blob: 51710c84f6c11d2a0ac63b02094ed64c0357d55d [file] [log] [blame]
/*
*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <random>
#include <string>
#include <vector>
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <getopt.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define __STDC_FORMAT_MACROS
#include <inttypes.h>
#include <arpa/inet.h>
#include <net/if.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <linux/in.h>
#include <linux/ipsec.h>
#include <linux/netlink.h>
#include <linux/xfrm.h>
#define LOG_TAG "XfrmController"
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#include <android/net/INetd.h>
#include <cutils/properties.h>
#include <log/log.h>
#include <log/log_properties.h>
#include "Fwmark.h"
#include "InterfaceController.h"
#include "NetdConstants.h"
#include "NetlinkCommands.h"
#include "Permission.h"
#include "XfrmController.h"
#include "android-base/stringprintf.h"
#include "android-base/strings.h"
#include "android-base/unique_fd.h"
#include "netdutils/DumpWriter.h"
#include "netdutils/Fd.h"
#include "netdutils/Slice.h"
#include "netdutils/Syscalls.h"
#include "netdutils/Utils.h"
using android::netdutils::DumpWriter;
using android::netdutils::Fd;
using android::netdutils::getIfaceNames;
using android::netdutils::ScopedIndent;
using android::netdutils::Slice;
using android::netdutils::Status;
using android::netdutils::StatusOr;
using android::netdutils::Syscalls;
namespace android {
namespace net {
// Exposed for testing
constexpr uint32_t ALGO_MASK_AUTH_ALL = ~0;
// Exposed for testing
constexpr uint32_t ALGO_MASK_CRYPT_ALL = ~0;
// Exposed for testing
constexpr uint32_t ALGO_MASK_AEAD_ALL = ~0;
// Exposed for testing
constexpr uint8_t REPLAY_WINDOW_SIZE = 32;
namespace {
constexpr uint32_t RAND_SPI_MIN = 256;
constexpr uint32_t RAND_SPI_MAX = 0xFFFFFFFE;
constexpr uint32_t INVALID_SPI = 0;
constexpr const char* INFO_KIND_VTI = "vti";
constexpr const char* INFO_KIND_VTI6 = "vti6";
constexpr const char* INFO_KIND_XFRMI = "xfrm";
constexpr int INFO_KIND_MAX_LEN = 8;
constexpr int LOOPBACK_IFINDEX = 1;
bool mIsXfrmIntfSupported = false;
static inline bool isEngBuild() {
static const std::string sBuildType = android::base::GetProperty("ro.build.type", "user");
return sBuildType == "eng";
}
#define XFRM_MSG_TRANS(x) \
case x: \
return #x;
const char* xfrmMsgTypeToString(uint16_t msg) {
switch (msg) {
XFRM_MSG_TRANS(XFRM_MSG_NEWSA)
XFRM_MSG_TRANS(XFRM_MSG_DELSA)
XFRM_MSG_TRANS(XFRM_MSG_GETSA)
XFRM_MSG_TRANS(XFRM_MSG_NEWPOLICY)
XFRM_MSG_TRANS(XFRM_MSG_DELPOLICY)
XFRM_MSG_TRANS(XFRM_MSG_GETPOLICY)
XFRM_MSG_TRANS(XFRM_MSG_ALLOCSPI)
XFRM_MSG_TRANS(XFRM_MSG_ACQUIRE)
XFRM_MSG_TRANS(XFRM_MSG_EXPIRE)
XFRM_MSG_TRANS(XFRM_MSG_UPDPOLICY)
XFRM_MSG_TRANS(XFRM_MSG_UPDSA)
XFRM_MSG_TRANS(XFRM_MSG_POLEXPIRE)
XFRM_MSG_TRANS(XFRM_MSG_FLUSHSA)
XFRM_MSG_TRANS(XFRM_MSG_FLUSHPOLICY)
XFRM_MSG_TRANS(XFRM_MSG_NEWAE)
XFRM_MSG_TRANS(XFRM_MSG_GETAE)
XFRM_MSG_TRANS(XFRM_MSG_REPORT)
XFRM_MSG_TRANS(XFRM_MSG_MIGRATE)
XFRM_MSG_TRANS(XFRM_MSG_NEWSADINFO)
XFRM_MSG_TRANS(XFRM_MSG_GETSADINFO)
XFRM_MSG_TRANS(XFRM_MSG_GETSPDINFO)
XFRM_MSG_TRANS(XFRM_MSG_NEWSPDINFO)
XFRM_MSG_TRANS(XFRM_MSG_MAPPING)
default:
return "XFRM_MSG UNKNOWN";
}
}
// actually const but cannot be declared as such for reasons
uint8_t kPadBytesArray[] = {0, 0, 0};
void* kPadBytes = static_cast<void*>(kPadBytesArray);
#define LOG_HEX(__desc16__, __buf__, __len__) \
do { \
if (isEngBuild()) { \
logHex(__desc16__, __buf__, __len__); \
} \
} while (0)
#define LOG_IOV(__iov__) \
do { \
if (isEngBuild()) { \
logIov(__iov__); \
} \
} while (0)
void logHex(const char* desc16, const char* buf, size_t len) {
char* printBuf = new char[len * 2 + 1 + 26]; // len->ascii, +newline, +prefix strlen
int offset = 0;
if (desc16) {
sprintf(printBuf, "{%-16s}", desc16);
offset += 18; // prefix string length
}
sprintf(printBuf + offset, "[%4.4u]: ", (len > 9999) ? 9999 : (unsigned)len);
offset += 8;
for (uint32_t j = 0; j < (uint32_t)len; j++) {
sprintf(&printBuf[j * 2 + offset], "%0.2x", (unsigned char)buf[j]);
}
ALOGD("%s", printBuf);
delete[] printBuf;
}
void logIov(const std::vector<iovec>& iov) {
for (const iovec& row : iov) {
logHex(nullptr, reinterpret_cast<char*>(row.iov_base), row.iov_len);
}
}
size_t fillNlAttr(__u16 nlaType, size_t valueSize, nlattr* nlAttr) {
size_t dataLen = valueSize;
int padLength = NLMSG_ALIGN(dataLen) - dataLen;
nlAttr->nla_len = (__u16)(dataLen + sizeof(nlattr));
nlAttr->nla_type = nlaType;
return padLength;
}
size_t fillNlAttrIpAddress(__u16 nlaType, int family, const std::string& value, nlattr* nlAttr,
Slice ipAddress) {
inet_pton(family, value.c_str(), ipAddress.base());
return fillNlAttr(nlaType, (family == AF_INET) ? sizeof(in_addr) : sizeof(in6_addr), nlAttr);
}
size_t fillNlAttrU32(__u16 nlaType, uint32_t value, XfrmController::nlattr_payload_u32* nlAttr) {
nlAttr->value = value;
return fillNlAttr(nlaType, sizeof(value), &nlAttr->hdr);
}
// returns the address family, placing the string in the provided buffer
StatusOr<uint16_t> convertStringAddress(const std::string& addr, uint8_t* buffer) {
if (inet_pton(AF_INET, addr.c_str(), buffer) == 1) {
return AF_INET;
} else if (inet_pton(AF_INET6, addr.c_str(), buffer) == 1) {
return AF_INET6;
} else {
return Status(EAFNOSUPPORT);
}
}
// TODO: Need to consider a way to refer to the sSycalls instance
inline Syscalls& getSyscallInstance() { return netdutils::sSyscalls.get(); }
class XfrmSocketImpl : public XfrmSocket {
private:
static constexpr int NLMSG_DEFAULTSIZE = 8192;
union NetlinkResponse {
nlmsghdr hdr;
struct _err_ {
nlmsghdr hdr;
nlmsgerr err;
} err;
struct _buf_ {
nlmsghdr hdr;
char buf[NLMSG_DEFAULTSIZE];
} buf;
};
public:
netdutils::Status open() override {
mSock = openNetlinkSocket(NETLINK_XFRM);
if (mSock < 0) {
ALOGW("Could not get a new socket, line=%d", __LINE__);
return netdutils::statusFromErrno(-mSock, "Could not open netlink socket");
}
return netdutils::status::ok;
}
static netdutils::Status validateResponse(NetlinkResponse response, size_t len) {
if (len < sizeof(nlmsghdr)) {
ALOGW("Invalid response message received over netlink");
return netdutils::statusFromErrno(EBADMSG, "Invalid message");
}
switch (response.hdr.nlmsg_type) {
case NLMSG_NOOP:
case NLMSG_DONE:
return netdutils::status::ok;
case NLMSG_OVERRUN:
ALOGD("Netlink request overran kernel buffer");
return netdutils::statusFromErrno(EBADMSG, "Kernel buffer overrun");
case NLMSG_ERROR:
if (len < sizeof(NetlinkResponse::_err_)) {
ALOGD("Netlink message received malformed error response");
return netdutils::statusFromErrno(EBADMSG, "Malformed error response");
}
return netdutils::statusFromErrno(
-response.err.err.error,
"Error netlink message"); // Netlink errors are negative errno.
