blob: 5c5d8339a92c6830281ae28e68fc780b5ea4fc64 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless requied by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#define LOG_TAG "netd_test"
#include <arpa/inet.h>
#include <arpa/nameser.h>
#include <netdb.h>
#include <netinet/in.h>
#include <poll.h> /* poll */
#include <resolv.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <unistd.h>
#include <algorithm>
#include <chrono>
#include <iterator>
#include <numeric>
#include <thread>
#include <android-base/stringprintf.h>
#include <cutils/sockets.h>
#include <gtest/gtest.h>
#include <openssl/base64.h>
#include <private/android_filesystem_config.h>
#include <utils/Log.h>
#include "NetdClient.h"
#include "netid_client.h" // NETID_UNSET
#include "netd_resolv/params.h" // MAX_NS
#include "dns_responder/dns_responder.h"
#include "dns_responder/dns_responder_client.h"
#include "dns_responder/dns_tls_frontend.h"
#include "NetdConstants.h"
#include "ResolverStats.h"
#include "android/net/INetd.h"
#include "android/net/metrics/INetdEventListener.h"
#include "binder/IServiceManager.h"
#include "netdutils/SocketOption.h"
// TODO: make this dynamic and stop depending on implementation details.
constexpr int TEST_NETID = 30;
constexpr int MAXPACKET = (8 * 1024);
// Semi-public Bionic hook used by the NDK (frameworks/base/native/android/net.c)
// Tested here for convenience.
extern "C" int android_getaddrinfofornet(const char* hostname, const char* servname,
const addrinfo* hints, unsigned netid, unsigned mark,
struct addrinfo** result);
using android::base::StringPrintf;
using android::net::ResolverStats;
using android::net::metrics::INetdEventListener;
using android::netdutils::enableSockopt;
// TODO: move into libnetdutils?
namespace {
ScopedAddrinfo safe_getaddrinfo(const char* node, const char* service,
const struct addrinfo* hints) {
addrinfo* result = nullptr;
if (getaddrinfo(node, service, hints, &result) != 0) {
result = nullptr; // Should already be the case, but...
}
return ScopedAddrinfo(result);
}
} // namespace
// Emulates the behavior of UnorderedElementsAreArray, which currently cannot be used.
// TODO: Use UnorderedElementsAreArray, which depends on being able to compile libgmock_host,
// if that is not possible, improve this hacky algorithm, which is O(n**2)
template <class A, class B>
bool UnorderedCompareArray(const A& a, const B& b) {
if (a.size() != b.size()) return false;
for (const auto& a_elem : a) {
size_t a_count = 0;
for (const auto& a_elem2 : a) {
if (a_elem == a_elem2) {
++a_count;
}
}
size_t b_count = 0;
for (const auto& b_elem : b) {
if (a_elem == b_elem) ++b_count;
}
if (a_count != b_count) return false;
}
return true;
}
class ResolverTest : public ::testing::Test, public DnsResponderClient {
protected:
void SetUp() {
// Ensure resolutions go via proxy.
DnsResponderClient::SetUp();
// If DNS reporting is off: turn it on so we run through everything.
auto rv = mNetdSrv->getMetricsReportingLevel(&mOriginalMetricsLevel);
ASSERT_TRUE(rv.isOk());
if (mOriginalMetricsLevel != INetdEventListener::REPORTING_LEVEL_FULL) {
rv = mNetdSrv->setMetricsReportingLevel(INetdEventListener::REPORTING_LEVEL_FULL);
ASSERT_TRUE(rv.isOk());
}
}
void TearDown() {
if (mOriginalMetricsLevel != INetdEventListener::REPORTING_LEVEL_FULL) {
auto rv = mNetdSrv->setMetricsReportingLevel(mOriginalMetricsLevel);
ASSERT_TRUE(rv.isOk());
}
DnsResponderClient::TearDown();
}
bool GetResolverInfo(std::vector<std::string>* servers, std::vector<std::string>* domains,
std::vector<std::string>* tlsServers, __res_params* params,
std::vector<ResolverStats>* stats) {
using android::net::INetd;
std::vector<int32_t> params32;
std::vector<int32_t> stats32;
auto rv = mNetdSrv->getResolverInfo(TEST_NETID, servers, domains, tlsServers, &params32,
&stats32);
if (!rv.isOk() || params32.size() != static_cast<size_t>(INetd::RESOLVER_PARAMS_COUNT)) {
return false;
}
*params = __res_params {
.sample_validity = static_cast<uint16_t>(
params32[INetd::RESOLVER_PARAMS_SAMPLE_VALIDITY]),
.success_threshold = static_cast<uint8_t>(
params32[INetd::RESOLVER_PARAMS_SUCCESS_THRESHOLD]),
.min_samples = static_cast<uint8_t>(
params32[INetd::RESOLVER_PARAMS_MIN_SAMPLES]),
.max_samples = static_cast<uint8_t>(
params32[INetd::RESOLVER_PARAMS_MAX_SAMPLES]),
.base_timeout_msec = params32[INetd::RESOLVER_PARAMS_BASE_TIMEOUT_MSEC],
};
return ResolverStats::decodeAll(stats32, stats);
}
static std::string ToString(const hostent* he) {
if (he == nullptr) return "<null>";
char buffer[INET6_ADDRSTRLEN];
if (!inet_ntop(he->h_addrtype, he->h_addr_list[0], buffer, sizeof(buffer))) {
return "<invalid>";
}
return buffer;
}
static std::string ToString(const addrinfo* ai) {
if (!ai)
return "<null>";
for (const auto* aip = ai ; aip != nullptr ; aip = aip->ai_next) {
char host[NI_MAXHOST];
int rv = getnameinfo(aip->ai_addr, aip->ai_addrlen, host, sizeof(host), nullptr, 0,
NI_NUMERICHOST);
if (rv != 0)
return gai_strerror(rv);
return host;
}
return "<invalid>";
}
static std::string ToString(const ScopedAddrinfo& ai) { return ToString(ai.get()); }
static std::vector<std::string> ToStrings(const addrinfo* ai) {
std::vector<std::string> hosts;
if (!ai) {
hosts.push_back("<null>");
return hosts;
}
for (const auto* aip = ai; aip != nullptr; aip = aip->ai_next) {
char host[NI_MAXHOST];
int rv = getnameinfo(aip->ai_addr, aip->ai_addrlen, host, sizeof(host), nullptr, 0,
NI_NUMERICHOST);
if (rv != 0) {
hosts.clear();
hosts.push_back(gai_strerror(rv));
return hosts;
} else {
hosts.push_back(host);
}
}
if (hosts.empty()) hosts.push_back("<invalid>");
return hosts;
}
static std::vector<std::string> ToStrings(const ScopedAddrinfo& ai) {
return ToStrings(ai.get());
}
size_t GetNumQueries(const test::DNSResponder& dns, const char* name) const {
auto queries = dns.queries();
size_t found = 0;
for (const auto& p : queries) {
if (p.first == name) {
++found;
}
}
return found;
}
size_t GetNumQueriesForType(const test::DNSResponder& dns, ns_type type,
const char* name) const {
auto queries = dns.queries();
size_t found = 0;
for (const auto& p : queries) {
if (p.second == type && p.first == name) {
++found;
}
}
return found;
}
bool WaitForPrefix64Detected(int netId, int timeoutMs) {
constexpr int intervalMs = 2;
const int limit = timeoutMs / intervalMs;
for (int count = 0; count <= limit; ++count) {
std::string prefix;
auto rv = mNetdSrv->getPrefix64(netId, &prefix);
if (rv.isOk()) {
return true;
}
usleep(intervalMs * 1000);
}
return false;
}
void RunGetAddrInfoStressTest_Binder(unsigned num_hosts, unsigned num_threads,
unsigned num_queries) {
std::vector<std::string> domains = { "example.com" };
std::vector<std::unique_ptr<test::DNSResponder>> dns;
std::vector<std::string> servers;
std::vector<DnsResponderClient::Mapping> mappings;
ASSERT_NO_FATAL_FAILURE(SetupMappings(num_hosts, domains, &mappings));
ASSERT_NO_FATAL_FAILURE(SetupDNSServers(MAXNS, mappings, &dns, &servers));
ASSERT_TRUE(SetResolversForNetwork(servers, domains, mDefaultParams_Binder));
auto t0 = std::chrono::steady_clock::now();
std::vector<std::thread> threads(num_threads);
for (std::thread& thread : threads) {
thread = std::thread([&mappings, num_queries]() {
for (unsigned i = 0 ; i < num_queries ; ++i) {
uint32_t ofs = arc4random_uniform(mappings.size());
auto& mapping = mappings[ofs];
addrinfo* result = nullptr;
int rv = getaddrinfo(mapping.host.c_str(), nullptr, nullptr, &result);
EXPECT_EQ(0, rv) << "error [" << rv << "] " << gai_strerror(rv);
if (rv == 0) {
std::string result_str = ToString(result);
EXPECT_TRUE(result_str == mapping.ip4 || result_str == mapping.ip6)
<< "result='" << result_str << "', ip4='" << mapping.ip4
<< "', ip6='" << mapping.ip6;
}
if (result) {
freeaddrinfo(result);
result = nullptr;
}
}
});
}
for (std::thread& thread : threads) {
thread.join();
}
auto t1 = std::chrono::steady_clock::now();
ALOGI("%u hosts, %u threads, %u queries, %Es", num_hosts, num_threads, num_queries,
std::chrono::duration<double>(t1 - t0).count());
ASSERT_NO_FATAL_FAILURE(ShutdownDNSServers(&dns));
}
const std::vector<std::string> mDefaultSearchDomains = { "example.com" };
// <sample validity in s> <success threshold in percent> <min samples> <max samples>
const std::vector<int> mDefaultParams_Binder = {
300, // SAMPLE_VALIDITY
25, // SUCCESS_THRESHOLD
8, 8, // {MIN,MAX}_SAMPLES
100, // BASE_TIMEOUT_MSEC
};
private:
int mOriginalMetricsLevel;
};
TEST_F(ResolverTest, GetHostByName) {
const char* listen_addr = "127.0.0.3";
const char* listen_srv = "53";
const char* host_name = "hello.example.com.";
const char *nonexistent_host_name = "nonexistent.example.com.";
test::DNSResponder dns(listen_addr, listen_srv, 250, ns_rcode::ns_r_servfail);
dns.addMapping(host_name, ns_type::ns_t_a, "1.2.3.3");
ASSERT_TRUE(dns.startServer());
std::vector<std::string> servers = { listen_addr };
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
const hostent* result;
dns.clearQueries();
result = gethostbyname("nonexistent");
EXPECT_EQ(1U, GetNumQueriesForType(dns, ns_type::ns_t_a, nonexistent_host_name));
ASSERT_TRUE(result == nullptr);
ASSERT_EQ(HOST_NOT_FOUND, h_errno);
dns.clearQueries();
result = gethostbyname("hello");
EXPECT_EQ(1U, GetNumQueriesForType(dns, ns_type::ns_t_a, host_name));
ASSERT_FALSE(result == nullptr);
ASSERT_EQ(4, result->h_length);
ASSERT_FALSE(result->h_addr_list[0] == nullptr);
EXPECT_EQ("1.2.3.3", ToString(result));
EXPECT_TRUE(result->h_addr_list[1] == nullptr);
dns.stopServer();
}
TEST_F(ResolverTest, GetHostByName_localhost) {
constexpr char name[] = "localhost";
constexpr char name_camelcase[] = "LocalHost";
constexpr char addr[] = "127.0.0.1";
constexpr char name_ip6[] = "ip6-localhost";
constexpr char addr_ip6[] = "::1";
constexpr char name_ip6_dot[] = "ip6-localhost.";
constexpr char name_ip6_fqdn[] = "ip6-localhost.example.com.";
// Add a dummy nameserver which shouldn't receive any queries
constexpr char listen_addr[] = "127.0.0.3";
constexpr char listen_srv[] = "53";
test::DNSResponder dns(listen_addr, listen_srv, 250, ns_rcode::ns_r_servfail);
ASSERT_TRUE(dns.startServer());
std::vector<std::string> servers = {listen_addr};
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
dns.clearQueries();
// Expect no DNS queries; localhost is resolved via /etc/hosts
const hostent* result = gethostbyname(name);
EXPECT_TRUE(dns.queries().empty()) << dns.dumpQueries();
ASSERT_FALSE(result == nullptr);
ASSERT_EQ(4, result->h_length);
ASSERT_FALSE(result->h_addr_list[0] == nullptr);
EXPECT_EQ(addr, ToString(result));
EXPECT_TRUE(result->h_addr_list[1] == nullptr);
// Ensure the hosts file resolver ignores case of hostnames
result = gethostbyname(name_camelcase);
EXPECT_TRUE(dns.queries().empty()) << dns.dumpQueries();
ASSERT_FALSE(result == nullptr);
ASSERT_EQ(4, result->h_length);
ASSERT_FALSE(result->h_addr_list[0] == nullptr);
EXPECT_EQ(addr, ToString(result));
EXPECT_TRUE(result->h_addr_list[1] == nullptr);
// The hosts file also contains ip6-localhost, but gethostbyname() won't
// return it unless the RES_USE_INET6 option is set. This would be easy to
// change, but there's no point in changing the legacy behavior; new code
// should be calling getaddrinfo() anyway.
// So we check the legacy behavior, which results in amusing A-record
// lookups for ip6-localhost, with and without search domains appended.
dns.clearQueries();
result = gethostbyname(name_ip6);
EXPECT_EQ(2U, dns.queries().size()) << dns.dumpQueries();
EXPECT_EQ(1U, GetNumQueriesForType(dns, ns_type::ns_t_a, name_ip6_dot)) << dns.dumpQueries();
EXPECT_EQ(1U, GetNumQueriesForType(dns, ns_type::ns_t_a, name_ip6_fqdn)) << dns.dumpQueries();
ASSERT_TRUE(result == nullptr);
// Finally, use gethostbyname2() to resolve ip6-localhost to ::1 from
// the hosts file.
dns.clearQueries();
result = gethostbyname2(name_ip6, AF_INET6);
EXPECT_TRUE(dns.queries().empty()) << dns.dumpQueries();
ASSERT_FALSE(result == nullptr);
ASSERT_EQ(16, result->h_length);
ASSERT_FALSE(result->h_addr_list[0] == nullptr);
EXPECT_EQ(addr_ip6, ToString(result));
EXPECT_TRUE(result->h_addr_list[1] == nullptr);
dns.stopServer();
}
TEST_F(ResolverTest, GetHostByName_numeric) {
// Add a dummy nameserver which shouldn't receive any queries
constexpr char listen_addr[] = "127.0.0.3";
constexpr char listen_srv[] = "53";
test::DNSResponder dns(listen_addr, listen_srv, 250, ns_rcode::ns_r_servfail);
ASSERT_TRUE(dns.startServer());
ASSERT_TRUE(
SetResolversForNetwork({listen_addr}, mDefaultSearchDomains, mDefaultParams_Binder));
// Numeric v4 address: expect no DNS queries
constexpr char numeric_v4[] = "192.168.0.1";
dns.clearQueries();
const hostent* result = gethostbyname(numeric_v4);
EXPECT_EQ(0U, dns.queries().size());
ASSERT_FALSE(result == nullptr);
ASSERT_EQ(4, result->h_length); // v4
ASSERT_FALSE(result->h_addr_list[0] == nullptr);
EXPECT_EQ(numeric_v4, ToString(result));
EXPECT_TRUE(result->h_addr_list[1] == nullptr);
// gethostbyname() recognizes a v6 address, and fails with no DNS queries
constexpr char numeric_v6[] = "2001:db8::42";
dns.clearQueries();
result = gethostbyname(numeric_v6);
EXPECT_EQ(0U, dns.queries().size());
EXPECT_TRUE(result == nullptr);
// Numeric v6 address with gethostbyname2(): succeeds with no DNS queries
dns.clearQueries();
result = gethostbyname2(numeric_v6, AF_INET6);
EXPECT_EQ(0U, dns.queries().size());
ASSERT_FALSE(result == nullptr);
ASSERT_EQ(16, result->h_length); // v6
ASSERT_FALSE(result->h_addr_list[0] == nullptr);
EXPECT_EQ(numeric_v6, ToString(result));
EXPECT_TRUE(result->h_addr_list[1] == nullptr);
// Numeric v6 address with scope work with getaddrinfo(),
// but gethostbyname2() does not understand them; it issues two dns
// queries, then fails. This hardly ever happens, there's no point
// in fixing this. This test simply verifies the current (bogus)
// behavior to avoid further regressions (like crashes, or leaks).
constexpr char numeric_v6_scope[] = "fe80::1%lo";
dns.clearQueries();
result = gethostbyname2(numeric_v6_scope, AF_INET6);
EXPECT_EQ(2U, dns.queries().size()); // OUCH!
