blob: 02e9eafc8de0a10b83c28560dd7262d08d3e9aea [file] [log] [blame]
/*
* Copyright 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* binder_test.cpp - unit tests for netd binder RPCs.
*/
#include <cerrno>
#include <chrono>
#include <cinttypes>
#include <condition_variable>
#include <cstdint>
#include <cstdlib>
#include <iostream>
#include <mutex>
#include <set>
#include <vector>
#include <dirent.h>
#include <fcntl.h>
#include <ifaddrs.h>
#include <linux/if.h>
#include <linux/if_tun.h>
#include <net/if.h>
#include <netdb.h>
#include <netinet/in.h>
#include <openssl/base64.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <android-base/file.h>
#include <android-base/macros.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <binder/IPCThreadState.h>
#include <bpf/BpfMap.h>
#include <bpf/BpfUtils.h>
#include <com/android/internal/net/BnOemNetdUnsolicitedEventListener.h>
#include <com/android/internal/net/IOemNetd.h>
#include <cutils/multiuser.h>
#include <gtest/gtest.h>
#include <netdbpf/bpf_shared.h>
#include <netutils/ifc.h>
#include "Fwmark.h"
#include "InterfaceController.h"
#include "NetdClient.h"
#include "NetdConstants.h"
#include "TestUnsolService.h"
#include "XfrmController.h"
#include "android/net/INetd.h"
#include "binder/IServiceManager.h"
#include "netdutils/InternetAddresses.h"
#include "netdutils/Stopwatch.h"
#include "netdutils/Syscalls.h"
#include "netid_client.h" // NETID_UNSET
#include "test_utils.h"
#include "tun_interface.h"
#define IP6TABLES_PATH "/system/bin/ip6tables"
#define IPTABLES_PATH "/system/bin/iptables"
#define TUN_DEV "/dev/tun"
#define RAW_TABLE "raw"
#define MANGLE_TABLE "mangle"
#define FILTER_TABLE "filter"
#define NAT_TABLE "nat"
namespace binder = android::binder;
using android::IBinder;
using android::IServiceManager;
using android::sp;
using android::String16;
using android::String8;
using android::base::Join;
using android::base::ReadFileToString;
using android::base::StartsWith;
using android::base::StringPrintf;
using android::base::Trim;
using android::net::INetd;
using android::net::InterfaceConfigurationParcel;
using android::net::InterfaceController;
using android::net::TetherStatsParcel;
using android::net::TunInterface;
using android::net::UidRangeParcel;
using android::netdutils::ScopedAddrinfo;
using android::netdutils::sSyscalls;
using android::netdutils::Stopwatch;
static const char* IP_RULE_V4 = "-4";
static const char* IP_RULE_V6 = "-6";
static const int TEST_NETID1 = 65501;
static const int TEST_NETID2 = 65502;
// Use maximum reserved appId for applications to avoid conflict with existing
// uids.
static const int TEST_UID1 = 99999;
static const int TEST_UID2 = 99998;
constexpr int BASE_UID = AID_USER_OFFSET * 5;
static const std::string NO_SOCKET_ALLOW_RULE("! owner UID match 0-4294967294");
static const std::string ESP_ALLOW_RULE("esp");
class BinderTest : public ::testing::Test {
public:
BinderTest() {
sp<IServiceManager> sm = android::defaultServiceManager();
sp<IBinder> binder = sm->getService(String16("netd"));
if (binder != nullptr) {
mNetd = android::interface_cast<INetd>(binder);
}
}
void SetUp() override {
ASSERT_NE(nullptr, mNetd.get());
}
void TearDown() override {
mNetd->networkDestroy(TEST_NETID1);
mNetd->networkDestroy(TEST_NETID2);
setNetworkForProcess(NETID_UNSET);
// Restore default network
if (mStoredDefaultNetwork >= 0) mNetd->networkSetDefault(mStoredDefaultNetwork);
}
bool allocateIpSecResources(bool expectOk, int32_t* spi);
// Static because setting up the tun interface takes about 40ms.