case XFRM_MSG_NEWSA:
break;
}
if (response.hdr.nlmsg_type < XFRM_MSG_BASE /*== NLMSG_MIN_TYPE*/ ||
response.hdr.nlmsg_type > XFRM_MSG_MAX) {
ALOGD("Netlink message responded with an out-of-range message ID");
return netdutils::statusFromErrno(EBADMSG, "Invalid message ID");
}
// TODO Add more message validation here
return netdutils::status::ok;
}
netdutils::Status sendMessage(uint16_t nlMsgType, uint16_t nlMsgFlags, uint16_t nlMsgSeqNum,
std::vector<iovec>* iovecs) const override {
nlmsghdr nlMsg = {
.nlmsg_type = nlMsgType,
.nlmsg_flags = nlMsgFlags,
.nlmsg_seq = nlMsgSeqNum,
};
(*iovecs)[0].iov_base = &nlMsg;
(*iovecs)[0].iov_len = NLMSG_HDRLEN;
for (const iovec& iov : *iovecs) {
nlMsg.nlmsg_len += iov.iov_len;
}
ALOGD("Sending Netlink XFRM Message: %s", xfrmMsgTypeToString(nlMsgType));
LOG_IOV(*iovecs);
StatusOr<size_t> writeResult = getSyscallInstance().writev(mSock, *iovecs);
if (!isOk(writeResult)) {
ALOGE("netlink socket writev failed (%s)", toString(writeResult).c_str());
return writeResult;
}
if (nlMsg.nlmsg_len != writeResult.value()) {
ALOGE("Invalid netlink message length sent %d", static_cast<int>(writeResult.value()));
return netdutils::statusFromErrno(EBADMSG, "Invalid message length");
}
NetlinkResponse response = {};
StatusOr<Slice> readResult =
getSyscallInstance().read(Fd(mSock), netdutils::makeSlice(response));
if (!isOk(readResult)) {
ALOGE("netlink response error (%s)", toString(readResult).c_str());
return readResult;
}
LOG_HEX("netlink msg resp", reinterpret_cast<char*>(readResult.value().base()),
readResult.value().size());
Status validateStatus = validateResponse(response, readResult.value().size());
if (!isOk(validateStatus)) {
ALOGE("netlink response contains error (%s)", toString(validateStatus).c_str());
}
return validateStatus;
}
};
StatusOr<int> convertToXfrmAddr(const std::string& strAddr, xfrm_address_t* xfrmAddr) {
if (strAddr.length() == 0) {
memset(xfrmAddr, 0, sizeof(*xfrmAddr));
return AF_UNSPEC;
}
if (inet_pton(AF_INET6, strAddr.c_str(), reinterpret_cast<void*>(xfrmAddr))) {
return AF_INET6;
} else if (inet_pton(AF_INET, strAddr.c_str(), reinterpret_cast<void*>(xfrmAddr))) {
return AF_INET;
} else {
return netdutils::statusFromErrno(EAFNOSUPPORT, "Invalid address family");
}
}
void fillXfrmNlaHdr(nlattr* hdr, uint16_t type, uint16_t len) {
hdr->nla_type = type;
hdr->nla_len = len;
}
void fillXfrmCurLifetimeDefaults(xfrm_lifetime_cur* cur) {
memset(reinterpret_cast<char*>(cur), 0, sizeof(*cur));
}
void fillXfrmLifetimeDefaults(xfrm_lifetime_cfg* cfg) {
cfg->soft_byte_limit = XFRM_INF;
cfg->hard_byte_limit = XFRM_INF;
cfg->soft_packet_limit = XFRM_INF;
cfg->hard_packet_limit = XFRM_INF;
}
/*
* Allocate SPIs within an (inclusive) range of min-max.
* returns 0 (INVALID_SPI) once the entire range has been parsed.
*/
class RandomSpi {
public:
RandomSpi(int min, int max) : mMin(min) {
// Re-seeding should be safe because the seed itself is
// sufficiently random and we don't need secure random
std::mt19937 rnd = std::mt19937(std::random_device()());
mNext = std::uniform_int_distribution<>(1, INT_MAX)(rnd);
mSize = max - min + 1;
mCount = mSize;
}
uint32_t next() {
if (!mCount)
return 0;
mCount--;
return (mNext++ % mSize) + mMin;
}
private:
uint32_t mNext;
uint32_t mSize;
uint32_t mMin;
uint32_t mCount;
};
} // namespace
//
// Begin XfrmController Impl
//
//
XfrmController::XfrmController(void) {}
// Test-only constructor allowing override of XFRM Interface support checks
XfrmController::XfrmController(bool xfrmIntfSupport) {
mIsXfrmIntfSupported = xfrmIntfSupport;
}
netdutils::Status XfrmController::Init() {
RETURN_IF_NOT_OK(flushInterfaces());
mIsXfrmIntfSupported = isXfrmIntfSupported();
XfrmSocketImpl sock;
RETURN_IF_NOT_OK(sock.open());
RETURN_IF_NOT_OK(flushSaDb(sock));
return flushPolicyDb(sock);
}
netdutils::Status XfrmController::flushInterfaces() {
const auto& ifaces = getIfaceNames();
RETURN_IF_NOT_OK(ifaces);
const String8 ifPrefix8 = String8(INetd::IPSEC_INTERFACE_PREFIX().string());
for (const std::string& iface : ifaces.value()) {
netdutils::Status status;
// Look for the reserved interface prefix, which must be in the name at position 0
if (android::base::StartsWith(iface.c_str(), ifPrefix8.c_str())) {
RETURN_IF_NOT_OK(ipSecRemoveTunnelInterface(iface));
}
}
return netdutils::status::ok;
}
netdutils::Status XfrmController::flushSaDb(const XfrmSocket& s) {
struct xfrm_usersa_flush flushUserSa = {.proto = IPSEC_PROTO_ANY};
std::vector<iovec> iov = {{nullptr, 0}, // reserved for the eventual addition of a NLMSG_HDR
{&flushUserSa, sizeof(flushUserSa)}, // xfrm_usersa_flush structure
{kPadBytes, NLMSG_ALIGN(sizeof(flushUserSa)) - sizeof(flushUserSa)}};
return s.sendMessage(XFRM_MSG_FLUSHSA, NETLINK_REQUEST_FLAGS, 0, &iov);
}
netdutils::Status XfrmController::flushPolicyDb(const XfrmSocket& s) {
std::vector<iovec> iov = {{nullptr, 0}}; // reserved for the eventual addition of a NLMSG_HDR
return s.sendMessage(XFRM_MSG_FLUSHPOLICY, NETLINK_REQUEST_FLAGS, 0, &iov);
}
bool XfrmController::isXfrmIntfSupported() {
const char* IPSEC_TEST_INTF_NAME = "ipsec_test";
const int32_t XFRM_TEST_IF_ID = 0xFFFF;
bool errored = false;
errored |=
ipSecAddXfrmInterface(IPSEC_TEST_INTF_NAME, XFRM_TEST_IF_ID, NETLINK_ROUTE_CREATE_FLAGS)
.code();
errored |= ipSecRemoveTunnelInterface(IPSEC_TEST_INTF_NAME).code();
return !errored;
}
netdutils::Status XfrmController::ipSecSetEncapSocketOwner(int socketFd, int newUid,
uid_t callerUid) {
ALOGD("XfrmController:%s, line=%d", __FUNCTION__, __LINE__);
const int fd = socketFd;
struct stat info;
if (fstat(fd, &info)) {
return netdutils::statusFromErrno(errno, "Failed to stat socket file descriptor");
}
if (info.st_uid != callerUid) {
return netdutils::statusFromErrno(EPERM, "fchown disabled for non-owner calls");
}
if (S_ISSOCK(info.st_mode) == 0) {
return netdutils::statusFromErrno(EINVAL, "File descriptor was not a socket");
}
int optval;
socklen_t optlen = sizeof(optval);
netdutils::Status status =
getSyscallInstance().getsockopt(Fd(fd), IPPROTO_UDP, UDP_ENCAP, &optval, &optlen);
if (status != netdutils::status::ok) {
return status;
}
if (optval != UDP_ENCAP_ESPINUDP && optval != UDP_ENCAP_ESPINUDP_NON_IKE) {
return netdutils::statusFromErrno(EINVAL, "Socket did not have UDP-encap sockopt set");
}
if (fchown(fd, newUid, -1)) {
return netdutils::statusFromErrno(errno, "Failed to fchown socket file descriptor");
}
return netdutils::status::ok;
}
netdutils::Status XfrmController::ipSecAllocateSpi(int32_t transformId,
const std::string& sourceAddress,
const std::string& destinationAddress,
int32_t inSpi, int32_t* outSpi) {
ALOGD("XfrmController:%s, line=%d", __FUNCTION__, __LINE__);
ALOGD("transformId=%d", transformId);
ALOGD("sourceAddress=%s", sourceAddress.c_str());
ALOGD("destinationAddress=%s", destinationAddress.c_str());
ALOGD("inSpi=%0.8x", inSpi);
XfrmSaInfo saInfo{};
netdutils::Status ret = fillXfrmCommonInfo(sourceAddress, destinationAddress, INVALID_SPI, 0, 0,
transformId, 0, &saInfo);