ASSERT_TRUE(result == nullptr);
dns.stopServer();
}
TEST_F(ResolverTest, BinderSerialization) {
using android::net::INetd;
std::vector<int> params_offsets = {
INetd::RESOLVER_PARAMS_SAMPLE_VALIDITY,
INetd::RESOLVER_PARAMS_SUCCESS_THRESHOLD,
INetd::RESOLVER_PARAMS_MIN_SAMPLES,
INetd::RESOLVER_PARAMS_MAX_SAMPLES,
INetd::RESOLVER_PARAMS_BASE_TIMEOUT_MSEC,
};
const int size = static_cast<int>(params_offsets.size());
EXPECT_EQ(size, INetd::RESOLVER_PARAMS_COUNT);
std::sort(params_offsets.begin(), params_offsets.end());
for (int i = 0; i < size; ++i) {
EXPECT_EQ(params_offsets[i], i);
}
}
TEST_F(ResolverTest, GetHostByName_Binder) {
using android::net::INetd;
std::vector<std::string> domains = { "example.com" };
std::vector<std::unique_ptr<test::DNSResponder>> dns;
std::vector<std::string> servers;
std::vector<Mapping> mappings;
ASSERT_NO_FATAL_FAILURE(SetupMappings(1, domains, &mappings));
ASSERT_NO_FATAL_FAILURE(SetupDNSServers(4, mappings, &dns, &servers));
ASSERT_EQ(1U, mappings.size());
const Mapping& mapping = mappings[0];
ASSERT_TRUE(SetResolversForNetwork(servers, domains, mDefaultParams_Binder));
const hostent* result = gethostbyname(mapping.host.c_str());
const size_t total_queries =
std::accumulate(dns.begin(), dns.end(), 0, [this, &mapping](size_t total, auto& d) {
return total + GetNumQueriesForType(*d, ns_type::ns_t_a, mapping.entry.c_str());
});
EXPECT_LE(1U, total_queries);
ASSERT_FALSE(result == nullptr);
ASSERT_EQ(4, result->h_length);
ASSERT_FALSE(result->h_addr_list[0] == nullptr);
EXPECT_EQ(mapping.ip4, ToString(result));
EXPECT_TRUE(result->h_addr_list[1] == nullptr);
std::vector<std::string> res_servers;
std::vector<std::string> res_domains;
std::vector<std::string> res_tls_servers;
__res_params res_params;
std::vector<ResolverStats> res_stats;
ASSERT_TRUE(
GetResolverInfo(&res_servers, &res_domains, &res_tls_servers, &res_params, &res_stats));
EXPECT_EQ(servers.size(), res_servers.size());
EXPECT_EQ(domains.size(), res_domains.size());
EXPECT_EQ(0U, res_tls_servers.size());
ASSERT_EQ(static_cast<size_t>(INetd::RESOLVER_PARAMS_COUNT), mDefaultParams_Binder.size());
EXPECT_EQ(mDefaultParams_Binder[INetd::RESOLVER_PARAMS_SAMPLE_VALIDITY],
res_params.sample_validity);
EXPECT_EQ(mDefaultParams_Binder[INetd::RESOLVER_PARAMS_SUCCESS_THRESHOLD],
res_params.success_threshold);
EXPECT_EQ(mDefaultParams_Binder[INetd::RESOLVER_PARAMS_MIN_SAMPLES], res_params.min_samples);
EXPECT_EQ(mDefaultParams_Binder[INetd::RESOLVER_PARAMS_MAX_SAMPLES], res_params.max_samples);
EXPECT_EQ(mDefaultParams_Binder[INetd::RESOLVER_PARAMS_BASE_TIMEOUT_MSEC],
res_params.base_timeout_msec);
EXPECT_EQ(servers.size(), res_stats.size());
EXPECT_TRUE(UnorderedCompareArray(res_servers, servers));
EXPECT_TRUE(UnorderedCompareArray(res_domains, domains));
ASSERT_NO_FATAL_FAILURE(ShutdownDNSServers(&dns));
}
TEST_F(ResolverTest, GetAddrInfo) {
const char* listen_addr = "127.0.0.4";
const char* listen_addr2 = "127.0.0.5";
const char* listen_srv = "53";
const char* host_name = "howdy.example.com.";
test::DNSResponder dns(listen_addr, listen_srv, 250, ns_rcode::ns_r_servfail);
dns.addMapping(host_name, ns_type::ns_t_a, "1.2.3.4");
dns.addMapping(host_name, ns_type::ns_t_aaaa, "::1.2.3.4");
ASSERT_TRUE(dns.startServer());
test::DNSResponder dns2(listen_addr2, listen_srv, 250, ns_rcode::ns_r_servfail);
dns2.addMapping(host_name, ns_type::ns_t_a, "1.2.3.4");
dns2.addMapping(host_name, ns_type::ns_t_aaaa, "::1.2.3.4");
ASSERT_TRUE(dns2.startServer());
std::vector<std::string> servers = { listen_addr };
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
dns.clearQueries();
dns2.clearQueries();
ScopedAddrinfo result = safe_getaddrinfo("howdy", nullptr, nullptr);
EXPECT_TRUE(result != nullptr);
size_t found = GetNumQueries(dns, host_name);
EXPECT_LE(1U, found);
// Could be A or AAAA
std::string result_str = ToString(result);
EXPECT_TRUE(result_str == "1.2.3.4" || result_str == "::1.2.3.4")
<< ", result_str='" << result_str << "'";
// Verify that the name is cached.
size_t old_found = found;
result = safe_getaddrinfo("howdy", nullptr, nullptr);
EXPECT_TRUE(result != nullptr);
found = GetNumQueries(dns, host_name);
EXPECT_LE(1U, found);
EXPECT_EQ(old_found, found);
result_str = ToString(result);
EXPECT_TRUE(result_str == "1.2.3.4" || result_str == "::1.2.3.4")
<< result_str;
// Change the DNS resolver, ensure that queries are still cached.
servers = { listen_addr2 };
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
dns.clearQueries();
dns2.clearQueries();
result = safe_getaddrinfo("howdy", nullptr, nullptr);
EXPECT_TRUE(result != nullptr);
found = GetNumQueries(dns, host_name);
size_t found2 = GetNumQueries(dns2, host_name);
EXPECT_EQ(0U, found);
EXPECT_LE(0U, found2);
// Could be A or AAAA
result_str = ToString(result);
EXPECT_TRUE(result_str == "1.2.3.4" || result_str == "::1.2.3.4")
<< ", result_str='" << result_str << "'";
dns.stopServer();
dns2.stopServer();
}
TEST_F(ResolverTest, GetAddrInfoV4) {
constexpr char listen_addr[] = "127.0.0.5";
constexpr char listen_srv[] = "53";
constexpr char host_name[] = "hola.example.com.";
test::DNSResponder dns(listen_addr, listen_srv, 250, ns_rcode::ns_r_servfail);
dns.addMapping(host_name, ns_type::ns_t_a, "1.2.3.5");
ASSERT_TRUE(dns.startServer());
std::vector<std::string> servers = { listen_addr };
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
addrinfo hints = {.ai_family = AF_INET};
ScopedAddrinfo result = safe_getaddrinfo("hola", nullptr, &hints);
EXPECT_TRUE(result != nullptr);
EXPECT_EQ(1U, GetNumQueries(dns, host_name));
EXPECT_EQ("1.2.3.5", ToString(result));
}
TEST_F(ResolverTest, GetAddrInfo_localhost) {
constexpr char name[] = "localhost";
constexpr char addr[] = "127.0.0.1";
constexpr char name_ip6[] = "ip6-localhost";
constexpr char addr_ip6[] = "::1";
// Add a dummy nameserver which shouldn't receive any queries
constexpr char listen_addr[] = "127.0.0.5";
constexpr char listen_srv[] = "53";
test::DNSResponder dns(listen_addr, listen_srv, 250, ns_rcode::ns_r_servfail);
ASSERT_TRUE(dns.startServer());
std::vector<std::string> servers = {listen_addr};
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
ScopedAddrinfo result = safe_getaddrinfo(name, nullptr, nullptr);
EXPECT_TRUE(result != nullptr);
// Expect no DNS queries; localhost is resolved via /etc/hosts
EXPECT_TRUE(dns.queries().empty()) << dns.dumpQueries();
EXPECT_EQ(addr, ToString(result));
result = safe_getaddrinfo(name_ip6, nullptr, nullptr);
EXPECT_TRUE(result != nullptr);
// Expect no DNS queries; ip6-localhost is resolved via /etc/hosts
EXPECT_TRUE(dns.queries().empty()) << dns.dumpQueries();
EXPECT_EQ(addr_ip6, ToString(result));
}
TEST_F(ResolverTest, MultidomainResolution) {
std::vector<std::string> searchDomains = { "example1.com", "example2.com", "example3.com" };
const char* listen_addr = "127.0.0.6";
const char* listen_srv = "53";
const char* host_name = "nihao.example2.com.";
test::DNSResponder dns(listen_addr, listen_srv, 250, ns_rcode::ns_r_servfail);
dns.addMapping(host_name, ns_type::ns_t_a, "1.2.3.3");
ASSERT_TRUE(dns.startServer());
std::vector<std::string> servers = { listen_addr };
ASSERT_TRUE(SetResolversForNetwork(servers, searchDomains, mDefaultParams_Binder));
dns.clearQueries();
const hostent* result = gethostbyname("nihao");
EXPECT_EQ(1U, GetNumQueriesForType(dns, ns_type::ns_t_a, host_name));
ASSERT_FALSE(result == nullptr);
ASSERT_EQ(4, result->h_length);
ASSERT_FALSE(result->h_addr_list[0] == nullptr);
EXPECT_EQ("1.2.3.3", ToString(result));
EXPECT_TRUE(result->h_addr_list[1] == nullptr);
dns.stopServer();
}
TEST_F(ResolverTest, GetAddrInfoV6_numeric) {
constexpr char listen_addr0[] = "127.0.0.7";
constexpr char listen_srv[] = "53";
constexpr char host_name[] = "ohayou.example.com.";
constexpr char numeric_addr[] = "fe80::1%lo";
test::DNSResponder dns(listen_addr0, listen_srv, 250, ns_rcode::ns_r_servfail);
dns.setResponseProbability(0.0);
dns.addMapping(host_name, ns_type::ns_t_aaaa, "2001:db8::5");
ASSERT_TRUE(dns.startServer());
std::vector<std::string> servers = {listen_addr0};
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
addrinfo hints = {.ai_family = AF_INET6};
ScopedAddrinfo result = safe_getaddrinfo(numeric_addr, nullptr, &hints);
EXPECT_TRUE(result != nullptr);
EXPECT_EQ(numeric_addr, ToString(result));
EXPECT_TRUE(dns.queries().empty()); // Ensure no DNS queries were sent out
// Now try a non-numeric hostname query with the AI_NUMERICHOST flag set.
// We should fail without sending out a DNS query.
hints.ai_flags |= AI_NUMERICHOST;
result = safe_getaddrinfo(host_name, nullptr, &hints);
EXPECT_TRUE(result == nullptr);
EXPECT_TRUE(dns.queries().empty()); // Ensure no DNS queries were sent out
}
TEST_F(ResolverTest, GetAddrInfoV6_failing) {
const char* listen_addr0 = "127.0.0.7";
const char* listen_addr1 = "127.0.0.8";
const char* listen_srv = "53";
const char* host_name = "ohayou.example.com.";
test::DNSResponder dns0(listen_addr0, listen_srv, 250, ns_rcode::ns_r_servfail);
test::DNSResponder dns1(listen_addr1, listen_srv, 250, ns_rcode::ns_r_servfail);
dns0.setResponseProbability(0.0);
dns0.addMapping(host_name, ns_type::ns_t_aaaa, "2001:db8::5");
dns1.addMapping(host_name, ns_type::ns_t_aaaa, "2001:db8::6");
ASSERT_TRUE(dns0.startServer());
ASSERT_TRUE(dns1.startServer());
std::vector<std::string> servers = { listen_addr0, listen_addr1 };
// <sample validity in s> <success threshold in percent> <min samples> <max samples>
int sample_count = 8;
const std::vector<int> params = { 300, 25, sample_count, sample_count };
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, params));
// Repeatedly perform resolutions for non-existing domains until MAXNSSAMPLES resolutions have
// reached the dns0, which is set to fail. No more requests should then arrive at that server
// for the next sample_lifetime seconds.
// TODO: This approach is implementation-dependent, change once metrics reporting is available.
addrinfo hints = {.ai_family = AF_INET6};
for (int i = 0; i < sample_count; ++i) {
std::string domain = StringPrintf("nonexistent%d", i);
ScopedAddrinfo result = safe_getaddrinfo(domain.c_str(), nullptr, &hints);
}
// Due to 100% errors for all possible samples, the server should be ignored from now on and
// only the second one used for all following queries, until NSSAMPLE_VALIDITY is reached.
dns0.clearQueries();
dns1.clearQueries();
ScopedAddrinfo result = safe_getaddrinfo("ohayou", nullptr, &hints);
EXPECT_TRUE(result != nullptr);
EXPECT_EQ(0U, GetNumQueries(dns0, host_name));
EXPECT_EQ(1U, GetNumQueries(dns1, host_name));
}
TEST_F(ResolverTest, GetAddrInfoV6_nonresponsive) {
const char* listen_addr0 = "127.0.0.7";
const char* listen_addr1 = "127.0.0.8";
const char* listen_srv = "53";
const char* host_name1 = "ohayou.example.com.";
const char* host_name2 = "ciao.example.com.";
// dns0 does not respond with 100% probability, while
// dns1 responds normally, at least initially.
test::DNSResponder dns0(listen_addr0, listen_srv, 250, static_cast<ns_rcode>(-1));
test::DNSResponder dns1(listen_addr1, listen_srv, 250, static_cast<ns_rcode>(-1));
dns0.setResponseProbability(0.0);
dns0.addMapping(host_name1, ns_type::ns_t_aaaa, "2001:db8::5");
dns1.addMapping(host_name1, ns_type::ns_t_aaaa, "2001:db8::6");
dns0.addMapping(host_name2, ns_type::ns_t_aaaa, "2001:db8::5");
dns1.addMapping(host_name2, ns_type::ns_t_aaaa, "2001:db8::6");
ASSERT_TRUE(dns0.startServer());
ASSERT_TRUE(dns1.startServer());
std::vector<std::string> servers = {listen_addr0, listen_addr1};
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
const addrinfo hints = {.ai_family = AF_INET6};
// dns0 will ignore the request, and we'll fallback to dns1 after the first
// retry.