static void SetUpTestCase() {
ASSERT_EQ(0, sTun.init());
ASSERT_EQ(0, sTun2.init());
ASSERT_LE(sTun.name().size(), static_cast<size_t>(IFNAMSIZ));
ASSERT_LE(sTun2.name().size(), static_cast<size_t>(IFNAMSIZ));
}
static void TearDownTestCase() {
// Closing the socket removes the interface and IP addresses.
sTun.destroy();
sTun2.destroy();
}
static void fakeRemoteSocketPair(int *clientSocket, int *serverSocket, int *acceptedSocket);
void createVpnNetworkWithUid(bool secure, uid_t uid, int vpnNetId = TEST_NETID2,
int fallthroughNetId = TEST_NETID1);
protected:
// Use -1 to represent that default network was not modified because
// real netId must be an unsigned value.
int mStoredDefaultNetwork = -1;
sp<INetd> mNetd;
static TunInterface sTun;
static TunInterface sTun2;
};
TunInterface BinderTest::sTun;
TunInterface BinderTest::sTun2;
class TimedOperation : public Stopwatch {
public:
explicit TimedOperation(const std::string &name): mName(name) {}
virtual ~TimedOperation() {
std::cerr << " " << mName << ": " << timeTakenUs() << "us" << std::endl;
}
private:
std::string mName;
};
TEST_F(BinderTest, IsAlive) {
TimedOperation t("isAlive RPC");
bool isAlive = false;
mNetd->isAlive(&isAlive);
ASSERT_TRUE(isAlive);
}
static bool iptablesNoSocketAllowRuleExists(const char *chainName){
return iptablesRuleExists(IPTABLES_PATH, chainName, NO_SOCKET_ALLOW_RULE) &&
iptablesRuleExists(IP6TABLES_PATH, chainName, NO_SOCKET_ALLOW_RULE);
}
static bool iptablesEspAllowRuleExists(const char *chainName){
return iptablesRuleExists(IPTABLES_PATH, chainName, ESP_ALLOW_RULE) &&
iptablesRuleExists(IP6TABLES_PATH, chainName, ESP_ALLOW_RULE);
}
TEST_F(BinderTest, FirewallReplaceUidChain) {
SKIP_IF_BPF_SUPPORTED;
std::string chainName = StringPrintf("netd_binder_test_%u", arc4random_uniform(10000));
const int kNumUids = 500;
std::vector<int32_t> noUids(0);
std::vector<int32_t> uids(kNumUids);
for (int i = 0; i < kNumUids; i++) {
uids[i] = randomUid();
}
bool ret;
{
TimedOperation op(StringPrintf("Programming %d-UID whitelist chain", kNumUids));
mNetd->firewallReplaceUidChain(chainName, true, uids, &ret);
}
EXPECT_EQ(true, ret);
EXPECT_EQ((int) uids.size() + 9, iptablesRuleLineLength(IPTABLES_PATH, chainName.c_str()));
EXPECT_EQ((int) uids.size() + 15, iptablesRuleLineLength(IP6TABLES_PATH, chainName.c_str()));
EXPECT_EQ(true, iptablesNoSocketAllowRuleExists(chainName.c_str()));
EXPECT_EQ(true, iptablesEspAllowRuleExists(chainName.c_str()));
{
TimedOperation op("Clearing whitelist chain");
mNetd->firewallReplaceUidChain(chainName, false, noUids, &ret);
}
EXPECT_EQ(true, ret);
EXPECT_EQ(5, iptablesRuleLineLength(IPTABLES_PATH, chainName.c_str()));
EXPECT_EQ(5, iptablesRuleLineLength(IP6TABLES_PATH, chainName.c_str()));
{
TimedOperation op(StringPrintf("Programming %d-UID blacklist chain", kNumUids));
mNetd->firewallReplaceUidChain(chainName, false, uids, &ret);
}
EXPECT_EQ(true, ret);
EXPECT_EQ((int) uids.size() + 5, iptablesRuleLineLength(IPTABLES_PATH, chainName.c_str()));
EXPECT_EQ((int) uids.size() + 5, iptablesRuleLineLength(IP6TABLES_PATH, chainName.c_str()));
EXPECT_EQ(false, iptablesNoSocketAllowRuleExists(chainName.c_str()));
EXPECT_EQ(false, iptablesEspAllowRuleExists(chainName.c_str()));
{
TimedOperation op("Clearing blacklist chain");
mNetd->firewallReplaceUidChain(chainName, false, noUids, &ret);
}
EXPECT_EQ(true, ret);
EXPECT_EQ(5, iptablesRuleLineLength(IPTABLES_PATH, chainName.c_str()));
EXPECT_EQ(5, iptablesRuleLineLength(IP6TABLES_PATH, chainName.c_str()));
// Check that the call fails if iptables returns an error.