if (!isOk(ret)) {
return ret;
}
XfrmSocketImpl sock;
netdutils::Status socketStatus = sock.open();
if (!isOk(socketStatus)) {
ALOGD("Sock open failed for XFRM, line=%d", __LINE__);
return socketStatus;
}
int minSpi = RAND_SPI_MIN, maxSpi = RAND_SPI_MAX;
if (inSpi)
minSpi = maxSpi = inSpi;
ret = allocateSpi(saInfo, minSpi, maxSpi, reinterpret_cast<uint32_t*>(outSpi), sock);
if (!isOk(ret)) {
// TODO: May want to return a new Status with a modified status string
ALOGD("Failed to Allocate an SPI, line=%d", __LINE__);
*outSpi = INVALID_SPI;
}
return ret;
}
netdutils::Status XfrmController::ipSecAddSecurityAssociation(
int32_t transformId, int32_t mode, const std::string& sourceAddress,
const std::string& destinationAddress, int32_t underlyingNetId, int32_t spi,
int32_t markValue, int32_t markMask, const std::string& authAlgo,
const std::vector<uint8_t>& authKey, int32_t authTruncBits, const std::string& cryptAlgo,
const std::vector<uint8_t>& cryptKey, int32_t cryptTruncBits, const std::string& aeadAlgo,
const std::vector<uint8_t>& aeadKey, int32_t aeadIcvBits, int32_t encapType,
int32_t encapLocalPort, int32_t encapRemotePort, int32_t xfrmInterfaceId) {
ALOGD("XfrmController::%s, line=%d", __FUNCTION__, __LINE__);
ALOGD("transformId=%d", transformId);
ALOGD("mode=%d", mode);
ALOGD("sourceAddress=%s", sourceAddress.c_str());
ALOGD("destinationAddress=%s", destinationAddress.c_str());
ALOGD("underlyingNetworkId=%d", underlyingNetId);
ALOGD("spi=%0.8x", spi);
ALOGD("markValue=%x", markValue);
ALOGD("markMask=%x", markMask);
ALOGD("authAlgo=%s", authAlgo.c_str());
ALOGD("authTruncBits=%d", authTruncBits);
ALOGD("cryptAlgo=%s", cryptAlgo.c_str());
ALOGD("cryptTruncBits=%d,", cryptTruncBits);
ALOGD("aeadAlgo=%s", aeadAlgo.c_str());
ALOGD("aeadIcvBits=%d,", aeadIcvBits);
ALOGD("encapType=%d", encapType);
ALOGD("encapLocalPort=%d", encapLocalPort);
ALOGD("encapRemotePort=%d", encapRemotePort);
ALOGD("xfrmInterfaceId=%d", xfrmInterfaceId);
XfrmSaInfo saInfo{};
netdutils::Status ret = fillXfrmCommonInfo(sourceAddress, destinationAddress, spi, markValue,
markMask, transformId, xfrmInterfaceId, &saInfo);
if (!isOk(ret)) {
return ret;
}
saInfo.auth = XfrmAlgo{
.name = authAlgo, .key = authKey, .truncLenBits = static_cast<uint16_t>(authTruncBits)};
saInfo.crypt = XfrmAlgo{
.name = cryptAlgo, .key = cryptKey, .truncLenBits = static_cast<uint16_t>(cryptTruncBits)};
saInfo.aead = XfrmAlgo{
.name = aeadAlgo, .key = aeadKey, .truncLenBits = static_cast<uint16_t>(aeadIcvBits)};
switch (static_cast<XfrmMode>(mode)) {
case XfrmMode::TRANSPORT:
case XfrmMode::TUNNEL:
saInfo.mode = static_cast<XfrmMode>(mode);
break;
default:
return netdutils::statusFromErrno(EINVAL, "Invalid xfrm mode");
}
XfrmSocketImpl sock;
netdutils::Status socketStatus = sock.open();
if (!isOk(socketStatus)) {
ALOGD("Sock open failed for XFRM, line=%d", __LINE__);
return socketStatus;
}
switch (static_cast<XfrmEncapType>(encapType)) {
case XfrmEncapType::ESPINUDP:
case XfrmEncapType::ESPINUDP_NON_IKE:
if (saInfo.addrFamily != AF_INET) {
return netdutils::statusFromErrno(EAFNOSUPPORT, "IPv6 encap not supported");
}
// The ports are not used on input SAs, so this is OK to be wrong when
// direction is ultimately input.
saInfo.encap.srcPort = encapLocalPort;
saInfo.encap.dstPort = encapRemotePort;
[[fallthrough]];
case XfrmEncapType::NONE:
saInfo.encap.type = static_cast<XfrmEncapType>(encapType);
break;
default:
return netdutils::statusFromErrno(EINVAL, "Invalid encap type");
}
saInfo.netId = underlyingNetId;
ret = updateSecurityAssociation(saInfo, sock);
if (!isOk(ret)) {
ALOGD("Failed updating a Security Association, line=%d", __LINE__);
}
return ret;
}
netdutils::Status XfrmController::ipSecDeleteSecurityAssociation(
int32_t transformId, const std::string& sourceAddress,
const std::string& destinationAddress, int32_t spi, int32_t markValue, int32_t markMask,
int32_t xfrmInterfaceId) {
ALOGD("XfrmController:%s, line=%d", __FUNCTION__, __LINE__);
ALOGD("transformId=%d", transformId);
ALOGD("sourceAddress=%s", sourceAddress.c_str());
ALOGD("destinationAddress=%s", destinationAddress.c_str());
ALOGD("spi=%0.8x", spi);
ALOGD("markValue=%x", markValue);
ALOGD("markMask=%x", markMask);
ALOGD("xfrmInterfaceId=%d", xfrmInterfaceId);
XfrmSaInfo saInfo{};
netdutils::Status ret = fillXfrmCommonInfo(sourceAddress, destinationAddress, spi, markValue,
markMask, transformId, xfrmInterfaceId, &saInfo);
if (!isOk(ret)) {
return ret;
}
XfrmSocketImpl sock;
netdutils::Status socketStatus = sock.open();
if (!isOk(socketStatus)) {
ALOGD("Sock open failed for XFRM, line=%d", __LINE__);
return socketStatus;
}
ret = deleteSecurityAssociation(saInfo, sock);
if (!isOk(ret)) {
ALOGD("Failed to delete Security Association, line=%d", __LINE__);
}
return ret;
}
netdutils::Status XfrmController::ipSecMigrate(int32_t transformId, int32_t selAddrFamily,
int32_t direction,
const std::string& oldSourceAddress,
const std::string& oldDestinationAddress,
const std::string& newSourceAddress,
const std::string& newDestinationAddress,
int32_t xfrmInterfaceId) {
ALOGD("XfrmController:%s, line=%d", __FUNCTION__, __LINE__);
ALOGD("transformId=%d", transformId);
ALOGD("selAddrFamily=%d", selAddrFamily);
ALOGD("direction=%d", direction);
ALOGD("oldSourceAddress=%s", oldSourceAddress.c_str());
ALOGD("oldDestinationAddress=%s", oldDestinationAddress.c_str());
ALOGD("newSourceAddress=%s", newSourceAddress.c_str());
ALOGD("newDestinationAddress=%s", newDestinationAddress.c_str());
ALOGD("xfrmInterfaceId=%d", xfrmInterfaceId);
XfrmSocketImpl sock;
Status socketStatus = sock.open();
if (!socketStatus.ok()) {
ALOGD("Sock open failed for XFRM, line=%d", __LINE__);
return socketStatus;
}
XfrmMigrateInfo migrateInfo{};
Status ret =
fillXfrmCommonInfo(oldSourceAddress, oldDestinationAddress, 0 /* spi */, 0 /* mark */,
0 /* markMask */, transformId, xfrmInterfaceId, &migrateInfo);
if (!ret.ok()) {
ALOGD("Failed to fill in XfrmCommonInfo, line=%d", __LINE__);
return ret;
}
migrateInfo.selAddrFamily = selAddrFamily;
migrateInfo.direction = static_cast<XfrmDirection>(direction);
ret = fillXfrmEndpointPair(newSourceAddress, newDestinationAddress,
&migrateInfo.newEndpointInfo);
if (!ret.ok()) {
ALOGD("Failed to fill in XfrmEndpointPair, line=%d", __LINE__);
return ret;
}
ret = migrate(migrateInfo, sock);
if (!ret.ok()) {
ALOGD("Failed to migrate Security Association, line=%d", __LINE__);
}
return ret;
}
netdutils::Status XfrmController::fillXfrmEndpointPair(const std::string& sourceAddress,
const std::string& destinationAddress,
XfrmEndpointPair* endpointPair) {
// Use the addresses to determine the address family and do validation
xfrm_address_t sourceXfrmAddr{}, destXfrmAddr{};
StatusOr<int> sourceFamily, destFamily;
sourceFamily = convertToXfrmAddr(sourceAddress, &sourceXfrmAddr);
destFamily = convertToXfrmAddr(destinationAddress, &destXfrmAddr);
if (!isOk(sourceFamily) || !isOk(destFamily)) {
return netdutils::statusFromErrno(
EINVAL, "Invalid address " + sourceAddress + "/" + destinationAddress);