ScopedAddrinfo result = safe_getaddrinfo(host_name1, nullptr, &hints);
EXPECT_TRUE(result != nullptr);
EXPECT_EQ(1U, GetNumQueries(dns0, host_name1));
EXPECT_EQ(1U, GetNumQueries(dns1, host_name1));
// Now make dns1 also ignore 100% requests... The resolve should alternate
// retries between the nameservers and fail after 4 attempts.
dns1.setResponseProbability(0.0);
addrinfo* result2 = nullptr;
EXPECT_EQ(EAI_NODATA, getaddrinfo(host_name2, nullptr, &hints, &result2));
EXPECT_EQ(nullptr, result2);
EXPECT_EQ(4U, GetNumQueries(dns0, host_name2));
EXPECT_EQ(4U, GetNumQueries(dns1, host_name2));
}
TEST_F(ResolverTest, GetAddrInfoV6_concurrent) {
const char* listen_addr0 = "127.0.0.9";
const char* listen_addr1 = "127.0.0.10";
const char* listen_addr2 = "127.0.0.11";
const char* listen_srv = "53";
const char* host_name = "konbanha.example.com.";
test::DNSResponder dns0(listen_addr0, listen_srv, 250, ns_rcode::ns_r_servfail);
test::DNSResponder dns1(listen_addr1, listen_srv, 250, ns_rcode::ns_r_servfail);
test::DNSResponder dns2(listen_addr2, listen_srv, 250, ns_rcode::ns_r_servfail);
dns0.addMapping(host_name, ns_type::ns_t_aaaa, "2001:db8::5");
dns1.addMapping(host_name, ns_type::ns_t_aaaa, "2001:db8::6");
dns2.addMapping(host_name, ns_type::ns_t_aaaa, "2001:db8::7");
ASSERT_TRUE(dns0.startServer());
ASSERT_TRUE(dns1.startServer());
ASSERT_TRUE(dns2.startServer());
const std::vector<std::string> servers = { listen_addr0, listen_addr1, listen_addr2 };
std::vector<std::thread> threads(10);
for (std::thread& thread : threads) {
thread = std::thread([this, &servers]() {
unsigned delay = arc4random_uniform(1*1000*1000); // <= 1s
usleep(delay);
std::vector<std::string> serverSubset;
for (const auto& server : servers) {
if (arc4random_uniform(2)) {
serverSubset.push_back(server);
}
}
if (serverSubset.empty()) serverSubset = servers;
ASSERT_TRUE(SetResolversForNetwork(serverSubset, mDefaultSearchDomains,
mDefaultParams_Binder));
addrinfo hints = {.ai_family = AF_INET6};
addrinfo* result = nullptr;
int rv = getaddrinfo("konbanha", nullptr, &hints, &result);
EXPECT_EQ(0, rv) << "error [" << rv << "] " << gai_strerror(rv);
if (result) {
freeaddrinfo(result);
result = nullptr;
}
});
}
for (std::thread& thread : threads) {
thread.join();
}
}
TEST_F(ResolverTest, GetAddrInfoStressTest_Binder_100) {
const unsigned num_hosts = 100;
const unsigned num_threads = 100;
const unsigned num_queries = 100;
ASSERT_NO_FATAL_FAILURE(RunGetAddrInfoStressTest_Binder(num_hosts, num_threads, num_queries));
}
TEST_F(ResolverTest, GetAddrInfoStressTest_Binder_100000) {
const unsigned num_hosts = 100000;
const unsigned num_threads = 100;
const unsigned num_queries = 100;
ASSERT_NO_FATAL_FAILURE(RunGetAddrInfoStressTest_Binder(num_hosts, num_threads, num_queries));
}
TEST_F(ResolverTest, EmptySetup) {
using android::net::INetd;
std::vector<std::string> servers;
std::vector<std::string> domains;
ASSERT_TRUE(SetResolversForNetwork(servers, domains, mDefaultParams_Binder));
std::vector<std::string> res_servers;
std::vector<std::string> res_domains;
std::vector<std::string> res_tls_servers;
__res_params res_params;
std::vector<ResolverStats> res_stats;
ASSERT_TRUE(
GetResolverInfo(&res_servers, &res_domains, &res_tls_servers, &res_params, &res_stats));
EXPECT_EQ(0U, res_servers.size());
EXPECT_EQ(0U, res_domains.size());
EXPECT_EQ(0U, res_tls_servers.size());
ASSERT_EQ(static_cast<size_t>(INetd::RESOLVER_PARAMS_COUNT), mDefaultParams_Binder.size());
EXPECT_EQ(mDefaultParams_Binder[INetd::RESOLVER_PARAMS_SAMPLE_VALIDITY],
res_params.sample_validity);
EXPECT_EQ(mDefaultParams_Binder[INetd::RESOLVER_PARAMS_SUCCESS_THRESHOLD],
res_params.success_threshold);
EXPECT_EQ(mDefaultParams_Binder[INetd::RESOLVER_PARAMS_MIN_SAMPLES], res_params.min_samples);
EXPECT_EQ(mDefaultParams_Binder[INetd::RESOLVER_PARAMS_MAX_SAMPLES], res_params.max_samples);
EXPECT_EQ(mDefaultParams_Binder[INetd::RESOLVER_PARAMS_BASE_TIMEOUT_MSEC],
res_params.base_timeout_msec);
}
TEST_F(ResolverTest, SearchPathChange) {
const char* listen_addr = "127.0.0.13";
const char* listen_srv = "53";
const char* host_name1 = "test13.domain1.org.";
const char* host_name2 = "test13.domain2.org.";
test::DNSResponder dns(listen_addr, listen_srv, 250, ns_rcode::ns_r_servfail);
dns.addMapping(host_name1, ns_type::ns_t_aaaa, "2001:db8::13");
dns.addMapping(host_name2, ns_type::ns_t_aaaa, "2001:db8::1:13");
ASSERT_TRUE(dns.startServer());
std::vector<std::string> servers = { listen_addr };
std::vector<std::string> domains = { "domain1.org" };
ASSERT_TRUE(SetResolversForNetwork(servers, domains, mDefaultParams_Binder));
const addrinfo hints = {.ai_family = AF_INET6};
ScopedAddrinfo result = safe_getaddrinfo("test13", nullptr, &hints);
EXPECT_TRUE(result != nullptr);
EXPECT_EQ(1U, dns.queries().size());
EXPECT_EQ(1U, GetNumQueries(dns, host_name1));
EXPECT_EQ("2001:db8::13", ToString(result));
// Test that changing the domain search path on its own works.
domains = { "domain2.org" };
ASSERT_TRUE(SetResolversForNetwork(servers, domains, mDefaultParams_Binder));
dns.clearQueries();
result = safe_getaddrinfo("test13", nullptr, &hints);
EXPECT_TRUE(result != nullptr);
EXPECT_EQ(1U, dns.queries().size());
EXPECT_EQ(1U, GetNumQueries(dns, host_name2));
EXPECT_EQ("2001:db8::1:13", ToString(result));
}
static std::string base64Encode(const std::vector<uint8_t>& input) {
size_t out_len;
EXPECT_EQ(1, EVP_EncodedLength(&out_len, input.size()));
// out_len includes the trailing NULL.
uint8_t output_bytes[out_len];
EXPECT_EQ(out_len - 1, EVP_EncodeBlock(output_bytes, input.data(), input.size()));
return std::string(reinterpret_cast<char*>(output_bytes));
}
// If we move this function to dns_responder_client, it will complicate the dependency need of
// dns_tls_frontend.h.
static void setupTlsServers(const std::vector<std::string>& servers,
std::vector<std::unique_ptr<test::DnsTlsFrontend>>* tls,
std::vector<std::string>* fingerprints) {
const char* listen_udp = "53";
const char* listen_tls = "853";
for (const auto& server : servers) {
auto t = std::make_unique<test::DnsTlsFrontend>(server, listen_tls, server, listen_udp);
t = std::make_unique<test::DnsTlsFrontend>(server, listen_tls, server, listen_udp);
t->startServer();
fingerprints->push_back(base64Encode(t->fingerprint()));
tls->push_back(std::move(t));
}
}
static void shutdownTlsServers(std::vector<std::unique_ptr<test::DnsTlsFrontend>>* tls) {
for (const auto& t : *tls) {
t->stopServer();
}
tls->clear();
}
TEST_F(ResolverTest, MaxServerPrune_Binder) {
using android::net::INetd;
std::vector<std::string> domains;
std::vector<std::unique_ptr<test::DNSResponder>> dns;
std::vector<std::unique_ptr<test::DnsTlsFrontend>> tls;
std::vector<std::string> servers;
std::vector<std::string> fingerprints;
std::vector<Mapping> mappings;
for (unsigned i = 0; i < MAXDNSRCH + 1; i++) {
domains.push_back(StringPrintf("example%u.com", i));
}
ASSERT_NO_FATAL_FAILURE(SetupMappings(1, domains, &mappings));
ASSERT_NO_FATAL_FAILURE(SetupDNSServers(MAXNS + 1, mappings, &dns, &servers));
ASSERT_NO_FATAL_FAILURE(setupTlsServers(servers, &tls, &fingerprints));
ASSERT_TRUE(SetResolversWithTls(servers, domains, mDefaultParams_Binder, "", fingerprints));
std::vector<std::string> res_servers;
std::vector<std::string> res_domains;
std::vector<std::string> res_tls_servers;
__res_params res_params;
std::vector<ResolverStats> res_stats;
ASSERT_TRUE(
GetResolverInfo(&res_servers, &res_domains, &res_tls_servers, &res_params, &res_stats));
// Check the size of the stats and its contents.
EXPECT_EQ(static_cast<size_t>(MAXNS), res_servers.size());
EXPECT_EQ(static_cast<size_t>(MAXNS), res_tls_servers.size());
EXPECT_EQ(static_cast<size_t>(MAXDNSRCH), res_domains.size());
EXPECT_TRUE(std::equal(servers.begin(), servers.begin() + MAXNS, res_servers.begin()));
EXPECT_TRUE(std::equal(servers.begin(), servers.begin() + MAXNS, res_tls_servers.begin()));
EXPECT_TRUE(std::equal(domains.begin(), domains.begin() + MAXDNSRCH, res_domains.begin()));
ASSERT_NO_FATAL_FAILURE(ShutdownDNSServers(&dns));
ASSERT_NO_FATAL_FAILURE(shutdownTlsServers(&tls));
}
TEST_F(ResolverTest, ResolverStats) {
const char* listen_addr1 = "127.0.0.4";
const char* listen_addr2 = "127.0.0.5";
const char* listen_addr3 = "127.0.0.6";
const char* listen_srv = "53";
const char* host_name = "hello.example.com.";
// Set server 1 timeout.
test::DNSResponder dns1(listen_addr1, listen_srv, 250, static_cast<ns_rcode>(-1));
dns1.setResponseProbability(0.0);
ASSERT_TRUE(dns1.startServer());
// Set server 2 responding server failure.
test::DNSResponder dns2(listen_addr2, listen_srv, 250, ns_rcode::ns_r_servfail);
dns2.setResponseProbability(0.0);
ASSERT_TRUE(dns2.startServer());
// Set server 3 workable.
test::DNSResponder dns3(listen_addr3, listen_srv, 250, ns_rcode::ns_r_servfail);
dns3.addMapping(host_name, ns_type::ns_t_a, "1.2.3.4");
ASSERT_TRUE(dns3.startServer());
std::vector<std::string> servers = {listen_addr1, listen_addr2, listen_addr3};
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
dns3.clearQueries();
addrinfo hints = {.ai_family = AF_INET, .ai_socktype = SOCK_DGRAM};
ScopedAddrinfo result = safe_getaddrinfo("hello", nullptr, &hints);
size_t found = GetNumQueries(dns3, host_name);
EXPECT_LE(1U, found);
std::string result_str = ToString(result);
EXPECT_TRUE(result_str == "1.2.3.4") << ", result_str='" << result_str << "'";
std::vector<std::string> res_servers;
std::vector<std::string> res_domains;
std::vector<std::string> res_tls_servers;
__res_params res_params;
std::vector<ResolverStats> res_stats;
ASSERT_TRUE(
GetResolverInfo(&res_servers, &res_domains, &res_tls_servers, &res_params, &res_stats));
EXPECT_EQ(1, res_stats[0].timeouts);
EXPECT_EQ(1, res_stats[1].errors);
EXPECT_EQ(1, res_stats[2].successes);
dns1.stopServer();
dns2.stopServer();
dns3.stopServer();
}
// Test what happens if the specified TLS server is nonexistent.
TEST_F(ResolverTest, GetHostByName_TlsMissing) {
const char* listen_addr = "127.0.0.3";
const char* listen_srv = "53";
const char* host_name = "tlsmissing.example.com.";
test::DNSResponder dns(listen_addr, listen_srv, 250, ns_rcode::ns_r_servfail);
dns.addMapping(host_name, ns_type::ns_t_a, "1.2.3.3");
ASSERT_TRUE(dns.startServer());
std::vector<std::string> servers = { listen_addr };
// There's nothing listening on this address, so validation will either fail or
/// hang. Either way, queries will continue to flow to the DNSResponder.
ASSERT_TRUE(SetResolversWithTls(servers, mDefaultSearchDomains, mDefaultParams_Binder, "", {}));
const hostent* result;
result = gethostbyname("tlsmissing");
ASSERT_FALSE(result == nullptr);
EXPECT_EQ("1.2.3.3", ToString(result));
// Clear TLS bit.
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
dns.stopServer();
}
// Test what happens if the specified TLS server replies with garbage.
TEST_F(ResolverTest, GetHostByName_TlsBroken) {
const char* listen_addr = "127.0.0.3";
const char* listen_srv = "53";
const char* host_name1 = "tlsbroken1.example.com.";
const char* host_name2 = "tlsbroken2.example.com.";
test::DNSResponder dns(listen_addr, listen_srv, 250, ns_rcode::ns_r_servfail);
dns.addMapping(host_name1, ns_type::ns_t_a, "1.2.3.1");
dns.addMapping(host_name2, ns_type::ns_t_a, "1.2.3.2");
ASSERT_TRUE(dns.startServer());
std::vector<std::string> servers = { listen_addr };
// Bind the specified private DNS socket but don't respond to any client sockets yet.
int s = socket(AF_INET, SOCK_STREAM | SOCK_CLOEXEC, IPPROTO_TCP);
ASSERT_TRUE(s >= 0);
struct sockaddr_in tlsServer = {
.sin_family = AF_INET,
.sin_port = htons(853),
};
ASSERT_TRUE(inet_pton(AF_INET, listen_addr, &tlsServer.sin_addr));
ASSERT_TRUE(enableSockopt(s, SOL_SOCKET, SO_REUSEPORT).ok());
ASSERT_TRUE(enableSockopt(s, SOL_SOCKET, SO_REUSEADDR).ok());
ASSERT_FALSE(bind(s, reinterpret_cast<struct sockaddr*>(&tlsServer), sizeof(tlsServer)));
ASSERT_FALSE(listen(s, 1));
// Trigger TLS validation.