std::string veryLongStringName = "netd_binder_test_UnacceptablyLongIptablesChainName";
mNetd->firewallReplaceUidChain(veryLongStringName, true, noUids, &ret);
EXPECT_EQ(false, ret);
}
TEST_F(BinderTest, IpSecTunnelInterface) {
const struct TestData {
const std::string family;
const std::string deviceName;
const std::string localAddress;
const std::string remoteAddress;
int32_t iKey;
int32_t oKey;
int32_t ifId;
} kTestData[] = {
{"IPV4", "ipsec_test", "127.0.0.1", "8.8.8.8", 0x1234 + 53, 0x1234 + 53, 0xFFFE},
{"IPV6", "ipsec_test6", "::1", "2001:4860:4860::8888", 0x1234 + 50, 0x1234 + 50,
0xFFFE},
};
for (size_t i = 0; i < std::size(kTestData); i++) {
const auto& td = kTestData[i];
binder::Status status;
// Create Tunnel Interface.
status = mNetd->ipSecAddTunnelInterface(td.deviceName, td.localAddress, td.remoteAddress,
td.iKey, td.oKey, td.ifId);
EXPECT_TRUE(status.isOk()) << td.family << status.exceptionMessage();
// Check that the interface exists
EXPECT_NE(0U, if_nametoindex(td.deviceName.c_str()));
// Update Tunnel Interface.
status = mNetd->ipSecUpdateTunnelInterface(td.deviceName, td.localAddress, td.remoteAddress,
td.iKey, td.oKey, td.ifId);
EXPECT_TRUE(status.isOk()) << td.family << status.exceptionMessage();
// Remove Tunnel Interface.
status = mNetd->ipSecRemoveTunnelInterface(td.deviceName);
EXPECT_TRUE(status.isOk()) << td.family << status.exceptionMessage();
// Check that the interface no longer exists
EXPECT_EQ(0U, if_nametoindex(td.deviceName.c_str()));
}
}
TEST_F(BinderTest, IpSecSetEncapSocketOwner) {
android::base::unique_fd uniqueFd(socket(AF_INET, SOCK_DGRAM | SOCK_CLOEXEC, 0));
android::os::ParcelFileDescriptor sockFd(std::move(uniqueFd));
int sockOptVal = UDP_ENCAP_ESPINUDP;
setsockopt(sockFd.get(), IPPROTO_UDP, UDP_ENCAP, &sockOptVal, sizeof(sockOptVal));
binder::Status res = mNetd->ipSecSetEncapSocketOwner(sockFd, 1001);
EXPECT_TRUE(res.isOk());
struct stat info;
EXPECT_EQ(0, fstat(sockFd.get(), &info));
EXPECT_EQ(1001, (int) info.st_uid);
}
// IPsec tests are not run in 32 bit mode; both 32-bit kernels and
// mismatched ABIs (64-bit kernel with 32-bit userspace) are unsupported.