}
if (destFamily.value() == AF_UNSPEC ||
(sourceFamily.value() != AF_UNSPEC && sourceFamily.value() != destFamily.value())) {
ALOGD("Invalid or Mismatched Address Families, %d != %d, line=%d", sourceFamily.value(),
destFamily.value(), __LINE__);
return netdutils::statusFromErrno(EINVAL, "Invalid or mismatched address families");
}
endpointPair->addrFamily = destFamily.value();
endpointPair->dstAddr = destXfrmAddr;
endpointPair->srcAddr = sourceXfrmAddr;
return netdutils::status::ok;
}
netdutils::Status XfrmController::fillXfrmCommonInfo(const std::string& sourceAddress,
const std::string& destinationAddress,
int32_t spi, int32_t markValue,
int32_t markMask, int32_t transformId,
int32_t xfrmInterfaceId,
XfrmCommonInfo* info) {
Status ret = fillXfrmEndpointPair(sourceAddress, destinationAddress, info);
if (!isOk(ret)) {
return ret;
}
return fillXfrmCommonInfo(spi, markValue, markMask, transformId, xfrmInterfaceId, info);
}
netdutils::Status XfrmController::fillXfrmCommonInfo(int32_t spi, int32_t markValue,
int32_t markMask, int32_t transformId,
int32_t xfrmInterfaceId,
XfrmCommonInfo* info) {
info->transformId = transformId;
info->spi = htonl(spi);
if (mIsXfrmIntfSupported) {
info->xfrm_if_id = xfrmInterfaceId;
} else {
info->mark.v = markValue;
info->mark.m = markMask;
}
return netdutils::status::ok;
}
netdutils::Status XfrmController::ipSecApplyTransportModeTransform(
int socketFd, int32_t transformId, int32_t direction, const std::string& sourceAddress,
const std::string& destinationAddress, int32_t spi) {
ALOGD("XfrmController::%s, line=%d", __FUNCTION__, __LINE__);
ALOGD("transformId=%d", transformId);
ALOGD("direction=%d", direction);
ALOGD("sourceAddress=%s", sourceAddress.c_str());
ALOGD("destinationAddress=%s", destinationAddress.c_str());
ALOGD("spi=%0.8x", spi);
StatusOr<sockaddr_storage> ret =
getSyscallInstance().getsockname<sockaddr_storage>(Fd(socketFd));
if (!isOk(ret)) {
ALOGE("Failed to get socket info in %s", __FUNCTION__);
return ret;
}
struct sockaddr_storage saddr = ret.value();
XfrmSpInfo spInfo{};
netdutils::Status status = fillXfrmCommonInfo(sourceAddress, destinationAddress, spi, 0, 0,
transformId, 0, &spInfo);
if (!isOk(status)) {
ALOGE("Couldn't build SA ID %s", __FUNCTION__);
return status;
}
spInfo.selAddrFamily = spInfo.addrFamily;
spInfo.direction = static_cast<XfrmDirection>(direction);
// Allow dual stack sockets. Dual stack sockets are guaranteed to never have an AF_INET source
// address; the source address would instead be an IPv4-mapped address. Thus, disallow AF_INET
// sockets with mismatched address families (All other cases are acceptable).
if (saddr.ss_family == AF_INET && spInfo.addrFamily != AF_INET) {
ALOGE("IPV4 socket address family(%d) should match IPV4 Transform "
"address family(%d)!",
saddr.ss_family, spInfo.addrFamily);
return netdutils::statusFromErrno(EINVAL, "Mismatched address family");
}
struct {
xfrm_userpolicy_info info;
xfrm_user_tmpl tmpl;
} policy{};
fillUserSpInfo(spInfo, &policy.info);
fillUserTemplate(spInfo, &policy.tmpl);
LOG_HEX("XfrmUserPolicy", reinterpret_cast<char*>(&policy), sizeof(policy));
int sockOpt, sockLayer;
switch (saddr.ss_family) {
case AF_INET:
sockOpt = IP_XFRM_POLICY;
sockLayer = SOL_IP;
break;
case AF_INET6:
sockOpt = IPV6_XFRM_POLICY;
sockLayer = SOL_IPV6;
break;
default:
return netdutils::statusFromErrno(EAFNOSUPPORT, "Invalid address family");
}
status = getSyscallInstance().setsockopt(Fd(socketFd), sockLayer, sockOpt, policy);
if (!isOk(status)) {
ALOGE("Error setting socket option for XFRM! (%s)", toString(status).c_str());
}
return status;
}
netdutils::Status XfrmController::ipSecRemoveTransportModeTransform(int socketFd) {
ALOGD("XfrmController::%s, line=%d", __FUNCTION__, __LINE__);
StatusOr<sockaddr_storage> ret =
getSyscallInstance().getsockname<sockaddr_storage>(Fd(socketFd));
if (!isOk(ret)) {
ALOGE("Failed to get socket info in %s! (%s)", __FUNCTION__, toString(ret).c_str());
return ret;
}
int sockOpt, sockLayer;
switch (ret.value().ss_family) {
case AF_INET:
sockOpt = IP_XFRM_POLICY;
sockLayer = SOL_IP;
break;
case AF_INET6:
sockOpt = IPV6_XFRM_POLICY;
sockLayer = SOL_IPV6;
break;
default:
return netdutils::statusFromErrno(EAFNOSUPPORT, "Invalid address family");
}
// Kernel will delete the security policy on this socket for both direction
// if optval is set to NULL and optlen is set to 0.
netdutils::Status status =
getSyscallInstance().setsockopt(Fd(socketFd), sockLayer, sockOpt, nullptr, 0);
if (!isOk(status)) {
ALOGE("Error removing socket option for XFRM! (%s)", toString(status).c_str());
}
return status;
}
netdutils::Status XfrmController::ipSecAddSecurityPolicy(
int32_t transformId, int32_t selAddrFamily, int32_t direction,
const std::string& tmplSrcAddress, const std::string& tmplDstAddress, int32_t spi,
int32_t markValue, int32_t markMask, int32_t xfrmInterfaceId) {
return processSecurityPolicy(transformId, selAddrFamily, direction, tmplSrcAddress,
tmplDstAddress, spi, markValue, markMask, xfrmInterfaceId,
XFRM_MSG_NEWPOLICY);
}
netdutils::Status XfrmController::ipSecUpdateSecurityPolicy(
int32_t transformId, int32_t selAddrFamily, int32_t direction,
const std::string& tmplSrcAddress, const std::string& tmplDstAddress, int32_t spi,
int32_t markValue, int32_t markMask, int32_t xfrmInterfaceId) {
return processSecurityPolicy(transformId, selAddrFamily, direction, tmplSrcAddress,
tmplDstAddress, spi, markValue, markMask, xfrmInterfaceId,
XFRM_MSG_UPDPOLICY);
}
netdutils::Status XfrmController::ipSecDeleteSecurityPolicy(int32_t transformId,
int32_t selAddrFamily,
int32_t direction, int32_t markValue,
int32_t markMask,
int32_t xfrmInterfaceId) {
return processSecurityPolicy(transformId, selAddrFamily, direction, "", "", 0, markValue,
markMask, xfrmInterfaceId, XFRM_MSG_DELPOLICY);
}
netdutils::Status XfrmController::processSecurityPolicy(
int32_t transformId, int32_t selAddrFamily, int32_t direction,
const std::string& tmplSrcAddress, const std::string& tmplDstAddress, int32_t spi,
int32_t markValue, int32_t markMask, int32_t xfrmInterfaceId, int32_t msgType) {
ALOGD("XfrmController::%s, line=%d", __FUNCTION__, __LINE__);
ALOGD("selAddrFamily=%s", selAddrFamily == AF_INET6 ? "AF_INET6" : "AF_INET");
ALOGD("transformId=%d", transformId);
ALOGD("direction=%d", direction);
ALOGD("tmplSrcAddress=%s", tmplSrcAddress.c_str());
ALOGD("tmplDstAddress=%s", tmplDstAddress.c_str());
ALOGD("spi=%0.8x", spi);
ALOGD("markValue=%d", markValue);
ALOGD("markMask=%d", markMask);
ALOGD("msgType=%d", msgType);
ALOGD("xfrmInterfaceId=%d", xfrmInterfaceId);
XfrmSpInfo spInfo{};
spInfo.mode = XfrmMode::TUNNEL;
XfrmSocketImpl sock;
RETURN_IF_NOT_OK(sock.open());
// Set the correct address families. Tunnel mode policies use wildcard selectors, while
// templates have addresses set. These may be different address families. This method is called
// separately for IPv4 and IPv6 policies, and thus only need to map a single inner address
// family to the outer address families.