ASSERT_TRUE(SetResolversWithTls(servers, mDefaultSearchDomains, mDefaultParams_Binder, "", {}));
struct sockaddr_storage cliaddr;
socklen_t sin_size = sizeof(cliaddr);
int new_fd = accept4(s, reinterpret_cast<struct sockaddr *>(&cliaddr), &sin_size, SOCK_CLOEXEC);
ASSERT_TRUE(new_fd > 0);
// We've received the new file descriptor but not written to it or closed, so the
// validation is still pending. Queries should still flow correctly because the
// server is not used until validation succeeds.
const hostent* result;
result = gethostbyname("tlsbroken1");
ASSERT_FALSE(result == nullptr);
EXPECT_EQ("1.2.3.1", ToString(result));
// Now we cause the validation to fail.
std::string garbage = "definitely not a valid TLS ServerHello";
write(new_fd, garbage.data(), garbage.size());
close(new_fd);
// Validation failure shouldn't interfere with lookups, because lookups won't be sent
// to the TLS server unless validation succeeds.
result = gethostbyname("tlsbroken2");
ASSERT_FALSE(result == nullptr);
EXPECT_EQ("1.2.3.2", ToString(result));
// Clear TLS bit.
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
dns.stopServer();
close(s);
}
TEST_F(ResolverTest, GetHostByName_Tls) {
const char* listen_addr = "127.0.0.3";
const char* listen_udp = "53";
const char* listen_tls = "853";
const char* host_name1 = "tls1.example.com.";
const char* host_name2 = "tls2.example.com.";
const char* host_name3 = "tls3.example.com.";
test::DNSResponder dns(listen_addr, listen_udp, 250, ns_rcode::ns_r_servfail);
dns.addMapping(host_name1, ns_type::ns_t_a, "1.2.3.1");
dns.addMapping(host_name2, ns_type::ns_t_a, "1.2.3.2");
dns.addMapping(host_name3, ns_type::ns_t_a, "1.2.3.3");
ASSERT_TRUE(dns.startServer());
std::vector<std::string> servers = { listen_addr };
test::DnsTlsFrontend tls(listen_addr, listen_tls, listen_addr, listen_udp);
ASSERT_TRUE(tls.startServer());
ASSERT_TRUE(SetResolversWithTls(servers, mDefaultSearchDomains, mDefaultParams_Binder, "", {}));
const hostent* result;
// Wait for validation to complete.
EXPECT_TRUE(tls.waitForQueries(1, 5000));
result = gethostbyname("tls1");
ASSERT_FALSE(result == nullptr);
EXPECT_EQ("1.2.3.1", ToString(result));
// Wait for query to get counted.
EXPECT_TRUE(tls.waitForQueries(2, 5000));
// Stop the TLS server. Since we're in opportunistic mode, queries will
// fall back to the locally-assigned (clear text) nameservers.
tls.stopServer();
dns.clearQueries();
result = gethostbyname("tls2");
EXPECT_FALSE(result == nullptr);
EXPECT_EQ("1.2.3.2", ToString(result));
const auto queries = dns.queries();
EXPECT_EQ(1U, queries.size());
EXPECT_EQ("tls2.example.com.", queries[0].first);
EXPECT_EQ(ns_t_a, queries[0].second);
// Reset the resolvers without enabling TLS. Queries should still be routed
// to the UDP endpoint.
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
result = gethostbyname("tls3");
ASSERT_FALSE(result == nullptr);
EXPECT_EQ("1.2.3.3", ToString(result));
dns.stopServer();
}
TEST_F(ResolverTest, GetHostByName_TlsFingerprint) {
const char* listen_addr = "127.0.0.3";
const char* listen_udp = "53";
const char* listen_tls = "853";
test::DNSResponder dns(listen_addr, listen_udp, 250, ns_rcode::ns_r_servfail);
ASSERT_TRUE(dns.startServer());
for (int chain_length = 1; chain_length <= 3; ++chain_length) {
std::string host_name = StringPrintf("tlsfingerprint%d.example.com.", chain_length);
dns.addMapping(host_name, ns_type::ns_t_a, "1.2.3.1");
std::vector<std::string> servers = { listen_addr };
test::DnsTlsFrontend tls(listen_addr, listen_tls, listen_addr, listen_udp);
tls.set_chain_length(chain_length);
ASSERT_TRUE(tls.startServer());
ASSERT_TRUE(SetResolversWithTls(servers, mDefaultSearchDomains, mDefaultParams_Binder, "",
{ base64Encode(tls.fingerprint()) }));
const hostent* result;
// Wait for validation to complete.
EXPECT_TRUE(tls.waitForQueries(1, 5000));
result = gethostbyname(StringPrintf("tlsfingerprint%d", chain_length).c_str());
EXPECT_FALSE(result == nullptr);
if (result) {
EXPECT_EQ("1.2.3.1", ToString(result));
// Wait for query to get counted.
EXPECT_TRUE(tls.waitForQueries(2, 5000));
}
// Clear TLS bit to ensure revalidation.
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
tls.stopServer();
}
dns.stopServer();
}
TEST_F(ResolverTest, GetHostByName_BadTlsFingerprint) {
const char* listen_addr = "127.0.0.3";
const char* listen_udp = "53";
const char* listen_tls = "853";
const char* host_name = "badtlsfingerprint.example.com.";
test::DNSResponder dns(listen_addr, listen_udp, 250, ns_rcode::ns_r_servfail);
dns.addMapping(host_name, ns_type::ns_t_a, "1.2.3.1");
ASSERT_TRUE(dns.startServer());
std::vector<std::string> servers = { listen_addr };
test::DnsTlsFrontend tls(listen_addr, listen_tls, listen_addr, listen_udp);
ASSERT_TRUE(tls.startServer());
std::vector<uint8_t> bad_fingerprint = tls.fingerprint();
bad_fingerprint[5] += 1; // Corrupt the fingerprint.
ASSERT_TRUE(SetResolversWithTls(servers, mDefaultSearchDomains, mDefaultParams_Binder, "",
{ base64Encode(bad_fingerprint) }));
// The initial validation should fail at the fingerprint check before
// issuing a query.
EXPECT_FALSE(tls.waitForQueries(1, 500));
// A fingerprint was provided and failed to match, so the query should fail.
EXPECT_EQ(nullptr, gethostbyname("badtlsfingerprint"));
// Clear TLS bit.
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
tls.stopServer();
dns.stopServer();
}
// Test that we can pass two different fingerprints, and connection succeeds as long as
// at least one of them matches the server.
TEST_F(ResolverTest, GetHostByName_TwoTlsFingerprints) {
const char* listen_addr = "127.0.0.3";
const char* listen_udp = "53";
const char* listen_tls = "853";
const char* host_name = "twotlsfingerprints.example.com.";
test::DNSResponder dns(listen_addr, listen_udp, 250, ns_rcode::ns_r_servfail);
dns.addMapping(host_name, ns_type::ns_t_a, "1.2.3.1");
ASSERT_TRUE(dns.startServer());
std::vector<std::string> servers = { listen_addr };
test::DnsTlsFrontend tls(listen_addr, listen_tls, listen_addr, listen_udp);
ASSERT_TRUE(tls.startServer());
std::vector<uint8_t> bad_fingerprint = tls.fingerprint();
bad_fingerprint[5] += 1; // Corrupt the fingerprint.
ASSERT_TRUE(SetResolversWithTls(servers, mDefaultSearchDomains, mDefaultParams_Binder, "",
{ base64Encode(bad_fingerprint), base64Encode(tls.fingerprint()) }));
const hostent* result;
// Wait for validation to complete.
EXPECT_TRUE(tls.waitForQueries(1, 5000));
result = gethostbyname("twotlsfingerprints");
ASSERT_FALSE(result == nullptr);
EXPECT_EQ("1.2.3.1", ToString(result));
// Wait for query to get counted.
EXPECT_TRUE(tls.waitForQueries(2, 5000));
// Clear TLS bit.
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
tls.stopServer();
dns.stopServer();
}
TEST_F(ResolverTest, GetHostByName_TlsFingerprintGoesBad) {
const char* listen_addr = "127.0.0.3";
const char* listen_udp = "53";
const char* listen_tls = "853";
const char* host_name1 = "tlsfingerprintgoesbad1.example.com.";
const char* host_name2 = "tlsfingerprintgoesbad2.example.com.";
test::DNSResponder dns(listen_addr, listen_udp, 250, ns_rcode::ns_r_servfail);
dns.addMapping(host_name1, ns_type::ns_t_a, "1.2.3.1");
dns.addMapping(host_name2, ns_type::ns_t_a, "1.2.3.2");
ASSERT_TRUE(dns.startServer());
std::vector<std::string> servers = { listen_addr };
test::DnsTlsFrontend tls(listen_addr, listen_tls, listen_addr, listen_udp);
ASSERT_TRUE(tls.startServer());
ASSERT_TRUE(SetResolversWithTls(servers, mDefaultSearchDomains, mDefaultParams_Binder, "",
{ base64Encode(tls.fingerprint()) }));
const hostent* result;
// Wait for validation to complete.
EXPECT_TRUE(tls.waitForQueries(1, 5000));
result = gethostbyname("tlsfingerprintgoesbad1");
ASSERT_FALSE(result == nullptr);
EXPECT_EQ("1.2.3.1", ToString(result));
// Wait for query to get counted.
EXPECT_TRUE(tls.waitForQueries(2, 5000));
// Restart the TLS server. This will generate a new certificate whose fingerprint
// no longer matches the stored fingerprint.
tls.stopServer();
tls.startServer();
result = gethostbyname("tlsfingerprintgoesbad2");
ASSERT_TRUE(result == nullptr);
EXPECT_EQ(HOST_NOT_FOUND, h_errno);
// Clear TLS bit.
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
tls.stopServer();
dns.stopServer();
}
TEST_F(ResolverTest, GetHostByName_TlsFailover) {
const char* listen_addr1 = "127.0.0.3";
const char* listen_addr2 = "127.0.0.4";
const char* listen_udp = "53";
const char* listen_tls = "853";
const char* host_name1 = "tlsfailover1.example.com.";
const char* host_name2 = "tlsfailover2.example.com.";
test::DNSResponder dns1(listen_addr1, listen_udp, 250, ns_rcode::ns_r_servfail);
test::DNSResponder dns2(listen_addr2, listen_udp, 250, ns_rcode::ns_r_servfail);
dns1.addMapping(host_name1, ns_type::ns_t_a, "1.2.3.1");
dns1.addMapping(host_name2, ns_type::ns_t_a, "1.2.3.2");
dns2.addMapping(host_name1, ns_type::ns_t_a, "1.2.3.3");
dns2.addMapping(host_name2, ns_type::ns_t_a, "1.2.3.4");
ASSERT_TRUE(dns1.startServer());
ASSERT_TRUE(dns2.startServer());
std::vector<std::string> servers = { listen_addr1, listen_addr2 };
test::DnsTlsFrontend tls1(listen_addr1, listen_tls, listen_addr1, listen_udp);
test::DnsTlsFrontend tls2(listen_addr2, listen_tls, listen_addr2, listen_udp);
ASSERT_TRUE(tls1.startServer());
ASSERT_TRUE(tls2.startServer());
ASSERT_TRUE(SetResolversWithTls(servers, mDefaultSearchDomains, mDefaultParams_Binder, "",
{ base64Encode(tls1.fingerprint()), base64Encode(tls2.fingerprint()) }));
const hostent* result;
// Wait for validation to complete.
EXPECT_TRUE(tls1.waitForQueries(1, 5000));
EXPECT_TRUE(tls2.waitForQueries(1, 5000));
result = gethostbyname("tlsfailover1");
ASSERT_FALSE(result == nullptr);
EXPECT_EQ("1.2.3.1", ToString(result));
// Wait for query to get counted.
EXPECT_TRUE(tls1.waitForQueries(2, 5000));
// No new queries should have reached tls2.
EXPECT_EQ(1, tls2.queries());
// Stop tls1. Subsequent queries should attempt to reach tls1, fail, and retry to tls2.
tls1.stopServer();
result = gethostbyname("tlsfailover2");
EXPECT_EQ("1.2.3.4", ToString(result));
// Wait for query to get counted.
EXPECT_TRUE(tls2.waitForQueries(2, 5000));
// No additional queries should have reached the insecure servers.
EXPECT_EQ(2U, dns1.queries().size());
EXPECT_EQ(2U, dns2.queries().size());
// Clear TLS bit.
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
tls2.stopServer();
dns1.stopServer();
dns2.stopServer();
}
TEST_F(ResolverTest, GetHostByName_BadTlsName) {
const char* listen_addr = "127.0.0.3";
const char* listen_udp = "53";
const char* listen_tls = "853";
const char* host_name = "badtlsname.example.com.";
test::DNSResponder dns(listen_addr, listen_udp, 250, ns_rcode::ns_r_servfail);
dns.addMapping(host_name, ns_type::ns_t_a, "1.2.3.1");
ASSERT_TRUE(dns.startServer());
std::vector<std::string> servers = { listen_addr };
test::DnsTlsFrontend tls(listen_addr, listen_tls, listen_addr, listen_udp);
ASSERT_TRUE(tls.startServer());
ASSERT_TRUE(SetResolversWithTls(servers, mDefaultSearchDomains, mDefaultParams_Binder,
"www.example.com", {}));
// The TLS server's certificate doesn't chain to a known CA, and a nonempty name was specified,
// so the client should fail the TLS handshake before ever issuing a query.
EXPECT_FALSE(tls.waitForQueries(1, 500));
// The query should fail hard, because a name was specified.
EXPECT_EQ(nullptr, gethostbyname("badtlsname"));
// Clear TLS bit.
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
tls.stopServer();
dns.stopServer();
}
TEST_F(ResolverTest, GetAddrInfo_Tls) {
const char* listen_addr = "127.0.0.3";
const char* listen_udp = "53";
const char* listen_tls = "853";
const char* host_name = "addrinfotls.example.com.";
test::DNSResponder dns(listen_addr, listen_udp, 250, ns_rcode::ns_r_servfail);
dns.addMapping(host_name, ns_type::ns_t_a, "1.2.3.4");
dns.addMapping(host_name, ns_type::ns_t_aaaa, "::1.2.3.4");
ASSERT_TRUE(dns.startServer());
std::vector<std::string> servers = { listen_addr };
test::DnsTlsFrontend tls(listen_addr, listen_tls, listen_addr, listen_udp);
ASSERT_TRUE(tls.startServer());
ASSERT_TRUE(SetResolversWithTls(servers, mDefaultSearchDomains, mDefaultParams_Binder, "",
{ base64Encode(tls.fingerprint()) }));
// Wait for validation to complete.
EXPECT_TRUE(tls.waitForQueries(1, 5000));
dns.clearQueries();
ScopedAddrinfo result = safe_getaddrinfo("addrinfotls", nullptr, nullptr);
EXPECT_TRUE(result != nullptr);
size_t found = GetNumQueries(dns, host_name);
EXPECT_LE(1U, found);
// Could be A or AAAA
std::string result_str = ToString(result);
EXPECT_TRUE(result_str == "1.2.3.4" || result_str == "::1.2.3.4")
<< ", result_str='" << result_str << "'";
// Wait for both A and AAAA queries to get counted.
EXPECT_TRUE(tls.waitForQueries(3, 5000));
// Clear TLS bit.