#if INTPTR_MAX != INT32_MAX
using android::net::XfrmController;
static const int XFRM_DIRECTIONS[] = {static_cast<int>(android::net::XfrmDirection::IN),
static_cast<int>(android::net::XfrmDirection::OUT)};
static const int ADDRESS_FAMILIES[] = {AF_INET, AF_INET6};
#define RETURN_FALSE_IF_NEQ(_expect_, _ret_) \
do { if ((_expect_) != (_ret_)) return false; } while(false)
bool BinderTest::allocateIpSecResources(bool expectOk, int32_t* spi) {
android::netdutils::Status status = XfrmController::ipSecAllocateSpi(0, "::", "::1", 123, spi);
SCOPED_TRACE(status);
RETURN_FALSE_IF_NEQ(status.ok(), expectOk);
// Add a policy
status = XfrmController::ipSecAddSecurityPolicy(0, AF_INET6, 0, "::", "::1", 123, 0, 0, 0);
SCOPED_TRACE(status);
RETURN_FALSE_IF_NEQ(status.ok(), expectOk);
// Add an ipsec interface
return expectOk == XfrmController::ipSecAddTunnelInterface("ipsec_test", "::", "::1", 0xF00D,
0xD00D, 0xE00D, false)
.ok();
}
TEST_F(BinderTest, XfrmDualSelectorTunnelModePoliciesV4) {
android::binder::Status status;
// Repeat to ensure cleanup and recreation works correctly
for (int i = 0; i < 2; i++) {
for (int direction : XFRM_DIRECTIONS) {
for (int addrFamily : ADDRESS_FAMILIES) {
status = mNetd->ipSecAddSecurityPolicy(0, addrFamily, direction, "127.0.0.5",
"127.0.0.6", 123, 0, 0, 0);
EXPECT_TRUE(status.isOk())
<< " family: " << addrFamily << " direction: " << direction;
}
}
// Cleanup
for (int direction : XFRM_DIRECTIONS) {
for (int addrFamily : ADDRESS_FAMILIES) {
status = mNetd->ipSecDeleteSecurityPolicy(0, addrFamily, direction, 0, 0, 0);
EXPECT_TRUE(status.isOk());
}
}
}
}
TEST_F(BinderTest, XfrmDualSelectorTunnelModePoliciesV6) {
binder::Status status;
// Repeat to ensure cleanup and recreation works correctly
for (int i = 0; i < 2; i++) {
for (int direction : XFRM_DIRECTIONS) {
for (int addrFamily : ADDRESS_FAMILIES) {
status = mNetd->ipSecAddSecurityPolicy(0, addrFamily, direction, "2001:db8::f00d",
"2001:db8::d00d", 123, 0, 0, 0);
EXPECT_TRUE(status.isOk())
<< " family: " << addrFamily << " direction: " << direction;
}
}
// Cleanup
for (int direction : XFRM_DIRECTIONS) {
for (int addrFamily : ADDRESS_FAMILIES) {
status = mNetd->ipSecDeleteSecurityPolicy(0, addrFamily, direction, 0, 0, 0);
EXPECT_TRUE(status.isOk());
}
}
}
}
TEST_F(BinderTest, XfrmControllerInit) {
android::netdutils::Status status;
status = XfrmController::Init();
SCOPED_TRACE(status);
// Older devices or devices with mismatched Kernel/User ABI cannot support the IPsec
// feature.
if (status.code() == EOPNOTSUPP) return;
ASSERT_TRUE(status.ok());
int32_t spi = 0;
ASSERT_TRUE(allocateIpSecResources(true, &spi));
ASSERT_TRUE(allocateIpSecResources(false, &spi));
status = XfrmController::Init();
ASSERT_TRUE(status.ok());
ASSERT_TRUE(allocateIpSecResources(true, &spi));
// Clean up
status = XfrmController::ipSecDeleteSecurityAssociation(0, "::", "::1", 123, spi, 0, 0);
SCOPED_TRACE(status);
ASSERT_TRUE(status.ok());
status = XfrmController::ipSecDeleteSecurityPolicy(0, AF_INET6, 0, 0, 0, 0);
SCOPED_TRACE(status);
ASSERT_TRUE(status.ok());
// Remove Virtual Tunnel Interface.