spInfo.selAddrFamily = selAddrFamily;
spInfo.direction = static_cast<XfrmDirection>(direction);
if (msgType == XFRM_MSG_DELPOLICY) {
RETURN_IF_NOT_OK(fillXfrmCommonInfo(spi, markValue, markMask, transformId, xfrmInterfaceId,
&spInfo));
return deleteTunnelModeSecurityPolicy(spInfo, sock);
} else {
RETURN_IF_NOT_OK(fillXfrmCommonInfo(tmplSrcAddress, tmplDstAddress, spi, markValue,
markMask, transformId, xfrmInterfaceId, &spInfo));
return updateTunnelModeSecurityPolicy(spInfo, sock, msgType);
}
}
void XfrmController::fillXfrmSelector(const int selAddrFamily, xfrm_selector* selector) {
selector->family = selAddrFamily;
selector->proto = AF_UNSPEC; // TODO: do we need to match the protocol? it's
// possible via the socket
}
netdutils::Status XfrmController::updateSecurityAssociation(const XfrmSaInfo& record,
const XfrmSocket& sock) {
xfrm_usersa_info usersa{};
nlattr_algo_crypt crypt{};
nlattr_algo_auth auth{};
nlattr_algo_aead aead{};
nlattr_xfrm_mark xfrmmark{};
nlattr_xfrm_output_mark xfrmoutputmark{};
nlattr_encap_tmpl encap{};
nlattr_xfrm_interface_id xfrm_if_id{};
enum {
NLMSG_HDR,
USERSA,
USERSA_PAD,
CRYPT,
CRYPT_PAD,
AUTH,
AUTH_PAD,
AEAD,
AEAD_PAD,
MARK,
MARK_PAD,
OUTPUT_MARK,
OUTPUT_MARK_PAD,
ENCAP,
ENCAP_PAD,
INTF_ID,
INTF_ID_PAD,
};
std::vector<iovec> iov = {
{nullptr, 0}, // reserved for the eventual addition of a NLMSG_HDR
{&usersa, 0}, // main usersa_info struct
{kPadBytes, 0}, // up to NLMSG_ALIGNTO pad bytes of padding
{&crypt, 0}, // adjust size if crypt algo is present
{kPadBytes, 0}, // up to NLATTR_ALIGNTO pad bytes
{&auth, 0}, // adjust size if auth algo is present
{kPadBytes, 0}, // up to NLATTR_ALIGNTO pad bytes
{&aead, 0}, // adjust size if aead algo is present
{kPadBytes, 0}, // up to NLATTR_ALIGNTO pad bytes
{&xfrmmark, 0}, // adjust size if xfrm mark is present
{kPadBytes, 0}, // up to NLATTR_ALIGNTO pad bytes
{&xfrmoutputmark, 0}, // adjust size if xfrm output mark is present
{kPadBytes, 0}, // up to NLATTR_ALIGNTO pad bytes
{&encap, 0}, // adjust size if encapsulating
{kPadBytes, 0}, // up to NLATTR_ALIGNTO pad bytes
{&xfrm_if_id, 0}, // adjust size if interface ID is present
{kPadBytes, 0}, // up to NLATTR_ALIGNTO pad bytes
};
if (!record.aead.name.empty() && (!record.auth.name.empty() || !record.crypt.name.empty())) {
return netdutils::statusFromErrno(EINVAL, "Invalid xfrm algo selection; AEAD is mutually "
"exclusive with both Authentication and "
"Encryption");
}
if (record.aead.key.size() > MAX_KEY_LENGTH || record.auth.key.size() > MAX_KEY_LENGTH ||
record.crypt.key.size() > MAX_KEY_LENGTH) {
return netdutils::statusFromErrno(EINVAL, "Key length invalid; exceeds MAX_KEY_LENGTH");
}
if (record.mode != XfrmMode::TUNNEL &&
(record.xfrm_if_id != 0 || record.netId != 0 || record.mark.v != 0 || record.mark.m != 0)) {
return netdutils::statusFromErrno(EINVAL,
"xfrm_if_id, mark and netid parameters invalid "
"for non tunnel-mode transform");
} else if (record.mode == XfrmMode::TUNNEL && !mIsXfrmIntfSupported && record.xfrm_if_id != 0) {
return netdutils::statusFromErrno(EINVAL, "xfrm_if_id set for VTI Security Association");
}
int len;
len = iov[USERSA].iov_len = fillUserSaInfo(record, &usersa);
iov[USERSA_PAD].iov_len = NLMSG_ALIGN(len) - len;
len = iov[CRYPT].iov_len = fillNlAttrXfrmAlgoEnc(record.crypt, &crypt);
iov[CRYPT_PAD].iov_len = NLA_ALIGN(len) - len;
len = iov[AUTH].iov_len = fillNlAttrXfrmAlgoAuth(record.auth, &auth);
iov[AUTH_PAD].iov_len = NLA_ALIGN(len) - len;
len = iov[AEAD].iov_len = fillNlAttrXfrmAlgoAead(record.aead, &aead);
iov[AEAD_PAD].iov_len = NLA_ALIGN(len) - len;
len = iov[MARK].iov_len = fillNlAttrXfrmMark(record, &xfrmmark);
iov[MARK_PAD].iov_len = NLA_ALIGN(len) - len;
len = iov[OUTPUT_MARK].iov_len = fillNlAttrXfrmOutputMark(record, &xfrmoutputmark);
iov[OUTPUT_MARK_PAD].iov_len = NLA_ALIGN(len) - len;
len = iov[ENCAP].iov_len = fillNlAttrXfrmEncapTmpl(record, &encap);
iov[ENCAP_PAD].iov_len = NLA_ALIGN(len) - len;
len = iov[INTF_ID].iov_len = fillNlAttrXfrmIntfId(record.xfrm_if_id, &xfrm_if_id);
iov[INTF_ID_PAD].iov_len = NLA_ALIGN(len) - len;
return sock.sendMessage(XFRM_MSG_UPDSA, NETLINK_REQUEST_FLAGS, 0, &iov);
}
int XfrmController::fillNlAttrXfrmAlgoEnc(const XfrmAlgo& inAlgo, nlattr_algo_crypt* algo) {
if (inAlgo.name.empty()) { // Do not fill anything if algorithm not provided
return 0;
}
int len = NLA_HDRLEN + sizeof(xfrm_algo);
// Kernel always changes last char to null terminator; no safety checks needed.
strncpy(algo->crypt.alg_name, inAlgo.name.c_str(), sizeof(algo->crypt.alg_name));
algo->crypt.alg_key_len = inAlgo.key.size() * 8; // bits
memcpy(algo->key, &inAlgo.key[0], inAlgo.key.size());
len += inAlgo.key.size();
fillXfrmNlaHdr(&algo->hdr, XFRMA_ALG_CRYPT, len);
return len;
}
int XfrmController::fillNlAttrXfrmAlgoAuth(const XfrmAlgo& inAlgo, nlattr_algo_auth* algo) {
if (inAlgo.name.empty()) { // Do not fill anything if algorithm not provided
return 0;
}
int len = NLA_HDRLEN + sizeof(xfrm_algo_auth);
// Kernel always changes last char to null terminator; no safety checks needed.
strncpy(algo->auth.alg_name, inAlgo.name.c_str(), sizeof(algo->auth.alg_name));
algo->auth.alg_key_len = inAlgo.key.size() * 8; // bits
// This is the extra field for ALG_AUTH_TRUNC
algo->auth.alg_trunc_len = inAlgo.truncLenBits;
memcpy(algo->key, &inAlgo.key[0], inAlgo.key.size());
len += inAlgo.key.size();
fillXfrmNlaHdr(&algo->hdr, XFRMA_ALG_AUTH_TRUNC, len);
return len;
}
int XfrmController::fillNlAttrXfrmAlgoAead(const XfrmAlgo& inAlgo, nlattr_algo_aead* algo) {
if (inAlgo.name.empty()) { // Do not fill anything if algorithm not provided
return 0;
}
int len = NLA_HDRLEN + sizeof(xfrm_algo_aead);
// Kernel always changes last char to null terminator; no safety checks needed.
strncpy(algo->aead.alg_name, inAlgo.name.c_str(), sizeof(algo->aead.alg_name));
algo->aead.alg_key_len = inAlgo.key.size() * 8; // bits
// This is the extra field for ALG_AEAD. ICV length is the same as truncation length
// for any AEAD algorithm.
algo->aead.alg_icv_len = inAlgo.truncLenBits;
memcpy(algo->key, &inAlgo.key[0], inAlgo.key.size());
len += inAlgo.key.size();
fillXfrmNlaHdr(&algo->hdr, XFRMA_ALG_AEAD, len);
return len;
}
int XfrmController::fillNlAttrXfrmEncapTmpl(const XfrmSaInfo& record, nlattr_encap_tmpl* tmpl) {
if (record.encap.type == XfrmEncapType::NONE) {
return 0;
}
int len = NLA_HDRLEN + sizeof(xfrm_encap_tmpl);
tmpl->tmpl.encap_type = static_cast<uint16_t>(record.encap.type);
tmpl->tmpl.encap_sport = htons(record.encap.srcPort);
tmpl->tmpl.encap_dport = htons(record.encap.dstPort);
fillXfrmNlaHdr(&tmpl->hdr, XFRMA_ENCAP, len);
return len;
}
int XfrmController::fillUserSaInfo(const XfrmSaInfo& record, xfrm_usersa_info* usersa) {
// Use AF_UNSPEC for all SAs. In transport mode, kernel picks selector family based on
// usersa->family, while in tunnel mode, the XFRM_STATE_AF_UNSPEC flag allows dual-stack SAs.
fillXfrmSelector(AF_UNSPEC, &usersa->sel);
usersa->id.proto = IPPROTO_ESP;
usersa->id.spi = record.spi;
usersa->id.daddr = record.dstAddr;
usersa->saddr = record.srcAddr;
fillXfrmLifetimeDefaults(&usersa->lft);
fillXfrmCurLifetimeDefaults(&usersa->curlft);
memset(&usersa->stats, 0, sizeof(usersa->stats)); // leave stats zeroed out
usersa->reqid = record.transformId;
usersa->family = record.addrFamily;
usersa->mode = static_cast<uint8_t>(record.mode);
usersa->replay_window = REPLAY_WINDOW_SIZE;
if (record.mode == XfrmMode::TRANSPORT) {
usersa->flags = 0; // TODO: should we actually set flags, XFRM_SA_XFLAG_DONT_ENCAP_DSCP?