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
tls.stopServer();
dns.stopServer();
}
TEST_F(ResolverTest, TlsBypass) {
const char OFF[] = "off";
const char OPPORTUNISTIC[] = "opportunistic";
const char STRICT[] = "strict";
const char GETHOSTBYNAME[] = "gethostbyname";
const char GETADDRINFO[] = "getaddrinfo";
const char GETADDRINFOFORNET[] = "getaddrinfofornet";
const unsigned BYPASS_NETID = NETID_USE_LOCAL_NAMESERVERS | TEST_NETID;
const std::vector<uint8_t> NOOP_FINGERPRINT(SHA256_SIZE, 0U);
const char ADDR4[] = "192.0.2.1";
const char ADDR6[] = "2001:db8::1";
const char cleartext_addr[] = "127.0.0.53";
const char cleartext_port[] = "53";
const char tls_port[] = "853";
const std::vector<std::string> servers = { cleartext_addr };
test::DNSResponder dns(cleartext_addr, cleartext_port, 250, ns_rcode::ns_r_servfail);
ASSERT_TRUE(dns.startServer());
test::DnsTlsFrontend tls(cleartext_addr, tls_port, cleartext_addr, cleartext_port);
struct TestConfig {
const std::string mode;
const bool withWorkingTLS;
const std::string method;
std::string asHostName() const {
return StringPrintf("%s.%s.%s.",
mode.c_str(),
withWorkingTLS ? "tlsOn" : "tlsOff",
method.c_str());
}
} testConfigs[]{
{OFF, false, GETHOSTBYNAME},
{OPPORTUNISTIC, false, GETHOSTBYNAME},
{STRICT, false, GETHOSTBYNAME},
{OFF, true, GETHOSTBYNAME},
{OPPORTUNISTIC, true, GETHOSTBYNAME},
{STRICT, true, GETHOSTBYNAME},
{OFF, false, GETADDRINFO},
{OPPORTUNISTIC, false, GETADDRINFO},
{STRICT, false, GETADDRINFO},
{OFF, true, GETADDRINFO},
{OPPORTUNISTIC, true, GETADDRINFO},
{STRICT, true, GETADDRINFO},
{OFF, false, GETADDRINFOFORNET},
{OPPORTUNISTIC, false, GETADDRINFOFORNET},
{STRICT, false, GETADDRINFOFORNET},
{OFF, true, GETADDRINFOFORNET},
{OPPORTUNISTIC, true, GETADDRINFOFORNET},
{STRICT, true, GETADDRINFOFORNET},
};
for (const auto& config : testConfigs) {
const std::string testHostName = config.asHostName();
SCOPED_TRACE(testHostName);
// Don't tempt test bugs due to caching.
const char* host_name = testHostName.c_str();
dns.addMapping(host_name, ns_type::ns_t_a, ADDR4);
dns.addMapping(host_name, ns_type::ns_t_aaaa, ADDR6);
if (config.withWorkingTLS) ASSERT_TRUE(tls.startServer());
if (config.mode == OFF) {
ASSERT_TRUE(SetResolversForNetwork(
servers, mDefaultSearchDomains, mDefaultParams_Binder));
} else if (config.mode == OPPORTUNISTIC) {
ASSERT_TRUE(SetResolversWithTls(
servers, mDefaultSearchDomains, mDefaultParams_Binder, "", {}));
// Wait for validation to complete.
if (config.withWorkingTLS) EXPECT_TRUE(tls.waitForQueries(1, 5000));
} else if (config.mode == STRICT) {
// We use the existence of fingerprints to trigger strict mode,
// rather than hostname validation.
const auto& fingerprint =
(config.withWorkingTLS) ? tls.fingerprint() : NOOP_FINGERPRINT;
ASSERT_TRUE(SetResolversWithTls(
servers, mDefaultSearchDomains, mDefaultParams_Binder, "",
{ base64Encode(fingerprint) }));
// Wait for validation to complete.
if (config.withWorkingTLS) EXPECT_TRUE(tls.waitForQueries(1, 5000));
} else {
FAIL() << "Unsupported Private DNS mode: " << config.mode;
}
const int tlsQueriesBefore = tls.queries();
const hostent* h_result = nullptr;
ScopedAddrinfo ai_result;
if (config.method == GETHOSTBYNAME) {
ASSERT_EQ(0, setNetworkForResolv(BYPASS_NETID));
h_result = gethostbyname(host_name);
EXPECT_EQ(1U, GetNumQueriesForType(dns, ns_type::ns_t_a, host_name));
ASSERT_FALSE(h_result == nullptr);
ASSERT_EQ(4, h_result->h_length);
ASSERT_FALSE(h_result->h_addr_list[0] == nullptr);
EXPECT_EQ(ADDR4, ToString(h_result));
EXPECT_TRUE(h_result->h_addr_list[1] == nullptr);
} else if (config.method == GETADDRINFO) {
ASSERT_EQ(0, setNetworkForResolv(BYPASS_NETID));
ai_result = safe_getaddrinfo(host_name, nullptr, nullptr);
EXPECT_TRUE(ai_result != nullptr);
EXPECT_LE(1U, GetNumQueries(dns, host_name));
// Could be A or AAAA
const std::string result_str = ToString(ai_result);
EXPECT_TRUE(result_str == ADDR4 || result_str == ADDR6)
<< ", result_str='" << result_str << "'";
} else if (config.method == GETADDRINFOFORNET) {
addrinfo* raw_ai_result = nullptr;
EXPECT_EQ(0, android_getaddrinfofornet(host_name, /*servname=*/nullptr,
/*hints=*/nullptr, BYPASS_NETID, MARK_UNSET,
&raw_ai_result));
ai_result.reset(raw_ai_result);
EXPECT_LE(1U, GetNumQueries(dns, host_name));
// Could be A or AAAA
const std::string result_str = ToString(ai_result);
EXPECT_TRUE(result_str == ADDR4 || result_str == ADDR6)
<< ", result_str='" << result_str << "'";
} else {
FAIL() << "Unsupported query method: " << config.method;
}
const int tlsQueriesAfter = tls.queries();
EXPECT_EQ(0, tlsQueriesAfter - tlsQueriesBefore);
// Clear per-process resolv netid.
ASSERT_EQ(0, setNetworkForResolv(NETID_UNSET));
tls.stopServer();
dns.clearQueries();
}
dns.stopServer();
}
TEST_F(ResolverTest, StrictMode_NoTlsServers) {
const std::vector<uint8_t> NOOP_FINGERPRINT(SHA256_SIZE, 0U);
const char cleartext_addr[] = "127.0.0.53";
const char cleartext_port[] = "53";
const std::vector<std::string> servers = { cleartext_addr };
test::DNSResponder dns(cleartext_addr, cleartext_port, 250, ns_rcode::ns_r_servfail);
const char* host_name = "strictmode.notlsips.example.com.";
dns.addMapping(host_name, ns_type::ns_t_a, "1.2.3.4");
dns.addMapping(host_name, ns_type::ns_t_aaaa, "::1.2.3.4");
ASSERT_TRUE(dns.startServer());
ASSERT_TRUE(SetResolversWithTls(
servers, mDefaultSearchDomains, mDefaultParams_Binder,
{}, "", { base64Encode(NOOP_FINGERPRINT) }));
addrinfo* ai_result = nullptr;
EXPECT_NE(0, getaddrinfo(host_name, nullptr, nullptr, &ai_result));
EXPECT_EQ(0U, GetNumQueries(dns, host_name));
}
namespace {
int getAsyncResponse(int fd, int* rcode, u_char* buf, int bufLen) {
struct pollfd wait_fd[1];
wait_fd[0].fd = fd;
wait_fd[0].events = POLLIN;
short revents;
int ret;
ret = poll(wait_fd, 1, -1);
revents = wait_fd[0].revents;
if (revents & POLLIN) {
int n = resNetworkResult(fd, rcode, buf, bufLen);
return n;
}
return -1;
}
std::string toString(u_char* buf, int bufLen, int ipType) {
ns_msg handle;
int ancount, n = 0;
ns_rr rr;
if (ns_initparse((const uint8_t*) buf, bufLen, &handle) >= 0) {
ancount = ns_msg_count(handle, ns_s_an);
if (ns_parserr(&handle, ns_s_an, n, &rr) == 0) {
const u_char* rdata = ns_rr_rdata(rr);
char buffer[INET6_ADDRSTRLEN];
if (inet_ntop(ipType, (const char*) rdata, buffer, sizeof(buffer))) {
return buffer;
}
}
}
return "";
}
int dns_open_proxy() {
int s = socket(AF_UNIX, SOCK_STREAM | SOCK_CLOEXEC, 0);
if (s == -1) {
return -1;
}
const int one = 1;
setsockopt(s, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
static const struct sockaddr_un proxy_addr = {
.sun_family = AF_UNIX,
.sun_path = "/dev/socket/dnsproxyd",
};
if (TEMP_FAILURE_RETRY(connect(s, (const struct sockaddr*) &proxy_addr, sizeof(proxy_addr))) !=
0) {
close(s);
return -1;
}
return s;
}
} // namespace
TEST_F(ResolverTest, Async_NormalQueryV4V6) {
const char listen_addr[] = "127.0.0.4";
const char listen_srv[] = "53";
const char host_name[] = "howdy.example.com.";
test::DNSResponder dns(listen_addr, listen_srv, 250, ns_rcode::ns_r_servfail);
dns.addMapping(host_name, ns_type::ns_t_a, "1.2.3.4");
dns.addMapping(host_name, ns_type::ns_t_aaaa, "::1.2.3.4");
ASSERT_TRUE(dns.startServer());
std::vector<std::string> servers = {listen_addr};
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
dns.clearQueries();
int fd1 = resNetworkQuery(TEST_NETID, "howdy.example.com", 1, 1, 0); // Type A 1
int fd2 = resNetworkQuery(TEST_NETID, "howdy.example.com", 1, 28, 0); // Type AAAA 28
EXPECT_TRUE(fd1 != -1);
EXPECT_TRUE(fd2 != -1);
u_char buf[MAXPACKET] = {};
int rcode;
int res = getAsyncResponse(fd2, &rcode, buf, MAXPACKET);
EXPECT_GT(res, 0);
EXPECT_EQ("::1.2.3.4", toString(buf, res, AF_INET6));
res = getAsyncResponse(fd1, &rcode, buf, MAXPACKET);
EXPECT_GT(res, 0);
EXPECT_EQ("1.2.3.4", toString(buf, res, AF_INET));
EXPECT_EQ(2U, GetNumQueries(dns, host_name));
// Re-query verify cache works
fd1 = resNetworkQuery(TEST_NETID, "howdy.example.com", 1, 1, 0); // Type A 1
fd2 = resNetworkQuery(TEST_NETID, "howdy.example.com", 1, 28, 0); // Type AAAA 28
EXPECT_TRUE(fd1 != -1);
EXPECT_TRUE(fd2 != -1);
res = getAsyncResponse(fd2, &rcode, buf, MAXPACKET);
EXPECT_GT(res, 0);
EXPECT_EQ("::1.2.3.4", toString(buf, res, AF_INET6));
res = getAsyncResponse(fd1, &rcode, buf, MAXPACKET);
EXPECT_GT(res, 0);
EXPECT_EQ("1.2.3.4", toString(buf, res, AF_INET));
EXPECT_EQ(2U, GetNumQueries(dns, host_name));
}
TEST_F(ResolverTest, Async_BadQuery) {
const char listen_addr[] = "127.0.0.4";
const char listen_srv[] = "53";
const char host_name[] = "howdy.example.com.";
test::DNSResponder dns(listen_addr, listen_srv, 250, ns_rcode::ns_r_servfail);
dns.addMapping(host_name, ns_type::ns_t_a, "1.2.3.4");
dns.addMapping(host_name, ns_type::ns_t_aaaa, "::1.2.3.4");
ASSERT_TRUE(dns.startServer());
std::vector<std::string> servers = {listen_addr};
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
dns.clearQueries();
static struct {
int fd;
const char* dname;
const int queryType;
const int expectRcode;
} kTestData[] = {
{-1, "", T_AAAA, 0},
{-1, "as65ass46", T_AAAA, 0},
{-1, "454564564564", T_AAAA, 0},
{-1, "h645235", T_A, 0},
{-1, "www.google.com", T_A, 0},
};
for (auto& td : kTestData) {
SCOPED_TRACE(td.dname);
td.fd = resNetworkQuery(TEST_NETID, td.dname, 1, td.queryType, 0);
EXPECT_TRUE(td.fd != -1);
}
// dns_responder return empty resp(packet only contains query part) with no error currently
for (const auto& td : kTestData) {
u_char buf[MAXPACKET] = {};
int rcode;
SCOPED_TRACE(td.dname);
int res = getAsyncResponse(td.fd, &rcode, buf, MAXPACKET);
EXPECT_GT(res, 0);
EXPECT_EQ(rcode, td.expectRcode);
}
}
TEST_F(ResolverTest, Async_EmptyAnswer) {
const char listen_addr[] = "127.0.0.4";
const char listen_srv[] = "53";
const char host_name[] = "howdy.example.com.";
test::DNSResponder dns(listen_addr, listen_srv, 250, static_cast<ns_rcode>(-1));
dns.addMapping(host_name, ns_type::ns_t_a, "1.2.3.4");
dns.addMapping(host_name, ns_type::ns_t_aaaa, "::1.2.3.4");
ASSERT_TRUE(dns.startServer());
std::vector<std::string> servers = {listen_addr};
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
dns.clearQueries();
// TODO: Disable retry to make this test explicit.
auto& cv = dns.getCv();
auto& cvMutex = dns.getCvMutex();
int fd1;
// Wait on the condition variable to ensure that the DNS server has handled our first query.
{
std::unique_lock lk(cvMutex);
// A 1 AAAA 28
fd1 = resNetworkQuery(TEST_NETID, "howdy.example.com", 1, 28, 0);
EXPECT_TRUE(fd1 != -1);
EXPECT_EQ(std::cv_status::no_timeout, cv.wait_for(lk, std::chrono::seconds(1)));
}
dns.setResponseProbability(0.0);
int fd2 = resNetworkQuery(TEST_NETID, "howdy.example.com", 1, 1, 0);
EXPECT_TRUE(fd2 != -1);
int fd3 = resNetworkQuery(TEST_NETID, "howdy.example.com", 1, 1, 0);
EXPECT_TRUE(fd3 != -1);
uint8_t buf[MAXPACKET] = {};
int rcode;
// expect no response
int res = getAsyncResponse(fd3, &rcode, buf, MAXPACKET);
EXPECT_EQ(-ETIMEDOUT, res);
// expect no response
memset(buf, 0, MAXPACKET);
res = getAsyncResponse(fd2, &rcode, buf, MAXPACKET);
EXPECT_EQ(-ETIMEDOUT, res);
dns.setResponseProbability(1.0);
int fd4 = resNetworkQuery(TEST_NETID, "howdy.example.com", 1, 1, 0);
EXPECT_TRUE(fd4 != -1);
memset(buf, 0, MAXPACKET);
res = getAsyncResponse(fd4, &rcode, buf, MAXPACKET);
EXPECT_GT(res, 0);
EXPECT_EQ("1.2.3.4", toString(buf, res, AF_INET));
memset(buf, 0, MAXPACKET);
res = getAsyncResponse(fd1, &rcode, buf, MAXPACKET);
EXPECT_GT(res, 0);
EXPECT_EQ("::1.2.3.4", toString(buf, res, AF_INET6));
}
TEST_F(ResolverTest, Async_MalformedQuery) {
const char listen_addr[] = "127.0.0.4";
const char listen_srv[] = "53";
const char host_name[] = "howdy.example.com.";
test::DNSResponder dns(listen_addr, listen_srv, 250, ns_rcode::ns_r_servfail);
dns.addMapping(host_name, ns_type::ns_t_a, "1.2.3.4");
dns.addMapping(host_name, ns_type::ns_t_aaaa, "::1.2.3.4");
ASSERT_TRUE(dns.startServer());
std::vector<std::string> servers = {listen_addr};
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
dns.clearQueries();
int fd = dns_open_proxy();
EXPECT_TRUE(fd > 0);
const std::string badMsg = "16-52512#";
static struct {
const std::string cmd;
const int expectErr;
} kTestData[] = {
// Less arguement
{"resnsend " + badMsg + '\0', -EINVAL},
// Bad netId
{"resnsend " + badMsg + " badnetId" + '\0', -EINVAL},
// Bad raw data
{"resnsend " + badMsg + " " + std::to_string(TEST_NETID) + '\0', -EILSEQ},
};
for (unsigned int i = 0; i < std::size(kTestData); i++) {
auto& td = kTestData[i];
SCOPED_TRACE(td.cmd);
ssize_t rc = TEMP_FAILURE_RETRY(write(fd, td.cmd.c_str(), td.cmd.size()));
EXPECT_EQ(rc, static_cast<ssize_t>(td.cmd.size()));
int32_t tmp;
rc = TEMP_FAILURE_RETRY(read(fd, &tmp, sizeof(tmp)));
EXPECT_TRUE(rc > 0);
EXPECT_EQ(static_cast<int>(ntohl(tmp)), td.expectErr);
}
// Normal query with answer buffer
// This is raw data of query "howdy.example.com" type 1 class 1
std::string query = "81sBAAABAAAAAAAABWhvd2R5B2V4YW1wbGUDY29tAAABAAE=";
std::string cmd = "resnsend " + query + " " + std::to_string(TEST_NETID) + '\0';
ssize_t rc = TEMP_FAILURE_RETRY(write(fd, cmd.c_str(), cmd.size()));
EXPECT_EQ(rc, static_cast<ssize_t>(cmd.size()));
u_char smallBuf[1] = {};
int rcode;
rc = getAsyncResponse(fd, &rcode, smallBuf, 1);
EXPECT_EQ(rc, -EMSGSIZE);
// Do the normal test with large buffer again
fd = dns_open_proxy();
EXPECT_TRUE(fd > 0);
rc = TEMP_FAILURE_RETRY(write(fd, cmd.c_str(), cmd.size()));
EXPECT_EQ(rc, static_cast<ssize_t>(cmd.size()));
u_char buf[MAXPACKET] = {};
rc = getAsyncResponse(fd, &rcode, buf, MAXPACKET);
EXPECT_EQ("1.2.3.4", toString(buf, rc, AF_INET));
}
// This test checks that the resolver should not generate the request containing OPT RR when using
// cleartext DNS. If we query the DNS server not supporting EDNS0 and it reponds with FORMERR, we
// will fallback to no EDNS0 and try again. If the server does no response, we won't retry so that
// we get no answer.