ASSERT_TRUE(XfrmController::ipSecRemoveTunnelInterface("ipsec_test").ok());
}
#endif // INTPTR_MAX != INT32_MAX
static int bandwidthDataSaverEnabled(const char *binary) {
std::vector<std::string> lines = listIptablesRule(binary, "bw_data_saver");
// Output looks like this:
//
// Chain bw_data_saver (1 references)
// target prot opt source destination
// RETURN all -- 0.0.0.0/0 0.0.0.0/0
//
// or:
//
// Chain bw_data_saver (1 references)
// target prot opt source destination
// ... possibly connectivity critical packet rules here ...
// REJECT all -- ::/0 ::/0
EXPECT_GE(lines.size(), 3U);
if (lines.size() == 3 && StartsWith(lines[2], "RETURN ")) {
// Data saver disabled.
return 0;
}
size_t minSize = (std::string(binary) == IPTABLES_PATH) ? 3 : 9;
if (lines.size() >= minSize && StartsWith(lines[lines.size() -1], "REJECT ")) {
// Data saver enabled.
return 1;
}
return -1;
}
bool enableDataSaver(sp<INetd>& netd, bool enable) {
TimedOperation op(enable ? " Enabling data saver" : "Disabling data saver");
bool ret;
netd->bandwidthEnableDataSaver(enable, &ret);
return ret;
}
int getDataSaverState() {
const int enabled4 = bandwidthDataSaverEnabled(IPTABLES_PATH);
const int enabled6 = bandwidthDataSaverEnabled(IP6TABLES_PATH);
EXPECT_EQ(enabled4, enabled6);
EXPECT_NE(-1, enabled4);
EXPECT_NE(-1, enabled6);
if (enabled4 != enabled6 || (enabled6 != 0 && enabled6 != 1)) {
return -1;
}
return enabled6;
}
TEST_F(BinderTest, BandwidthEnableDataSaver) {
const int wasEnabled = getDataSaverState();
ASSERT_NE(-1, wasEnabled);
if (wasEnabled) {
ASSERT_TRUE(enableDataSaver(mNetd, false));
EXPECT_EQ(0, getDataSaverState());
}
ASSERT_TRUE(enableDataSaver(mNetd, false));
EXPECT_EQ(0, getDataSaverState());
ASSERT_TRUE(enableDataSaver(mNetd, true));
EXPECT_EQ(1, getDataSaverState());
ASSERT_TRUE(enableDataSaver(mNetd, true));
EXPECT_EQ(1, getDataSaverState());
if (!wasEnabled) {
ASSERT_TRUE(enableDataSaver(mNetd, false));
EXPECT_EQ(0, getDataSaverState());
}
}
static bool ipRuleExistsForRange(const uint32_t priority, const UidRangeParcel& range,
const std::string& action, const char* ipVersion) {
// Output looks like this:
// "12500:\tfrom all fwmark 0x0/0x20000 iif lo uidrange 1000-2000 prohibit"
std::vector<std::string> rules = listIpRules(ipVersion);
std::string prefix = StringPrintf("%" PRIu32 ":", priority);
std::string suffix =
StringPrintf(" iif lo uidrange %d-%d %s\n", range.start, range.stop, action.c_str());
for (const auto& line : rules) {
if (android::base::StartsWith(line, prefix) && android::base::EndsWith(line, suffix)) {
return true;
}
}
return false;
}
static bool ipRuleExistsForRange(const uint32_t priority, const UidRangeParcel& range,
const std::string& action) {
bool existsIp4 = ipRuleExistsForRange(priority, range, action, IP_RULE_V4);
bool existsIp6 = ipRuleExistsForRange(priority, range, action, IP_RULE_V6);
EXPECT_EQ(existsIp4, existsIp6);
return existsIp4;
}
namespace {
UidRangeParcel makeUidRangeParcel(int start, int stop) {