} else {
usersa->flags = XFRM_STATE_AF_UNSPEC;
}
return sizeof(*usersa);
}
int XfrmController::fillUserSaId(const XfrmCommonInfo& record, xfrm_usersa_id* said) {
said->daddr = record.dstAddr;
said->spi = record.spi;
said->family = record.addrFamily;
said->proto = IPPROTO_ESP;
return sizeof(*said);
}
netdutils::Status XfrmController::deleteSecurityAssociation(const XfrmCommonInfo& record,
const XfrmSocket& sock) {
xfrm_usersa_id said{};
nlattr_xfrm_mark xfrmmark{};
nlattr_xfrm_interface_id xfrm_if_id{};
enum { NLMSG_HDR, USERSAID, USERSAID_PAD, MARK, MARK_PAD, INTF_ID, INTF_ID_PAD };
std::vector<iovec> iov = {
{nullptr, 0}, // reserved for the eventual addition of a NLMSG_HDR
{&said, 0}, // main usersa_info struct
{kPadBytes, 0}, // up to NLMSG_ALIGNTO pad bytes of padding
{&xfrmmark, 0}, // adjust size if xfrm mark is present
{kPadBytes, 0}, // up to NLATTR_ALIGNTO pad bytes
{&xfrm_if_id, 0}, // adjust size if interface ID is present
{kPadBytes, 0}, // up to NLATTR_ALIGNTO pad bytes
};
int len;
len = iov[USERSAID].iov_len = fillUserSaId(record, &said);
iov[USERSAID_PAD].iov_len = NLMSG_ALIGN(len) - len;
len = iov[MARK].iov_len = fillNlAttrXfrmMark(record, &xfrmmark);
iov[MARK_PAD].iov_len = NLA_ALIGN(len) - len;
len = iov[INTF_ID].iov_len = fillNlAttrXfrmIntfId(record.xfrm_if_id, &xfrm_if_id);
iov[INTF_ID_PAD].iov_len = NLA_ALIGN(len) - len;
return sock.sendMessage(XFRM_MSG_DELSA, NETLINK_REQUEST_FLAGS, 0, &iov);
}
netdutils::Status XfrmController::migrate(const XfrmMigrateInfo& record, const XfrmSocket& sock) {
xfrm_userpolicy_id xfrm_policyid{};
nlattr_xfrm_user_migrate xfrm_migrate{};
__kernel_size_t lenPolicyId = fillUserPolicyId(record, &xfrm_policyid);
__kernel_size_t lenXfrmMigrate = fillNlAttrXfrmMigrate(record, &xfrm_migrate);
std::vector<iovec> iov = {
{nullptr, 0}, // reserved for the eventual addition of a NLMSG_HDR
{&xfrm_policyid, lenPolicyId},
{kPadBytes, NLMSG_ALIGN(lenPolicyId) - lenPolicyId},
{&xfrm_migrate, lenXfrmMigrate},
{kPadBytes, NLMSG_ALIGN(lenXfrmMigrate) - lenXfrmMigrate},
};
return sock.sendMessage(XFRM_MSG_MIGRATE, NETLINK_REQUEST_FLAGS, 0, &iov);
}
netdutils::Status XfrmController::allocateSpi(const XfrmSaInfo& record, uint32_t minSpi,
uint32_t maxSpi, uint32_t* outSpi,
const XfrmSocket& sock) {
xfrm_userspi_info spiInfo{};
enum { NLMSG_HDR, USERSAID, USERSAID_PAD };
std::vector<iovec> iov = {
{nullptr, 0}, // reserved for the eventual addition of a NLMSG_HDR
{&spiInfo, 0}, // main userspi_info struct
{kPadBytes, 0}, // up to NLMSG_ALIGNTO pad bytes of padding
};
int len;
if (fillUserSaInfo(record, &spiInfo.info) == 0) {
ALOGE("Failed to fill transport SA Info");
}
len = iov[USERSAID].iov_len = sizeof(spiInfo);
iov[USERSAID_PAD].iov_len = NLMSG_ALIGN(len) - len;
RandomSpi spiGen = RandomSpi(minSpi, maxSpi);
int spi;
netdutils::Status ret;
while ((spi = spiGen.next()) != INVALID_SPI) {
spiInfo.min = spi;
spiInfo.max = spi;
ret = sock.sendMessage(XFRM_MSG_ALLOCSPI, NETLINK_REQUEST_FLAGS, 0, &iov);
/* If the SPI is in use, we'll get ENOENT */
if (netdutils::equalToErrno(ret, ENOENT))
continue;
if (isOk(ret)) {
*outSpi = spi;
ALOGD("Allocated an SPI: %x", *outSpi);
} else {
*outSpi = INVALID_SPI;
ALOGE("SPI Allocation Failed with error %d", ret.code());
}
return ret;
}
// Should always be -ENOENT if we get here
return ret;
}
netdutils::Status XfrmController::updateTunnelModeSecurityPolicy(const XfrmSpInfo& record,
const XfrmSocket& sock,
uint16_t msgType) {
xfrm_userpolicy_info userpolicy{};
nlattr_user_tmpl usertmpl{};
nlattr_xfrm_mark xfrmmark{};
nlattr_xfrm_interface_id xfrm_if_id{};
enum {
NLMSG_HDR,
USERPOLICY,
USERPOLICY_PAD,
USERTMPL,
USERTMPL_PAD,
MARK,
MARK_PAD,
INTF_ID,
INTF_ID_PAD,
};
std::vector<iovec> iov = {
{nullptr, 0}, // reserved for the eventual addition of a NLMSG_HDR
{&userpolicy, 0}, // main xfrm_userpolicy_info struct
{kPadBytes, 0}, // up to NLMSG_ALIGNTO pad bytes of padding
{&usertmpl, 0}, // adjust size if xfrm_user_tmpl struct is present
{kPadBytes, 0}, // up to NLATTR_ALIGNTO pad bytes
{&xfrmmark, 0}, // adjust size if xfrm mark is present
{kPadBytes, 0}, // up to NLATTR_ALIGNTO pad bytes
{&xfrm_if_id, 0}, // adjust size if interface ID is present
{kPadBytes, 0}, // up to NLATTR_ALIGNTO pad bytes
};
int len;
len = iov[USERPOLICY].iov_len = fillUserSpInfo(record, &userpolicy);
iov[USERPOLICY_PAD].iov_len = NLMSG_ALIGN(len) - len;
len = iov[USERTMPL].iov_len = fillNlAttrUserTemplate(record, &usertmpl);
iov[USERTMPL_PAD].iov_len = NLA_ALIGN(len) - len;
len = iov[MARK].iov_len = fillNlAttrXfrmMark(record, &xfrmmark);
iov[MARK_PAD].iov_len = NLA_ALIGN(len) - len;
len = iov[INTF_ID].iov_len = fillNlAttrXfrmIntfId(record.xfrm_if_id, &xfrm_if_id);
iov[INTF_ID_PAD].iov_len = NLA_ALIGN(len) - len;
return sock.sendMessage(msgType, NETLINK_REQUEST_FLAGS, 0, &iov);
}
netdutils::Status XfrmController::deleteTunnelModeSecurityPolicy(const XfrmSpInfo& record,
const XfrmSocket& sock) {
xfrm_userpolicy_id policyid{};
nlattr_xfrm_mark xfrmmark{};
nlattr_xfrm_interface_id xfrm_if_id{};
enum {
NLMSG_HDR,
USERPOLICYID,
USERPOLICYID_PAD,
MARK,
MARK_PAD,
INTF_ID,
INTF_ID_PAD,
};
std::vector<iovec> iov = {
{nullptr, 0}, // reserved for the eventual addition of a NLMSG_HDR
{&policyid, 0}, // main xfrm_userpolicy_id struct
{kPadBytes, 0}, // up to NLMSG_ALIGNTO pad bytes of padding
{&xfrmmark, 0}, // adjust size if xfrm mark is present
{kPadBytes, 0}, // up to NLATTR_ALIGNTO pad bytes
{&xfrm_if_id, 0}, // adjust size if interface ID is present
{kPadBytes, 0}, // up to NLATTR_ALIGNTO pad bytes
};
int len = iov[USERPOLICYID].iov_len = fillUserPolicyId(record, &policyid);
iov[USERPOLICYID_PAD].iov_len = NLMSG_ALIGN(len) - len;
len = iov[MARK].iov_len = fillNlAttrXfrmMark(record, &xfrmmark);
iov[MARK_PAD].iov_len = NLA_ALIGN(len) - len;
len = iov[INTF_ID].iov_len = fillNlAttrXfrmIntfId(record.xfrm_if_id, &xfrm_if_id);
iov[INTF_ID_PAD].iov_len = NLA_ALIGN(len) - len;
return sock.sendMessage(XFRM_MSG_DELPOLICY, NETLINK_REQUEST_FLAGS, 0, &iov);
}
int XfrmController::fillUserSpInfo(const XfrmSpInfo& record, xfrm_userpolicy_info* usersp) {
fillXfrmSelector(record.selAddrFamily, &usersp->sel);
fillXfrmLifetimeDefaults(&usersp->lft);
fillXfrmCurLifetimeDefaults(&usersp->curlft);
/* if (index) index & 0x3 == dir -- must be true
* xfrm_user.c:verify_newpolicy_info() */
usersp->index = 0;
usersp->dir = static_cast<uint8_t>(record.direction);
usersp->action = XFRM_POLICY_ALLOW;
usersp->flags = XFRM_POLICY_LOCALOK;
usersp->share = XFRM_SHARE_UNIQUE;
return sizeof(*usersp);
}
void XfrmController::fillUserTemplate(const XfrmSpInfo& record, xfrm_user_tmpl* tmpl) {
tmpl->id.daddr = record.dstAddr;
tmpl->id.spi = record.spi;
tmpl->id.proto = IPPROTO_ESP;
tmpl->family = record.addrFamily;
tmpl->saddr = record.srcAddr;
tmpl->reqid = record.transformId;
tmpl->mode = static_cast<uint8_t>(record.mode);
tmpl->share = XFRM_SHARE_UNIQUE;
tmpl->optional = 0; // if this is true, then a failed state lookup will be considered OK:
// http://lxr.free-electrons.com/source/net/xfrm/xfrm_policy.c#L1492
tmpl->aalgos = ALGO_MASK_AUTH_ALL; // TODO: if there's a bitmask somewhere of
// algos, we should find it and apply it.