TEST_F(ResolverTest, BrokenEdns) {
typedef test::DNSResponder::Edns Edns;
enum ExpectResult { EXPECT_FAILURE, EXPECT_SUCCESS };
const char OFF[] = "off";
const char OPPORTUNISTIC_UDP[] = "opportunistic_udp";
const char OPPORTUNISTIC_TLS[] = "opportunistic_tls";
const char STRICT[] = "strict";
const char GETHOSTBYNAME[] = "gethostbyname";
const char GETADDRINFO[] = "getaddrinfo";
const std::vector<uint8_t> NOOP_FINGERPRINT(SHA256_SIZE, 0U);
const char ADDR4[] = "192.0.2.1";
const char CLEARTEXT_ADDR[] = "127.0.0.53";
const char CLEARTEXT_PORT[] = "53";
const char TLS_PORT[] = "853";
const std::vector<std::string> servers = { CLEARTEXT_ADDR };
test::DNSResponder dns(CLEARTEXT_ADDR, CLEARTEXT_PORT, 250, ns_rcode::ns_r_servfail);
ASSERT_TRUE(dns.startServer());
test::DnsTlsFrontend tls(CLEARTEXT_ADDR, TLS_PORT, CLEARTEXT_ADDR, CLEARTEXT_PORT);
static const struct TestConfig {
std::string mode;
std::string method;
Edns edns;
ExpectResult expectResult;
std::string asHostName() const {
const char* ednsString;
switch (edns) {
case Edns::ON:
ednsString = "ednsOn";
break;
case Edns::FORMERR:
ednsString = "ednsFormerr";
break;
case Edns::DROP:
ednsString = "ednsDrop";
break;
default:
ednsString = "";
break;
}
return StringPrintf("%s.%s.%s.", mode.c_str(), method.c_str(), ednsString);
}
} testConfigs[] = {
// In OPPORTUNISTIC_TLS, we get no answer if the DNS server supports TLS but not EDNS0.
// Could such server exist? if so, we might need to fallback to query cleartext DNS.
// Another thing is that {OPPORTUNISTIC_TLS, Edns::DROP} and {STRICT, Edns::DROP} are
// commented out since TLS timeout is not configurable.
// TODO: Uncomment them after TLS timeout is configurable.
{OFF, GETHOSTBYNAME, Edns::ON, EXPECT_SUCCESS},
{OPPORTUNISTIC_UDP, GETHOSTBYNAME, Edns::ON, EXPECT_SUCCESS},
{OPPORTUNISTIC_TLS, GETHOSTBYNAME, Edns::ON, EXPECT_SUCCESS},
{STRICT, GETHOSTBYNAME, Edns::ON, EXPECT_SUCCESS},
{OFF, GETHOSTBYNAME, Edns::FORMERR, EXPECT_SUCCESS},
{OPPORTUNISTIC_UDP, GETHOSTBYNAME, Edns::FORMERR, EXPECT_SUCCESS},
{OPPORTUNISTIC_TLS, GETHOSTBYNAME, Edns::FORMERR, EXPECT_FAILURE},
{STRICT, GETHOSTBYNAME, Edns::FORMERR, EXPECT_FAILURE},
{OFF, GETHOSTBYNAME, Edns::DROP, EXPECT_SUCCESS},
{OPPORTUNISTIC_UDP, GETHOSTBYNAME, Edns::DROP, EXPECT_SUCCESS},
//{OPPORTUNISTIC_TLS, GETHOSTBYNAME, Edns::DROP, EXPECT_FAILURE},
//{STRICT, GETHOSTBYNAME, Edns::DROP, EXPECT_FAILURE},
{OFF, GETADDRINFO, Edns::ON, EXPECT_SUCCESS},
{OPPORTUNISTIC_UDP, GETADDRINFO, Edns::ON, EXPECT_SUCCESS},
{OPPORTUNISTIC_TLS, GETADDRINFO, Edns::ON, EXPECT_SUCCESS},
{STRICT, GETADDRINFO, Edns::ON, EXPECT_SUCCESS},
{OFF, GETADDRINFO, Edns::FORMERR, EXPECT_SUCCESS},
{OPPORTUNISTIC_UDP, GETADDRINFO, Edns::FORMERR, EXPECT_SUCCESS},
{OPPORTUNISTIC_TLS, GETADDRINFO, Edns::FORMERR, EXPECT_FAILURE},
{STRICT, GETADDRINFO, Edns::FORMERR, EXPECT_FAILURE},
{OFF, GETADDRINFO, Edns::DROP, EXPECT_SUCCESS},
{OPPORTUNISTIC_UDP, GETADDRINFO, Edns::DROP, EXPECT_SUCCESS},
//{OPPORTUNISTIC_TLS, GETADDRINFO, Edns::DROP, EXPECT_FAILURE},
//{STRICT, GETADDRINFO, Edns::DROP, EXPECT_FAILURE},
};
for (const auto& config : testConfigs) {
const std::string testHostName = config.asHostName();
SCOPED_TRACE(testHostName);
const char* host_name = testHostName.c_str();
dns.addMapping(host_name, ns_type::ns_t_a, ADDR4);
dns.setEdns(config.edns);
if (config.mode == OFF) {
ASSERT_TRUE(
SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
} else if (config.mode == OPPORTUNISTIC_UDP) {
ASSERT_TRUE(SetResolversWithTls(servers, mDefaultSearchDomains, mDefaultParams_Binder,
"", {}));
} else if (config.mode == OPPORTUNISTIC_TLS) {
ASSERT_TRUE(tls.startServer());
ASSERT_TRUE(SetResolversWithTls(servers, mDefaultSearchDomains, mDefaultParams_Binder,
"", {}));
// Wait for validation to complete.
EXPECT_TRUE(tls.waitForQueries(1, 5000));
} else if (config.mode == STRICT) {
ASSERT_TRUE(tls.startServer());
ASSERT_TRUE(SetResolversWithTls(servers, mDefaultSearchDomains, mDefaultParams_Binder,
"", {base64Encode(tls.fingerprint())}));
// Wait for validation to complete.
EXPECT_TRUE(tls.waitForQueries(1, 5000));
}
if (config.method == GETHOSTBYNAME) {
const hostent* h_result = gethostbyname(host_name);
if (config.expectResult == EXPECT_SUCCESS) {
EXPECT_LE(1U, GetNumQueries(dns, host_name));
ASSERT_TRUE(h_result != nullptr);
ASSERT_EQ(4, h_result->h_length);
ASSERT_FALSE(h_result->h_addr_list[0] == nullptr);
EXPECT_EQ(ADDR4, ToString(h_result));
EXPECT_TRUE(h_result->h_addr_list[1] == nullptr);
} else {
EXPECT_EQ(0U, GetNumQueriesForType(dns, ns_type::ns_t_a, host_name));
ASSERT_TRUE(h_result == nullptr);
ASSERT_EQ(HOST_NOT_FOUND, h_errno);
}
} else if (config.method == GETADDRINFO) {
ScopedAddrinfo ai_result;
addrinfo hints = {.ai_family = AF_INET, .ai_socktype = SOCK_DGRAM};
ai_result = safe_getaddrinfo(host_name, nullptr, &hints);
if (config.expectResult == EXPECT_SUCCESS) {
EXPECT_TRUE(ai_result != nullptr);
EXPECT_EQ(1U, GetNumQueries(dns, host_name));
const std::string result_str = ToString(ai_result);
EXPECT_EQ(ADDR4, result_str);
} else {
EXPECT_TRUE(ai_result == nullptr);
EXPECT_EQ(0U, GetNumQueries(dns, host_name));
}
} else {
FAIL() << "Unsupported query method: " << config.method;
}
tls.stopServer();
dns.clearQueries();
}
dns.stopServer();
}
TEST_F(ResolverTest, GetAddrInfo_Dns64Synthesize) {
constexpr char listen_addr[] = "::1";
constexpr char listen_addr2[] = "127.0.0.5";
constexpr char listen_srv[] = "53";
constexpr char dns64_name[] = "ipv4only.arpa.";
constexpr char host_name[] = "v4only.example.com.";
test::DNSResponder dns(listen_addr, listen_srv, 250, ns_rcode::ns_r_servfail);
dns.addMapping(dns64_name, ns_type::ns_t_aaaa, "64:ff9b::192.0.0.170");
dns.addMapping(host_name, ns_type::ns_t_a, "1.2.3.4");
ASSERT_TRUE(dns.startServer());
test::DNSResponder dns2(listen_addr2, listen_srv, 250, ns_rcode::ns_r_servfail);
dns2.addMapping(dns64_name, ns_type::ns_t_aaaa, "64:ff9b::192.0.0.170");
ASSERT_TRUE(dns2.startServer());
std::vector<std::string> servers = {listen_addr};
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
dns.clearQueries();
// Wait for detecting prefix to complete.
EXPECT_TRUE(WaitForPrefix64Detected(TEST_NETID, 1000));
// hints are necessary in order to let netd know which type of addresses the caller is
// interested in.
addrinfo hints;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC;
ScopedAddrinfo result = safe_getaddrinfo("v4only", nullptr, &hints);
EXPECT_TRUE(result != nullptr);
EXPECT_LE(1U, GetNumQueries(dns, host_name));
std::string result_str = ToString(result);
EXPECT_EQ(result_str, "64:ff9b::102:304");
// Let's test the case when there's an IPv4 resolver.
servers = {listen_addr, listen_addr2};
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
dns.clearQueries();
dns2.clearQueries();
// Netd doesn't detect prefix because there has an IPv4 resolver but all IPv6 resolvers.
EXPECT_FALSE(WaitForPrefix64Detected(TEST_NETID, 1000));
result = safe_getaddrinfo("v4only", nullptr, &hints);
EXPECT_TRUE(result != nullptr);
EXPECT_LE(1U, GetNumQueries(dns, host_name));
result_str = ToString(result);
EXPECT_EQ(result_str, "1.2.3.4");
}
TEST_F(ResolverTest, GetAddrInfo_Dns64QuerySpecified) {
constexpr char listen_addr[] = "::1";
constexpr char listen_srv[] = "53";
constexpr char dns64_name[] = "ipv4only.arpa.";
constexpr char host_name[] = "v4only.example.com.";
test::DNSResponder dns(listen_addr, listen_srv, 250, ns_rcode::ns_r_servfail);
dns.addMapping(dns64_name, ns_type::ns_t_aaaa, "64:ff9b::192.0.0.170");
dns.addMapping(host_name, ns_type::ns_t_a, "1.2.3.4");
ASSERT_TRUE(dns.startServer());
const std::vector<std::string> servers = {listen_addr};
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
dns.clearQueries();
// Wait for detecting prefix to complete.
EXPECT_TRUE(WaitForPrefix64Detected(TEST_NETID, 1000));
// Ensure to synthesize AAAA if AF_INET6 is specified, and not to synthesize AAAA
// in AF_INET case.
addrinfo hints;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET6;
ScopedAddrinfo result = safe_getaddrinfo("v4only", nullptr, &hints);
EXPECT_TRUE(result != nullptr);
std::string result_str = ToString(result);
EXPECT_EQ(result_str, "64:ff9b::102:304");
hints.ai_family = AF_INET;
result = safe_getaddrinfo("v4only", nullptr, &hints);
EXPECT_TRUE(result != nullptr);
EXPECT_LE(2U, GetNumQueries(dns, host_name));
result_str = ToString(result);
EXPECT_EQ(result_str, "1.2.3.4");
}
TEST_F(ResolverTest, GetAddrInfo_Dns64QueryUnspecifiedV6) {
constexpr char listen_addr[] = "::1";
constexpr char listen_srv[] = "53";
constexpr char dns64_name[] = "ipv4only.arpa.";
constexpr char host_name[] = "v4v6.example.com.";
test::DNSResponder dns(listen_addr, listen_srv, 250, ns_rcode::ns_r_servfail);
dns.addMapping(dns64_name, ns_type::ns_t_aaaa, "64:ff9b::192.0.0.170");
dns.addMapping(host_name, ns_type::ns_t_a, "1.2.3.4");
dns.addMapping(host_name, ns_type::ns_t_aaaa, "2001:db8::1.2.3.4");
ASSERT_TRUE(dns.startServer());
const std::vector<std::string> servers = {listen_addr};
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
dns.clearQueries();
// Wait for detecting prefix to complete.
EXPECT_TRUE(WaitForPrefix64Detected(TEST_NETID, 1000));
addrinfo hints;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC;
ScopedAddrinfo result = safe_getaddrinfo("v4v6", nullptr, &hints);
EXPECT_TRUE(result != nullptr);
EXPECT_LE(2U, GetNumQueries(dns, host_name));
// In AF_UNSPEC case, do not synthesize AAAA if there's at least one AAAA answer.
std::vector<std::string> result_strs = ToStrings(result);
for (const auto& str : result_strs) {
EXPECT_TRUE(str == "1.2.3.4" || str == "2001:db8::102:304")
<< ", result_str='" << str << "'";
}
}
TEST_F(ResolverTest, GetAddrInfo_Dns64QueryUnspecifiedNoV6) {
constexpr char listen_addr[] = "::1";
constexpr char listen_srv[] = "53";
constexpr char dns64_name[] = "ipv4only.arpa.";
constexpr char host_name[] = "v4v6.example.com.";
test::DNSResponder dns(listen_addr, listen_srv, 250, ns_rcode::ns_r_servfail);
dns.addMapping(dns64_name, ns_type::ns_t_aaaa, "64:ff9b::192.0.0.170");
dns.addMapping(host_name, ns_type::ns_t_a, "1.2.3.4");
ASSERT_TRUE(dns.startServer());
const std::vector<std::string> servers = {listen_addr};
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
dns.clearQueries();
// Wait for detecting prefix to complete.