UidRangeParcel res;
res.start = start;
res.stop = stop;
return res;
}
} // namespace
TEST_F(BinderTest, NetworkInterfaces) {
EXPECT_TRUE(mNetd->networkCreatePhysical(TEST_NETID1, INetd::PERMISSION_NONE).isOk());
EXPECT_EQ(EEXIST, mNetd->networkCreatePhysical(TEST_NETID1, INetd::PERMISSION_NONE)
.serviceSpecificErrorCode());
EXPECT_EQ(EEXIST, mNetd->networkCreateVpn(TEST_NETID1, true).serviceSpecificErrorCode());
EXPECT_TRUE(mNetd->networkCreateVpn(TEST_NETID2, true).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID1, sTun.name()).isOk());
EXPECT_EQ(EBUSY,
mNetd->networkAddInterface(TEST_NETID2, sTun.name()).serviceSpecificErrorCode());
EXPECT_TRUE(mNetd->networkDestroy(TEST_NETID1).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID2, sTun.name()).isOk());
EXPECT_TRUE(mNetd->networkDestroy(TEST_NETID2).isOk());
EXPECT_EQ(ENONET, mNetd->networkDestroy(TEST_NETID1).serviceSpecificErrorCode());
}
TEST_F(BinderTest, NetworkUidRules) {
const uint32_t RULE_PRIORITY_SECURE_VPN = 12000;
EXPECT_TRUE(mNetd->networkCreateVpn(TEST_NETID1, true).isOk());
EXPECT_EQ(EEXIST, mNetd->networkCreateVpn(TEST_NETID1, true).serviceSpecificErrorCode());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID1, sTun.name()).isOk());
std::vector<UidRangeParcel> uidRanges = {makeUidRangeParcel(BASE_UID + 8005, BASE_UID + 8012),
makeUidRangeParcel(BASE_UID + 8090, BASE_UID + 8099)};
UidRangeParcel otherRange = makeUidRangeParcel(BASE_UID + 8190, BASE_UID + 8299);
std::string suffix = StringPrintf("lookup %s ", sTun.name().c_str());
EXPECT_TRUE(mNetd->networkAddUidRanges(TEST_NETID1, uidRanges).isOk());
EXPECT_TRUE(ipRuleExistsForRange(RULE_PRIORITY_SECURE_VPN, uidRanges[0], suffix));
EXPECT_FALSE(ipRuleExistsForRange(RULE_PRIORITY_SECURE_VPN, otherRange, suffix));
EXPECT_TRUE(mNetd->networkRemoveUidRanges(TEST_NETID1, uidRanges).isOk());
EXPECT_FALSE(ipRuleExistsForRange(RULE_PRIORITY_SECURE_VPN, uidRanges[0], suffix));
EXPECT_TRUE(mNetd->networkAddUidRanges(TEST_NETID1, uidRanges).isOk());
EXPECT_TRUE(ipRuleExistsForRange(RULE_PRIORITY_SECURE_VPN, uidRanges[1], suffix));
EXPECT_TRUE(mNetd->networkDestroy(TEST_NETID1).isOk());
EXPECT_FALSE(ipRuleExistsForRange(RULE_PRIORITY_SECURE_VPN, uidRanges[1], suffix));
EXPECT_EQ(ENONET, mNetd->networkDestroy(TEST_NETID1).serviceSpecificErrorCode());
}
TEST_F(BinderTest, NetworkRejectNonSecureVpn) {
constexpr uint32_t RULE_PRIORITY = 12500;
std::vector<UidRangeParcel> uidRanges = {makeUidRangeParcel(BASE_UID + 150, BASE_UID + 224),
makeUidRangeParcel(BASE_UID + 226, BASE_UID + 300)};
// Make sure no rules existed before calling commands.
for (auto const& range : uidRanges) {
EXPECT_FALSE(ipRuleExistsForRange(RULE_PRIORITY, range, "prohibit"));
}
// Create two valid rules.
ASSERT_TRUE(mNetd->networkRejectNonSecureVpn(true, uidRanges).isOk());
for (auto const& range : uidRanges) {
EXPECT_TRUE(ipRuleExistsForRange(RULE_PRIORITY, range, "prohibit"));
}
// Remove the rules.