// I can't find one.
tmpl->ealgos = ALGO_MASK_CRYPT_ALL; // TODO: if there's a bitmask somewhere...
}
int XfrmController::fillNlAttrUserTemplate(const XfrmSpInfo& record, nlattr_user_tmpl* tmpl) {
fillUserTemplate(record, &tmpl->tmpl);
int len = NLA_HDRLEN + sizeof(xfrm_user_tmpl);
fillXfrmNlaHdr(&tmpl->hdr, XFRMA_TMPL, len);
return len;
}
int XfrmController::fillNlAttrXfrmMark(const XfrmCommonInfo& record, nlattr_xfrm_mark* mark) {
// Do not set if we were not given a mark
if (record.mark.v == 0 && record.mark.m == 0) {
return 0;
}
mark->mark.v = record.mark.v; // set to 0 if it's not used
mark->mark.m = record.mark.m; // set to 0 if it's not used
int len = NLA_HDRLEN + sizeof(xfrm_mark);
fillXfrmNlaHdr(&mark->hdr, XFRMA_MARK, len);
return len;
}
// This function sets the output mark (or set-mark in newer kernels) to that of the underlying
// Network's netid. This allows outbound IPsec Tunnel mode packets to be correctly directed to a
// preselected underlying Network. Outbound packets are marked as protected from VPNs and have a
// network explicitly selected to prevent interference or routing loops. Also sets permission flag
// to PERMISSION_SYSTEM to allow use of background/restricted networks. Inbound packets have all
// the flags and fields cleared to simulate the decapsulated packet being a fresh, unseen packet.
int XfrmController::fillNlAttrXfrmOutputMark(const XfrmSaInfo& record,
nlattr_xfrm_output_mark* output_mark) {
// Only set for tunnel mode transforms
if (record.mode != XfrmMode::TUNNEL) {
return 0;
}
Fwmark fwmark;
// Only outbound transforms have an underlying network set.
if (record.netId != 0) {
fwmark.netId = record.netId;
fwmark.permission = PERMISSION_SYSTEM;
fwmark.explicitlySelected = true;
fwmark.protectedFromVpn = true;
}
// Else (inbound transforms), reset to default mark (empty); UID billing for inbound tunnel mode
// transforms are exclusively done on inner packet, and therefore can never have been set.
output_mark->outputMark = fwmark.intValue;
int len = NLA_HDRLEN + sizeof(__u32);
fillXfrmNlaHdr(&output_mark->hdr, XFRMA_OUTPUT_MARK, len);
return len;
}
int XfrmController::fillNlAttrXfrmIntfId(const uint32_t intfIdValue,
nlattr_xfrm_interface_id* intf_id) {
// Do not set if we were not given an interface id
if (intfIdValue == 0) {
return 0;
}
intf_id->if_id = intfIdValue;
int len = NLA_HDRLEN + sizeof(__u32);
fillXfrmNlaHdr(&intf_id->hdr, XFRMA_IF_ID, len);
return len;
}
int XfrmController::fillNlAttrXfrmMigrate(const XfrmMigrateInfo& record,
nlattr_xfrm_user_migrate* migrate) {
migrate->migrate.old_daddr = record.dstAddr;
migrate->migrate.old_saddr = record.srcAddr;
migrate->migrate.new_daddr = record.newEndpointInfo.dstAddr;
migrate->migrate.new_saddr = record.newEndpointInfo.srcAddr;
migrate->migrate.proto = IPPROTO_ESP;
migrate->migrate.mode = static_cast<uint8_t>(XfrmMode::TUNNEL);
migrate->migrate.reqid = record.transformId;
migrate->migrate.old_family = record.addrFamily;
migrate->migrate.new_family = record.newEndpointInfo.addrFamily;
int len = NLA_HDRLEN + sizeof(xfrm_user_migrate);
fillXfrmNlaHdr(&migrate->hdr, XFRMA_MIGRATE, len);
return len;
}
int XfrmController::fillUserPolicyId(const XfrmSpInfo& record, xfrm_userpolicy_id* usersp) {
// For DELPOLICY, when index is absent, selector is needed to match the policy
fillXfrmSelector(record.selAddrFamily, &usersp->sel);
usersp->dir = static_cast<uint8_t>(record.direction);
return sizeof(*usersp);
}
netdutils::Status XfrmController::ipSecAddTunnelInterface(const std::string& deviceName,
const std::string& localAddress,
const std::string& remoteAddress,
int32_t ikey, int32_t okey,
int32_t interfaceId, bool isUpdate) {
ALOGD("XfrmController::%s, line=%d", __FUNCTION__, __LINE__);
ALOGD("deviceName=%s", deviceName.c_str());
ALOGD("localAddress=%s", localAddress.c_str());
ALOGD("remoteAddress=%s", remoteAddress.c_str());
ALOGD("ikey=%0.8x", ikey);
ALOGD("okey=%0.8x", okey);
ALOGD("interfaceId=%0.8x", interfaceId);
ALOGD("isUpdate=%d", isUpdate);
uint16_t flags = isUpdate ? NETLINK_REQUEST_FLAGS : NETLINK_ROUTE_CREATE_FLAGS;
if (mIsXfrmIntfSupported) {
return ipSecAddXfrmInterface(deviceName, interfaceId, flags);
} else {
return ipSecAddVirtualTunnelInterface(deviceName, localAddress, remoteAddress, ikey, okey,
flags);
}
}
netdutils::Status XfrmController::ipSecAddXfrmInterface(const std::string& deviceName,
int32_t interfaceId, uint16_t flags) {
ALOGD("XfrmController::%s, line=%d", __FUNCTION__, __LINE__);
if (deviceName.empty()) {
return netdutils::statusFromErrno(EINVAL, "XFRM Interface deviceName empty");
}
ifinfomsg ifInfoMsg{};
struct XfrmIntfCreateReq {
nlattr ifNameNla;
char ifName[IFNAMSIZ]; // Already aligned
nlattr linkInfoNla;
struct LinkInfo {
nlattr infoKindNla;
char infoKind[INFO_KIND_MAX_LEN]; // Already aligned
nlattr infoDataNla;
struct InfoData {
nlattr xfrmLinkNla;
uint32_t xfrmLink;
nlattr xfrmIfIdNla;
uint32_t xfrmIfId;
} infoData; // Already aligned
} linkInfo; // Already aligned
} xfrmIntfCreateReq{
.ifNameNla =
{
.nla_len = RTA_LENGTH(IFNAMSIZ),
.nla_type = IFLA_IFNAME,
},
// Update .ifName via strlcpy
.linkInfoNla =
{
.nla_len = RTA_LENGTH(sizeof(XfrmIntfCreateReq::LinkInfo)),
.nla_type = IFLA_LINKINFO,
},
.linkInfo = {.infoKindNla =
{
.nla_len = RTA_LENGTH(INFO_KIND_MAX_LEN),
.nla_type = IFLA_INFO_KIND,
},
// Update .infoKind via strlcpy
.infoDataNla =
{
.nla_len = RTA_LENGTH(
sizeof(XfrmIntfCreateReq::LinkInfo::InfoData)),
.nla_type = IFLA_INFO_DATA,
},
.infoData = {
.xfrmLinkNla =
{
.nla_len = RTA_LENGTH(sizeof(uint32_t)),
.nla_type = IFLA_XFRM_LINK,
},
// Always use LOOPBACK_IFINDEX, since we use output marks for
// route lookup instead. The use case of having a Network with
// loopback in it is unsupported in tunnel mode.