EXPECT_TRUE(WaitForPrefix64Detected(TEST_NETID, 1000));
addrinfo hints;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC;
ScopedAddrinfo result = safe_getaddrinfo("v4v6", nullptr, &hints);
EXPECT_TRUE(result != nullptr);
EXPECT_LE(2U, GetNumQueries(dns, host_name));
// In AF_UNSPEC case, synthesize AAAA if there's no AAAA answer.
std::string result_str = ToString(result);
EXPECT_EQ(result_str, "64:ff9b::102:304");
}
TEST_F(ResolverTest, GetAddrInfo_Dns64QuerySpecialUseIPv4Addresses) {
constexpr char THIS_NETWORK[] = "this_network";
constexpr char LOOPBACK[] = "loopback";
constexpr char LINK_LOCAL[] = "link_local";
constexpr char MULTICAST[] = "multicast";
constexpr char LIMITED_BROADCAST[] = "limited_broadcast";
constexpr char ADDR_THIS_NETWORK[] = "0.0.0.1";
constexpr char ADDR_LOOPBACK[] = "127.0.0.1";
constexpr char ADDR_LINK_LOCAL[] = "169.254.0.1";
constexpr char ADDR_MULTICAST[] = "224.0.0.1";
constexpr char ADDR_LIMITED_BROADCAST[] = "255.255.255.255";
constexpr char listen_addr[] = "::1";
constexpr char listen_srv[] = "53";
constexpr char dns64_name[] = "ipv4only.arpa.";
test::DNSResponder dns(listen_addr, listen_srv, 250, ns_rcode::ns_r_servfail);
dns.addMapping(dns64_name, ns_type::ns_t_aaaa, "64:ff9b::");
ASSERT_TRUE(dns.startServer());
const std::vector<std::string> servers = {listen_addr};
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
dns.clearQueries();
// Wait for detecting prefix to complete.
EXPECT_TRUE(WaitForPrefix64Detected(TEST_NETID, 1000));
static const struct TestConfig {
std::string name;
std::string addr;
std::string asHostName() const { return StringPrintf("%s.example.com.", name.c_str()); }
} testConfigs[]{
{THIS_NETWORK, ADDR_THIS_NETWORK},
{LOOPBACK, ADDR_LOOPBACK},
{LINK_LOCAL, ADDR_LINK_LOCAL},
{MULTICAST, ADDR_MULTICAST},
{LIMITED_BROADCAST, ADDR_LIMITED_BROADCAST}
};
for (const auto& config : testConfigs) {
const std::string testHostName = config.asHostName();
SCOPED_TRACE(testHostName);
const char* host_name = testHostName.c_str();
dns.addMapping(host_name, ns_type::ns_t_a, config.addr.c_str());
addrinfo hints;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET6;
ScopedAddrinfo result = safe_getaddrinfo(config.name.c_str(), nullptr, &hints);
// In AF_INET6 case, don't return IPv4 answers
EXPECT_TRUE(result == nullptr);
EXPECT_LE(2U, GetNumQueries(dns, host_name));
dns.clearQueries();
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC;
result = safe_getaddrinfo(config.name.c_str(), nullptr, &hints);
EXPECT_TRUE(result != nullptr);
// Expect IPv6 query only. IPv4 answer has been cached in previous query.
EXPECT_LE(1U, GetNumQueries(dns, host_name));
// In AF_UNSPEC case, don't synthesize special use IPv4 address.
std::string result_str = ToString(result);
EXPECT_EQ(result_str, config.addr.c_str());
dns.clearQueries();
}
}
TEST_F(ResolverTest, GetAddrInfo_Dns64QueryWithNullArgumentHints) {
constexpr char listen_addr[] = "::1";
constexpr char listen_srv[] = "53";
constexpr char dns64_name[] = "ipv4only.arpa.";
constexpr char host_name[] = "v4only.example.com.";
constexpr char host_name2[] = "v4v6.example.com.";
test::DNSResponder dns(listen_addr, listen_srv, 250, ns_rcode::ns_r_servfail);
dns.addMapping(dns64_name, ns_type::ns_t_aaaa, "64:ff9b::192.0.0.170");
dns.addMapping(host_name, ns_type::ns_t_a, "1.2.3.4");
dns.addMapping(host_name2, ns_type::ns_t_a, "1.2.3.4");
dns.addMapping(host_name2, ns_type::ns_t_aaaa, "2001:db8::1.2.3.4");
ASSERT_TRUE(dns.startServer());
const std::vector<std::string> servers = {listen_addr};
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
dns.clearQueries();
// Wait for detecting prefix to complete.
EXPECT_TRUE(WaitForPrefix64Detected(TEST_NETID, 1000));
// Assign argument hints of getaddrinfo() as null is equivalent to set ai_family AF_UNSPEC.
// In AF_UNSPEC case, synthesize AAAA if there has A answer only.
ScopedAddrinfo result = safe_getaddrinfo("v4only", nullptr, nullptr);
EXPECT_TRUE(result != nullptr);
EXPECT_LE(2U, GetNumQueries(dns, host_name));
std::string result_str = ToString(result);
EXPECT_EQ(result_str, "64:ff9b::102:304");
dns.clearQueries();
// In AF_UNSPEC case, do not synthesize AAAA if there's at least one AAAA answer.
result = safe_getaddrinfo("v4v6", nullptr, nullptr);
EXPECT_TRUE(result != nullptr);
EXPECT_LE(2U, GetNumQueries(dns, host_name2));
std::vector<std::string> result_strs = ToStrings(result);
for (const auto& str : result_strs) {
EXPECT_TRUE(str == "1.2.3.4" || str == "2001:db8::102:304")
<< ", result_str='" << str << "'";
}
}
TEST_F(ResolverTest, GetAddrInfo_Dns64QueryNullArgumentNode) {
constexpr char ADDR_ANYADDR_V4[] = "0.0.0.0";
constexpr char ADDR_ANYADDR_V6[] = "::";
constexpr char ADDR_LOCALHOST_V4[] = "127.0.0.1";
constexpr char ADDR_LOCALHOST_V6[] = "::1";
constexpr char PORT_NAME_HTTP[] = "http";
constexpr char PORT_NUMBER_HTTP[] = "80";
constexpr char listen_addr[] = "::1";
constexpr char listen_srv[] = "53";
constexpr char dns64_name[] = "ipv4only.arpa.";
test::DNSResponder dns(listen_addr, listen_srv, 250, ns_rcode::ns_r_servfail);
dns.addMapping(dns64_name, ns_type::ns_t_aaaa, "64:ff9b::");
ASSERT_TRUE(dns.startServer());
const std::vector<std::string> servers = {listen_addr};
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
dns.clearQueries();
// Wait for detecting prefix to complete.
EXPECT_TRUE(WaitForPrefix64Detected(TEST_NETID, 1000));
// If node is null, return address is listed by libc/getaddrinfo.c as follows.
// - passive socket -> anyaddr (0.0.0.0 or ::)
// - non-passive socket -> localhost (127.0.0.1 or ::1)
static const struct TestConfig {
int flag;
std::string addr_v4;
std::string addr_v6;
std::string asParameters() const {
return StringPrintf("flag=%d, addr_v4=%s, addr_v6=%s", flag, addr_v4.c_str(),
addr_v6.c_str());
}
} testConfigs[]{
{0 /* non-passive */, ADDR_LOCALHOST_V4, ADDR_LOCALHOST_V6},
{AI_PASSIVE, ADDR_ANYADDR_V4, ADDR_ANYADDR_V6}
};
for (const auto& config : testConfigs) {
SCOPED_TRACE(config.asParameters());
addrinfo hints;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; // any address family
hints.ai_socktype = 0; // any type
hints.ai_protocol = 0; // any protocol
hints.ai_flags = config.flag;
// Assign hostname as null and service as port name.
ScopedAddrinfo result = safe_getaddrinfo(nullptr, PORT_NAME_HTTP, &hints);
ASSERT_TRUE(result != nullptr);
// Can't be synthesized because it should not get into Netd.
std::vector<std::string> result_strs = ToStrings(result);
for (const auto& str : result_strs) {
EXPECT_TRUE(str == config.addr_v4 || str == config.addr_v6)
<< ", result_str='" << str << "'";
}
// Assign hostname as null and service as numeric port number.
hints.ai_flags = config.flag | AI_NUMERICSERV;
result = safe_getaddrinfo(nullptr, PORT_NUMBER_HTTP, &hints);
ASSERT_TRUE(result != nullptr);
// Can't be synthesized because it should not get into Netd.
result_strs = ToStrings(result);
for (const auto& str : result_strs) {
EXPECT_TRUE(str == config.addr_v4 || str == config.addr_v6)
<< ", result_str='" << str << "'";
}
}
}
TEST_F(ResolverTest, GetHostByAddr_ReverseDnsQueryWithHavingNat64Prefix) {
struct hostent* result = nullptr;
struct in_addr v4addr;
struct in6_addr v6addr;
constexpr char listen_addr[] = "::1";
constexpr char listen_srv[] = "53";
constexpr char dns64_name[] = "ipv4only.arpa.";
constexpr char ptr_name[] = "v4v6.example.com.";
// PTR record for IPv4 address 1.2.3.4
constexpr char ptr_addr_v4[] = "4.3.2.1.in-addr.arpa.";
// PTR record for IPv6 address 2001:db8::102:304
constexpr char ptr_addr_v6[] =
"4.0.3.0.2.0.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa.";
test::DNSResponder dns(listen_addr, listen_srv, 250, ns_rcode::ns_r_servfail);
dns.addMapping(dns64_name, ns_type::ns_t_aaaa, "64:ff9b::192.0.0.170");
dns.addMapping(ptr_addr_v4, ns_type::ns_t_ptr, ptr_name);
dns.addMapping(ptr_addr_v6, ns_type::ns_t_ptr, ptr_name);
ASSERT_TRUE(dns.startServer());
const std::vector<std::string> servers = {listen_addr};
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
dns.clearQueries();
// Wait for detecting prefix to complete.
EXPECT_TRUE(WaitForPrefix64Detected(TEST_NETID, 1000));
// Reverse IPv4 DNS query. Prefix should have no effect on it.
inet_pton(AF_INET, "1.2.3.4", &v4addr);
result = gethostbyaddr(&v4addr, sizeof(v4addr), AF_INET);
ASSERT_TRUE(result != nullptr);
std::string result_str = result->h_name ? result->h_name : "null";
EXPECT_EQ(result_str, "v4v6.example.com");
// Reverse IPv6 DNS query. Prefix should have no effect on it.
inet_pton(AF_INET6, "2001:db8::102:304", &v6addr);
result = gethostbyaddr(&v6addr, sizeof(v6addr), AF_INET6);
ASSERT_TRUE(result != nullptr);
result_str = result->h_name ? result->h_name : "null";
EXPECT_EQ(result_str, "v4v6.example.com");
}
TEST_F(ResolverTest, GetHostByAddr_ReverseDns64Query) {
constexpr char listen_addr[] = "::1";
constexpr char listen_srv[] = "53";
constexpr char dns64_name[] = "ipv4only.arpa.";
constexpr char ptr_name[] = "v4only.example.com.";
// PTR record for IPv4 address 1.2.3.4
constexpr char ptr_addr_v4[] = "4.3.2.1.in-addr.arpa.";
// PTR record for IPv6 address 64:ff9b::1.2.3.4
constexpr char ptr_addr_v6_nomapping[] =
"4.0.3.0.2.0.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.b.9.f.f.4.6.0.0.ip6.arpa.";
constexpr char ptr_name_v6_synthesis[] = "v6synthesis.example.com.";
// PTR record for IPv6 address 64:ff9b::5.6.7.8
constexpr char ptr_addr_v6_synthesis[] =
"8.0.7.0.6.0.5.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.b.9.f.f.4.6.0.0.ip6.arpa.";
test::DNSResponder dns(listen_addr, listen_srv, 250, ns_rcode::ns_r_servfail);
dns.addMapping(dns64_name, ns_type::ns_t_aaaa, "64:ff9b::192.0.0.170");
dns.addMapping(ptr_addr_v4, ns_type::ns_t_ptr, ptr_name);
dns.addMapping(ptr_addr_v6_synthesis, ns_type::ns_t_ptr, ptr_name_v6_synthesis);
// "ptr_addr_v6_nomapping" is not mapped in DNS server
ASSERT_TRUE(dns.startServer());
const std::vector<std::string> servers = {listen_addr};
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
dns.clearQueries();
// Wait for detecting prefix to complete.
EXPECT_TRUE(WaitForPrefix64Detected(TEST_NETID, 1000));
// Synthesized PTR record doesn't exist on DNS server
// Reverse IPv6 DNS64 query while DNS server doesn't have an answer for synthesized address.
// After querying synthesized address failed, expect that prefix is removed from IPv6
// synthesized address and do reverse IPv4 query instead.
struct in6_addr v6addr;
inet_pton(AF_INET6, "64:ff9b::1.2.3.4", &v6addr);
struct hostent* result = gethostbyaddr(&v6addr, sizeof(v6addr), AF_INET6);
ASSERT_TRUE(result != nullptr);
EXPECT_LE(1U, GetNumQueries(dns, ptr_addr_v6_nomapping)); // PTR record not exist
EXPECT_LE(1U, GetNumQueries(dns, ptr_addr_v4)); // PTR record exist
std::string result_str = result->h_name ? result->h_name : "null";
EXPECT_EQ(result_str, "v4only.example.com");
// Check that return address has been mapped from IPv4 to IPv6 address because Netd
// removes NAT64 prefix and does IPv4 DNS reverse lookup in this case. Then, Netd
// fakes the return IPv4 address as original queried IPv6 address.
result_str = ToString(result);
EXPECT_EQ(result_str, "64:ff9b::102:304");
dns.clearQueries();
// Synthesized PTR record exists on DNS server
// Reverse IPv6 DNS64 query while DNS server has an answer for synthesized address.
// Expect to Netd pass through synthesized address for DNS queries.
inet_pton(AF_INET6, "64:ff9b::5.6.7.8", &v6addr);
result = gethostbyaddr(&v6addr, sizeof(v6addr), AF_INET6);
ASSERT_TRUE(result != nullptr);
EXPECT_LE(1U, GetNumQueries(dns, ptr_addr_v6_synthesis));
result_str = result->h_name ? result->h_name : "null";
EXPECT_EQ(result_str, "v6synthesis.example.com");
}
TEST_F(ResolverTest, GetHostByAddr_ReverseDns64QueryFromHostFile) {
constexpr char dns64_name[] = "ipv4only.arpa.";
constexpr char host_name[] = "localhost";
// The address is synthesized by prefix64:localhost.
constexpr char host_addr[] = "64:ff9b::7f00:1";
constexpr char listen_addr[] = "::1";
constexpr char listen_srv[] = "53";
test::DNSResponder dns(listen_addr, listen_srv, 250, ns_rcode::ns_r_servfail);
dns.addMapping(dns64_name, ns_type::ns_t_aaaa, "64:ff9b::192.0.0.170");
ASSERT_TRUE(dns.startServer());
const std::vector<std::string> servers = {listen_addr};
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
dns.clearQueries();
// Wait for detecting prefix to complete.
EXPECT_TRUE(WaitForPrefix64Detected(TEST_NETID, 1000));
// Using synthesized "localhost" address to be a trick for resolving host name
// from host file /etc/hosts and "localhost" is the only name in /etc/hosts. Note that this is
// not realistic: the code never synthesizes AAAA records for addresses in 127.0.0.0/8.
struct in6_addr v6addr;
inet_pton(AF_INET6, host_addr, &v6addr);
struct hostent* result = gethostbyaddr(&v6addr, sizeof(v6addr), AF_INET6);
ASSERT_TRUE(result != nullptr);
// Expect no DNS queries; localhost is resolved via /etc/hosts.
