof(T));
}
static bool interfaceHasAddress(
const std::string &ifname, const char *addrString, int prefixLength) {
struct addrinfo *addrinfoList = nullptr;
ScopedAddrinfo addrinfoCleanup(addrinfoList);
const struct addrinfo hints = {
.ai_flags = AI_NUMERICHOST,
.ai_family = AF_UNSPEC,
.ai_socktype = SOCK_DGRAM,
};
if (getaddrinfo(addrString, nullptr, &hints, &addrinfoList) != 0 ||
addrinfoList == nullptr || addrinfoList->ai_addr == nullptr) {
return false;
}
struct ifaddrs *ifaddrsList = nullptr;
ScopedIfaddrs ifaddrsCleanup(ifaddrsList);
if (getifaddrs(&ifaddrsList) != 0) {
return false;
}
for (struct ifaddrs *addr = ifaddrsList; addr != nullptr; addr = addr->ifa_next) {
if (std::string(addr->ifa_name) != ifname ||
addr->ifa_addr == nullptr ||
addr->ifa_addr->sa_family != addrinfoList->ai_addr->sa_family) {
continue;
}
switch (addr->ifa_addr->sa_family) {
case AF_INET: {
auto *addr4 = reinterpret_cast<const struct sockaddr_in*>(addr->ifa_addr);
auto *want = reinterpret_cast<const struct sockaddr_in*>(addrinfoList->ai_addr);
if (memcmp(&addr4->sin_addr, &want->sin_addr, sizeof(want->sin_addr)) != 0) {
continue;
}
if (prefixLength < 0) return true; // not checking prefix lengths
if (addr->ifa_netmask == nullptr) return false;
auto *nm = reinterpret_cast<const struct sockaddr_in*>(addr->ifa_netmask);
EXPECT_EQ(prefixLength, netmaskToPrefixLength(&nm->sin_addr));
return (prefixLength == netmaskToPrefixLength(&nm->sin_addr));
}
case AF_INET6: {
auto *addr6 = reinterpret_cast<const struct sockaddr_in6*>(addr->ifa_addr);
auto *want = reinterpret_cast<const struct sockaddr_in6*>(addrinfoList->ai_addr);
if (memcmp(&addr6->sin6_addr, &want->sin6_addr, sizeof(want->sin6_addr)) != 0) {
continue;
}
if (prefixLength < 0) return true; // not checking prefix lengths
if (addr->ifa_netmask == nullptr) return false;
auto *nm = reinterpret_cast<const struct sockaddr_in6*>(addr->ifa_netmask);
EXPECT_EQ(prefixLength, netmaskToPrefixLength(&nm->sin6_addr));
return (prefixLength == netmaskToPrefixLength(&nm->sin6_addr));
}
default:
// Cannot happen because we have already screened for matching
// address families at the top of each iteration.
continue;
}
}
return false;
}
} // namespace
TEST_F(BinderTest, TestInterfaceAddRemoveAddress) {
static const struct TestData {
const char *addrString;
const int prefixLength;
const bool expectSuccess;
} kTestData[] = {
{ "192.0.2.1", 24, true },
{ "192.0.2.2", 25, true },
{ "192.0.2.3", 32, true },
{ "192.0.2.4", 33, false },
{ "192.not.an.ip", 24, false },
{ "2001:db8::1", 64, true },
{ "2001:db8::2", 65, true },
{ "2001:db8::3", 128, true },
{ "2001:db8::4", 129, false },
{ "foo:bar::bad", 64, false },
};
for (unsigned int i = 0; i < arraysize(kTestData); i++) {
const auto &td = kTestData[i];
// [1.a] Add the address.
binder::Status status = mNetd->interfaceAddAddress(
sTunIfName, td.addrString, td.prefixLength);
if (td.expectSuccess) {
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
} else {
ASSERT_EQ(binder::Status::EX_SERVICE_SPECIFIC, status.exceptionCode());
ASSERT_NE(0, status.serviceSpecificErrorCode());
}
// [1.b] Verify the addition meets the expectation.
if (td.expectSuccess) {
EXPECT_TRUE(interfaceHasAddress(sTunIfName, td.addrString, td.prefixLength));
} else {
EXPECT_FALSE(interfaceHasAddress(sTunIfName, td.addrString, -1));
}
// [2.a] Try to remove the address. If it was not previously added, removing it fails.
status = mNetd->interfaceDelAddress(sTunIfName, td.addrString, td.prefixLength);
if (td.expectSuccess) {
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
} else {
ASSERT_EQ(binder::Status::EX_SERVICE_SPECIFIC, status.exceptionCode());
ASSERT_NE(0, status.serviceSpecificErrorCode());
}
// [2.b] No matter what, the address should not be present.
EXPECT_FALSE(interfaceHasAddress(sTunIfName, td.addrString, -1));
}
}
TEST_F(BinderTest, TestSetProcSysNet) {
static const struct TestData {
const int family;
const int which;
const char *ifname;
const char *parameter;
const char *value;
const int expectedReturnCode;
} kTestData[] = {
{ INetd::IPV4, INetd::CONF, sTunIfName.c_str(), "arp_ignore", "1", 0 },
{ -1, INetd::CONF, sTunIfName.c_str(), "arp_ignore", "1", EAFNOSUPPORT },
{ INetd::IPV4, -1, sTunIfName.c_str(), "arp_ignore", "1", EINVAL },
{ INetd::IPV4, INetd::CONF, "..", "conf/lo/arp_ignore", "1", EINVAL },
{ INetd::IPV4, INetd::CONF, ".", "lo/arp_ignore", "1", EINVAL },
{ INetd::IPV4, INetd::CONF, sTunIfName.c_str(), "../all/arp_ignore", "1", EINVAL },
{ INetd::IPV6, INetd::NEIGH, sTunIfName.c_str(), "ucast_solicit", "7", 0 },
};
for (unsigned int i = 0; i < arraysize(kTestData); i++) {
const auto &td = kTestData[i];
const binder::Status status = mNetd->setProcSysNet(
td.family, td.which, td.ifname, td.parameter,
td.value);
if (td.expectedReturnCode == 0) {
SCOPED_TRACE(String8::format("test case %d should have passed", i));
EXPECT_EQ(0, status.exceptionCode());
EXPECT_EQ(0, status.serviceSpecificErrorCode());
} else {
SCOPED_TRACE(String8::format("test case %d should have failed", i));
EXPECT_EQ(binder::Status::EX_SERVICE_SPECIFIC, status.exceptionCode());
EXPECT_EQ(td.expectedReturnCode, status.serviceSpecificErrorCode());
}
}
}