.xfrmLink = static_cast<uint32_t>(LOOPBACK_IFINDEX),
.xfrmIfIdNla =
{
.nla_len = RTA_LENGTH(sizeof(uint32_t)),
.nla_type = IFLA_XFRM_IF_ID,
},
.xfrmIfId = static_cast<uint32_t>(interfaceId),
}}};
strlcpy(xfrmIntfCreateReq.ifName, deviceName.c_str(), IFNAMSIZ);
strlcpy(xfrmIntfCreateReq.linkInfo.infoKind, INFO_KIND_XFRMI, INFO_KIND_MAX_LEN);
iovec iov[] = {
{NULL, 0}, // reserved for the eventual addition of a NLMSG_HDR
{&ifInfoMsg, sizeof(ifInfoMsg)},
{&xfrmIntfCreateReq, sizeof(xfrmIntfCreateReq)},
};
// sendNetlinkRequest returns -errno
int ret = -sendNetlinkRequest(RTM_NEWLINK, flags, iov, ARRAY_SIZE(iov), nullptr);
return netdutils::statusFromErrno(ret, "Add/update xfrm interface");
}
netdutils::Status XfrmController::ipSecAddVirtualTunnelInterface(const std::string& deviceName,
const std::string& localAddress,
const std::string& remoteAddress,
int32_t ikey, int32_t okey,
uint16_t flags) {
ALOGD("XfrmController::%s, line=%d", __FUNCTION__, __LINE__);
if (deviceName.empty() || localAddress.empty() || remoteAddress.empty()) {
return netdutils::statusFromErrno(EINVAL, "Required VTI creation parameter not provided");
}
uint8_t PADDING_BUFFER[] = {0, 0, 0, 0};
// Find address family.
uint8_t remAddr[sizeof(in6_addr)];
StatusOr<uint16_t> statusOrRemoteFam = convertStringAddress(remoteAddress, remAddr);
RETURN_IF_NOT_OK(statusOrRemoteFam);
uint8_t locAddr[sizeof(in6_addr)];
StatusOr<uint16_t> statusOrLocalFam = convertStringAddress(localAddress, locAddr);
RETURN_IF_NOT_OK(statusOrLocalFam);
if (statusOrLocalFam.value() != statusOrRemoteFam.value()) {
return netdutils::statusFromErrno(EINVAL, "Local and remote address families do not match");
}
uint16_t family = statusOrLocalFam.value();
ifinfomsg ifInfoMsg{};
// Construct IFLA_IFNAME
nlattr iflaIfName;
char iflaIfNameStrValue[deviceName.length() + 1];
size_t iflaIfNameLength =
strlcpy(iflaIfNameStrValue, deviceName.c_str(), sizeof(iflaIfNameStrValue));
size_t iflaIfNamePad = fillNlAttr(IFLA_IFNAME, iflaIfNameLength, &iflaIfName);
// Construct IFLA_INFO_KIND
// Constants "vti6" and "vti" enable the kernel to call different code paths,
// (ip_tunnel.c, ip6_tunnel), based on the family.
const std::string infoKindValue = (family == AF_INET6) ? INFO_KIND_VTI6 : INFO_KIND_VTI;
nlattr iflaIfInfoKind;
char infoKindValueStrValue[infoKindValue.length() + 1];
size_t iflaIfInfoKindLength =
strlcpy(infoKindValueStrValue, infoKindValue.c_str(), sizeof(infoKindValueStrValue));
size_t iflaIfInfoKindPad = fillNlAttr(IFLA_INFO_KIND, iflaIfInfoKindLength, &iflaIfInfoKind);
// Construct IFLA_VTI_LOCAL
nlattr iflaVtiLocal;
uint8_t binaryLocalAddress[sizeof(in6_addr)];
size_t iflaVtiLocalPad =
fillNlAttrIpAddress(IFLA_VTI_LOCAL, family, localAddress, &iflaVtiLocal,
netdutils::makeSlice(binaryLocalAddress));
// Construct IFLA_VTI_REMOTE
nlattr iflaVtiRemote;
uint8_t binaryRemoteAddress[sizeof(in6_addr)];
size_t iflaVtiRemotePad =
fillNlAttrIpAddress(IFLA_VTI_REMOTE, family, remoteAddress, &iflaVtiRemote,
netdutils::makeSlice(binaryRemoteAddress));
// Construct IFLA_VTI_OKEY
nlattr_payload_u32 iflaVtiIKey;
size_t iflaVtiIKeyPad = fillNlAttrU32(IFLA_VTI_IKEY, htonl(ikey), &iflaVtiIKey);
// Construct IFLA_VTI_IKEY
nlattr_payload_u32 iflaVtiOKey;
size_t iflaVtiOKeyPad = fillNlAttrU32(IFLA_VTI_OKEY, htonl(okey), &iflaVtiOKey);
int iflaInfoDataPayloadLength = iflaVtiLocal.nla_len + iflaVtiLocalPad + iflaVtiRemote.nla_len +
iflaVtiRemotePad + iflaVtiIKey.hdr.nla_len + iflaVtiIKeyPad +
iflaVtiOKey.hdr.nla_len + iflaVtiOKeyPad;
// Construct IFLA_INFO_DATA
nlattr iflaInfoData;
size_t iflaInfoDataPad = fillNlAttr(IFLA_INFO_DATA, iflaInfoDataPayloadLength, &iflaInfoData);
// Construct IFLA_LINKINFO
nlattr iflaLinkInfo;
size_t iflaLinkInfoPad = fillNlAttr(IFLA_LINKINFO,
iflaInfoData.nla_len + iflaInfoDataPad +
iflaIfInfoKind.nla_len + iflaIfInfoKindPad,
&iflaLinkInfo);
iovec iov[] = {
{nullptr, 0},
{&ifInfoMsg, sizeof(ifInfoMsg)},
{&iflaIfName, sizeof(iflaIfName)},
{iflaIfNameStrValue, iflaIfNameLength},
{&PADDING_BUFFER, iflaIfNamePad},
{&iflaLinkInfo, sizeof(iflaLinkInfo)},
{&iflaIfInfoKind, sizeof(iflaIfInfoKind)},
{infoKindValueStrValue, iflaIfInfoKindLength},
{&PADDING_BUFFER, iflaIfInfoKindPad},
{&iflaInfoData, sizeof(iflaInfoData)},
{&iflaVtiLocal, sizeof(iflaVtiLocal)},
{&binaryLocalAddress, (family == AF_INET) ? sizeof(in_addr) : sizeof(in6_addr)},
{&PADDING_BUFFER, iflaVtiLocalPad},
{&iflaVtiRemote, sizeof(iflaVtiRemote)},
{&binaryRemoteAddress, (family == AF_INET) ? sizeof(in_addr) : sizeof(in6_addr)},
{&PADDING_BUFFER, iflaVtiRemotePad},
{&iflaVtiIKey, iflaVtiIKey.hdr.nla_len},
{&PADDING_BUFFER, iflaVtiIKeyPad},
{&iflaVtiOKey, iflaVtiOKey.hdr.nla_len},
{&PADDING_BUFFER, iflaVtiOKeyPad},
{&PADDING_BUFFER, iflaInfoDataPad},
{&PADDING_BUFFER, iflaLinkInfoPad},
};
// sendNetlinkRequest returns -errno
int ret = -1 * sendNetlinkRequest(RTM_NEWLINK, flags, iov, ARRAY_SIZE(iov), nullptr);
return netdutils::statusFromErrno(ret, "Failed to add/update virtual tunnel interface");
}
netdutils::Status XfrmController::ipSecRemoveTunnelInterface(const std::string& deviceName) {
ALOGD("XfrmController::%s, line=%d", __FUNCTION__, __LINE__);
ALOGD("deviceName=%s", deviceName.c_str());
if (deviceName.empty()) {
return netdutils::statusFromErrno(EINVAL, "Required parameter not provided");
}
uint8_t PADDING_BUFFER[] = {0, 0, 0, 0};
ifinfomsg ifInfoMsg{};
nlattr iflaIfName;
char iflaIfNameStrValue[deviceName.length() + 1];
size_t iflaIfNameLength =
strlcpy(iflaIfNameStrValue, deviceName.c_str(), sizeof(iflaIfNameStrValue));
size_t iflaIfNamePad = fillNlAttr(IFLA_IFNAME, iflaIfNameLength, &iflaIfName);
iovec iov[] = {
{nullptr, 0},
{&ifInfoMsg, sizeof(ifInfoMsg)},
{&iflaIfName, sizeof(iflaIfName)},
{iflaIfNameStrValue, iflaIfNameLength},
{&PADDING_BUFFER, iflaIfNamePad},
};
uint16_t action = RTM_DELLINK;
uint16_t flags = NLM_F_REQUEST | NLM_F_ACK;
// sendNetlinkRequest returns -errno
int ret = -1 * sendNetlinkRequest(action, flags, iov, ARRAY_SIZE(iov), nullptr);
return netdutils::statusFromErrno(ret, "Error in deleting IpSec interface " + deviceName);
}
void XfrmController::dump(DumpWriter& dw) {
ScopedIndent indentForXfrmController(dw);
dw.println("XfrmController");
ScopedIndent indentForXfrmISupport(dw);
dw.println("XFRM-I support: %d", mIsXfrmIntfSupported);
}
} // namespace net
} // namespace android