EXPECT_EQ(0U, GetNumQueries(dns, host_name));
ASSERT_EQ(sizeof(in6_addr), (unsigned) result->h_length);
ASSERT_EQ(AF_INET6, result->h_addrtype);
std::string result_str = ToString(result);
EXPECT_EQ(result_str, host_addr);
result_str = result->h_name ? result->h_name : "null";
EXPECT_EQ(result_str, host_name);
}
TEST_F(ResolverTest, GetNameInfo_ReverseDnsQueryWithHavingNat64Prefix) {
constexpr char listen_addr[] = "::1";
constexpr char listen_srv[] = "53";
constexpr char dns64_name[] = "ipv4only.arpa.";
constexpr char ptr_name[] = "v4v6.example.com.";
// PTR record for IPv4 address 1.2.3.4
constexpr char ptr_addr_v4[] = "4.3.2.1.in-addr.arpa.";
// PTR record for IPv6 address 2001:db8::102:304
constexpr char ptr_addr_v6[] =
"4.0.3.0.2.0.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa.";
test::DNSResponder dns(listen_addr, listen_srv, 250, ns_rcode::ns_r_servfail);
dns.addMapping(dns64_name, ns_type::ns_t_aaaa, "64:ff9b::192.0.0.170");
dns.addMapping(ptr_addr_v4, ns_type::ns_t_ptr, ptr_name);
dns.addMapping(ptr_addr_v6, ns_type::ns_t_ptr, ptr_name);
ASSERT_TRUE(dns.startServer());
const std::vector<std::string> servers = {listen_addr};
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
dns.clearQueries();
// Wait for detecting prefix to complete.
EXPECT_TRUE(WaitForPrefix64Detected(TEST_NETID, 1000));
static const struct TestConfig {
int flag;
int family;
std::string addr;
std::string host;
std::string asParameters() const {
return StringPrintf("flag=%d, family=%d, addr=%s, host=%s", flag, family, addr.c_str(),
host.c_str());
}
} testConfigs[]{
{NI_NAMEREQD, AF_INET, "1.2.3.4", "v4v6.example.com"},
{NI_NUMERICHOST, AF_INET, "1.2.3.4", "1.2.3.4"},
{0, AF_INET, "1.2.3.4", "v4v6.example.com"},
{0, AF_INET, "5.6.7.8", "5.6.7.8"}, // unmapped
{NI_NAMEREQD, AF_INET6, "2001:db8::102:304", "v4v6.example.com"},
{NI_NUMERICHOST, AF_INET6, "2001:db8::102:304", "2001:db8::102:304"},
{0, AF_INET6, "2001:db8::102:304", "v4v6.example.com"},
{0, AF_INET6, "2001:db8::506:708", "2001:db8::506:708"}, // unmapped
};
// Reverse IPv4/IPv6 DNS query. Prefix should have no effect on it.
for (const auto& config : testConfigs) {
SCOPED_TRACE(config.asParameters());
int rv;
char host[NI_MAXHOST];
struct sockaddr_in sin;
struct sockaddr_in6 sin6;
if (config.family == AF_INET) {
memset(&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
inet_pton(AF_INET, config.addr.c_str(), &sin.sin_addr);
rv = getnameinfo((const struct sockaddr*) &sin, sizeof(sin), host, sizeof(host),
nullptr, 0, config.flag);
if (config.flag == NI_NAMEREQD) EXPECT_LE(1U, GetNumQueries(dns, ptr_addr_v4));
} else if (config.family == AF_INET6) {
memset(&sin6, 0, sizeof(sin6));
sin6.sin6_family = AF_INET6;
inet_pton(AF_INET6, config.addr.c_str(), &sin6.sin6_addr);
rv = getnameinfo((const struct sockaddr*) &sin6, sizeof(sin6), host, sizeof(host),
nullptr, 0, config.flag);
if (config.flag == NI_NAMEREQD) EXPECT_LE(1U, GetNumQueries(dns, ptr_addr_v6));
}
ASSERT_EQ(0, rv);
std::string result_str = host;
EXPECT_EQ(result_str, config.host);
dns.clearQueries();
}
}
TEST_F(ResolverTest, GetNameInfo_ReverseDns64Query) {
constexpr char listen_addr[] = "::1";
constexpr char listen_srv[] = "53";
constexpr char dns64_name[] = "ipv4only.arpa.";
constexpr char ptr_name[] = "v4only.example.com.";
// PTR record for IPv4 address 1.2.3.4
constexpr char ptr_addr_v4[] = "4.3.2.1.in-addr.arpa.";
// PTR record for IPv6 address 64:ff9b::1.2.3.4
constexpr char ptr_addr_v6_nomapping[] =
"4.0.3.0.2.0.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.b.9.f.f.4.6.0.0.ip6.arpa.";
constexpr char ptr_name_v6_synthesis[] = "v6synthesis.example.com.";
// PTR record for IPv6 address 64:ff9b::5.6.7.8
constexpr char ptr_addr_v6_synthesis[] =
"8.0.7.0.6.0.5.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.b.9.f.f.4.6.0.0.ip6.arpa.";
test::DNSResponder dns(listen_addr, listen_srv, 250, ns_rcode::ns_r_servfail);
dns.addMapping(dns64_name, ns_type::ns_t_aaaa, "64:ff9b::192.0.0.170");
dns.addMapping(ptr_addr_v4, ns_type::ns_t_ptr, ptr_name);
dns.addMapping(ptr_addr_v6_synthesis, ns_type::ns_t_ptr, ptr_name_v6_synthesis);
ASSERT_TRUE(dns.startServer());
const std::vector<std::string> servers = {listen_addr};
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
dns.clearQueries();
// Wait for detecting prefix to complete.
EXPECT_TRUE(WaitForPrefix64Detected(TEST_NETID, 1000));
static const struct TestConfig {
bool hasSynthesizedPtrRecord;
int flag;
std::string addr;
std::string host;
std::string asParameters() const {
return StringPrintf("hasSynthesizedPtrRecord=%d, flag=%d, addr=%s, host=%s",
hasSynthesizedPtrRecord, flag, addr.c_str(), host.c_str());
}
} testConfigs[]{
{false, NI_NAMEREQD, "64:ff9b::102:304", "v4only.example.com"},
{false, NI_NUMERICHOST, "64:ff9b::102:304", "64:ff9b::102:304"},
{false, 0, "64:ff9b::102:304", "v4only.example.com"},
{true, NI_NAMEREQD, "64:ff9b::506:708", "v6synthesis.example.com"},
{true, NI_NUMERICHOST, "64:ff9b::506:708", "64:ff9b::506:708"},
{true, 0, "64:ff9b::506:708", "v6synthesis.example.com"}
};
// hasSynthesizedPtrRecord = false
// Synthesized PTR record doesn't exist on DNS server
// Reverse IPv6 DNS64 query while DNS server doesn't have an answer for synthesized address.
// After querying synthesized address failed, expect that prefix is removed from IPv6
// synthesized address and do reverse IPv4 query instead.
//
// hasSynthesizedPtrRecord = true
// Synthesized PTR record exists on DNS server
// Reverse IPv6 DNS64 query while DNS server has an answer for synthesized address.
// Expect to just pass through synthesized address for DNS queries.
for (const auto& config : testConfigs) {
SCOPED_TRACE(config.asParameters());
char host[NI_MAXHOST];
struct sockaddr_in6 sin6;
memset(&sin6, 0, sizeof(sin6));
sin6.sin6_family = AF_INET6;
inet_pton(AF_INET6, config.addr.c_str(), &sin6.sin6_addr);
int rv = getnameinfo((const struct sockaddr*) &sin6, sizeof(sin6), host, sizeof(host),
nullptr, 0, config.flag);
ASSERT_EQ(0, rv);
if (config.flag == NI_NAMEREQD) {
if (config.hasSynthesizedPtrRecord) {
EXPECT_LE(1U, GetNumQueries(dns, ptr_addr_v6_synthesis));
} else {
EXPECT_LE(1U, GetNumQueries(dns, ptr_addr_v6_nomapping)); // PTR record not exist.
EXPECT_LE(1U, GetNumQueries(dns, ptr_addr_v4)); // PTR record exist.
}
}
std::string result_str = host;
EXPECT_EQ(result_str, config.host);
dns.clearQueries();
}
}
TEST_F(ResolverTest, GetNameInfo_ReverseDns64QueryFromHostFile) {
constexpr char dns64_name[] = "ipv4only.arpa.";
constexpr char host_name[] = "localhost";
// The address is synthesized by prefix64:localhost.
constexpr char host_addr[] = "64:ff9b::7f00:1";
constexpr char listen_addr[] = "::1";
constexpr char listen_srv[] = "53";
test::DNSResponder dns(listen_addr, listen_srv, 250, ns_rcode::ns_r_servfail);
dns.addMapping(dns64_name, ns_type::ns_t_aaaa, "64:ff9b::192.0.0.170");
ASSERT_TRUE(dns.startServer());
const std::vector<std::string> servers = {listen_addr};
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
dns.clearQueries();
// Wait for detecting prefix to complete.
EXPECT_TRUE(WaitForPrefix64Detected(TEST_NETID, 1000));
// Using synthesized "localhost" address to be a trick for resolving host name
// from host file /etc/hosts and "localhost" is the only name in /etc/hosts. Note that this is
// not realistic: the code never synthesizes AAAA records for addresses in 127.0.0.0/8.
char host[NI_MAXHOST];
struct sockaddr_in6 sin6;
memset(&sin6, 0, sizeof(sin6));
sin6.sin6_family = AF_INET6;
inet_pton(AF_INET6, host_addr, &sin6.sin6_addr);
int rv = getnameinfo((const struct sockaddr*) &sin6, sizeof(sin6), host, sizeof(host), nullptr,
0, NI_NAMEREQD);
ASSERT_EQ(0, rv);
// Expect no DNS queries; localhost is resolved via /etc/hosts.
EXPECT_EQ(0U, GetNumQueries(dns, host_name));
std::string result_str = host;
EXPECT_EQ(result_str, host_name);
}
TEST_F(ResolverTest, GetHostByName2_Dns64Synthesize) {
constexpr char dns64_name[] = "ipv4only.arpa.";
constexpr char host_name[] = "ipv4only.example.com.";
constexpr char listen_addr[] = "::1";
constexpr char listen_srv[] = "53";
test::DNSResponder dns(listen_addr, listen_srv, 250, ns_rcode::ns_r_servfail);
dns.addMapping(dns64_name, ns_type::ns_t_aaaa, "64:ff9b::192.0.0.170");
dns.addMapping(host_name, ns_type::ns_t_a, "1.2.3.4");
ASSERT_TRUE(dns.startServer());
const std::vector<std::string> servers = {listen_addr};
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
dns.clearQueries();
// Wait for detecting prefix to complete.
EXPECT_TRUE(WaitForPrefix64Detected(TEST_NETID, 1000));
// Query an IPv4-only hostname. Expect that gets a synthesized address.
struct hostent* result = gethostbyname2("ipv4only", AF_INET6);
ASSERT_TRUE(result != nullptr);
EXPECT_LE(1U, GetNumQueries(dns, host_name));
std::string result_str = ToString(result);
EXPECT_EQ(result_str, "64:ff9b::102:304");
}
TEST_F(ResolverTest, GetHostByName2_DnsQueryWithHavingNat64Prefix) {
constexpr char dns64_name[] = "ipv4only.arpa.";
constexpr char host_name[] = "v4v6.example.com.";
constexpr char listen_addr[] = "::1";
constexpr char listen_srv[] = "53";
test::DNSResponder dns(listen_addr, listen_srv, 250, ns_rcode::ns_r_servfail);
dns.addMapping(dns64_name, ns_type::ns_t_aaaa, "64:ff9b::192.0.0.170");
dns.addMapping(host_name, ns_type::ns_t_a, "1.2.3.4");
dns.addMapping(host_name, ns_type::ns_t_aaaa, "2001:db8::1.2.3.4");
ASSERT_TRUE(dns.startServer());
const std::vector<std::string> servers = {listen_addr};
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
dns.clearQueries();
// Wait for detecting prefix to complete.
EXPECT_TRUE(WaitForPrefix64Detected(TEST_NETID, 1000));
// IPv4 DNS query. Prefix should have no effect on it.
struct hostent* result = gethostbyname2("v4v6", AF_INET);
ASSERT_TRUE(result != nullptr);
EXPECT_LE(1U, GetNumQueries(dns, host_name));
std::string result_str = ToString(result);
EXPECT_EQ(result_str, "1.2.3.4");
dns.clearQueries();
// IPv6 DNS query. Prefix should have no effect on it.
result = gethostbyname2("v4v6", AF_INET6);
ASSERT_TRUE(result != nullptr);
EXPECT_LE(1U, GetNumQueries(dns, host_name));
result_str = ToString(result);
EXPECT_EQ(result_str, "2001:db8::102:304");
}
TEST_F(ResolverTest, GetHostByName2_Dns64QuerySpecialUseIPv4Addresses) {
constexpr char THIS_NETWORK[] = "this_network";
constexpr char LOOPBACK[] = "loopback";
constexpr char LINK_LOCAL[] = "link_local";
constexpr char MULTICAST[] = "multicast";
constexpr char LIMITED_BROADCAST[] = "limited_broadcast";
constexpr char ADDR_THIS_NETWORK[] = "0.0.0.1";
constexpr char ADDR_LOOPBACK[] = "127.0.0.1";
constexpr char ADDR_LINK_LOCAL[] = "169.254.0.1";
constexpr char ADDR_MULTICAST[] = "224.0.0.1";
constexpr char ADDR_LIMITED_BROADCAST[] = "255.255.255.255";
constexpr char listen_addr[] = "::1";
constexpr char listen_srv[] = "53";
constexpr char dns64_name[] = "ipv4only.arpa.";
test::DNSResponder dns(listen_addr, listen_srv, 250, ns_rcode::ns_r_servfail);
dns.addMapping(dns64_name, ns_type::ns_t_aaaa, "64:ff9b::");
ASSERT_TRUE(dns.startServer());
const std::vector<std::string> servers = {listen_addr};
ASSERT_TRUE(SetResolversForNetwork(servers, mDefaultSearchDomains, mDefaultParams_Binder));
dns.clearQueries();
// Wait for detecting prefix to complete.
EXPECT_TRUE(WaitForPrefix64Detected(TEST_NETID, 1000));
static const struct TestConfig {
std::string name;
std::string addr;
std::string asHostName() const {
return StringPrintf("%s.example.com.",
name.c_str());
}
} testConfigs[]{
{THIS_NETWORK, ADDR_THIS_NETWORK},
{LOOPBACK, ADDR_LOOPBACK},
{LINK_LOCAL, ADDR_LINK_LOCAL},
{MULTICAST, ADDR_MULTICAST},
{LIMITED_BROADCAST, ADDR_LIMITED_BROADCAST}
};
for (const auto& config : testConfigs) {
const std::string testHostName = config.asHostName();
SCOPED_TRACE(testHostName);
const char* host_name = testHostName.c_str();
dns.addMapping(host_name, ns_type::ns_t_a, config.addr.c_str());
struct hostent* result = gethostbyname2(config.name.c_str(), AF_INET6);
EXPECT_LE(1U, GetNumQueries(dns, host_name));
// In AF_INET6 case, don't synthesize special use IPv4 address.
// Expect to have no answer
EXPECT_EQ(nullptr, result);
dns.clearQueries();
}
}