ASSERT_TRUE(mNetd->networkRejectNonSecureVpn(false, uidRanges).isOk());
for (auto const& range : uidRanges) {
EXPECT_FALSE(ipRuleExistsForRange(RULE_PRIORITY, range, "prohibit"));
}
// Fail to remove the rules a second time after they are already deleted.
binder::Status status = mNetd->networkRejectNonSecureVpn(false, uidRanges);
ASSERT_EQ(binder::Status::EX_SERVICE_SPECIFIC, status.exceptionCode());
EXPECT_EQ(ENOENT, status.serviceSpecificErrorCode());
}
// Create a socket pair that isLoopbackSocket won't think is local.
void BinderTest::fakeRemoteSocketPair(int *clientSocket, int *serverSocket, int *acceptedSocket) {
*serverSocket = socket(AF_INET6, SOCK_STREAM | SOCK_CLOEXEC, 0);
struct sockaddr_in6 server6 = { .sin6_family = AF_INET6, .sin6_addr = sTun.dstAddr() };
ASSERT_EQ(0, bind(*serverSocket, (struct sockaddr *) &server6, sizeof(server6)));
socklen_t addrlen = sizeof(server6);
ASSERT_EQ(0, getsockname(*serverSocket, (struct sockaddr *) &server6, &addrlen));
ASSERT_EQ(0, listen(*serverSocket, 10));
*clientSocket = socket(AF_INET6, SOCK_STREAM | SOCK_CLOEXEC, 0);
struct sockaddr_in6 client6 = { .sin6_family = AF_INET6, .sin6_addr = sTun.srcAddr() };
ASSERT_EQ(0, bind(*clientSocket, (struct sockaddr *) &client6, sizeof(client6)));
ASSERT_EQ(0, connect(*clientSocket, (struct sockaddr *) &server6, sizeof(server6)));
ASSERT_EQ(0, getsockname(*clientSocket, (struct sockaddr *) &client6, &addrlen));
*acceptedSocket = accept4(*serverSocket, (struct sockaddr *) &server6, &addrlen, SOCK_CLOEXEC);
ASSERT_NE(-1, *acceptedSocket);
ASSERT_EQ(0, memcmp(&client6, &server6, sizeof(client6)));
}
void checkSocketpairOpen(int clientSocket, int acceptedSocket) {
char buf[4096];
EXPECT_EQ(4, write(clientSocket, "foo", sizeof("foo")));
EXPECT_EQ(4, read(acceptedSocket, buf, sizeof(buf)));
EXPECT_EQ(0, memcmp(buf, "foo", sizeof("foo")));
}
void checkSocketpairClosed(int clientSocket, int acceptedSocket) {
// Check that the client socket was closed with ECONNABORTED.
int ret = write(clientSocket, "foo", sizeof("foo"));
int err = errno;
EXPECT_EQ(-1, ret);
EXPECT_EQ(ECONNABORTED, err);
// Check that it sent a RST to the server.
ret = write(acceptedSocket, "foo", sizeof("foo"));
err = errno;
EXPECT_EQ(-1, ret);
EXPECT_EQ(ECONNRESET, err);
}
TEST_F(BinderTest, SocketDestroy) {
int clientSocket, serverSocket, acceptedSocket;
ASSERT_NO_FATAL_FAILURE(fakeRemoteSocketPair(&clientSocket, &serverSocket, &acceptedSocket));
// Pick a random UID in the system UID range.
constexpr int baseUid = AID_APP - 2000;
static_assert(baseUid > 0, "Not enough UIDs? Please fix this test.");
int uid = baseUid + 500 + arc4random_uniform(1000);
EXPECT_EQ(0, fchown(clientSocket, uid, -1));
// UID ranges that don't contain uid.
std::vector<UidRangeParcel> uidRanges = {
makeUidRangeParcel(baseUid + 42, baseUid + 449),
makeUidRangeParcel(baseUid + 1536, AID_APP - 4),
makeUidRangeParcel(baseUid + 498, uid - 1),
makeUidRangeParcel(uid + 1, baseUid + 1520),
};
// A skip list that doesn't contain UID.
std::vector<int32_t> skipUids { baseUid + 123, baseUid + 1600 };
// Close sockets. Our test socket should be intact.
EXPECT_TRUE(mNetd->socketDestroy(uidRanges, skipUids).isOk());
checkSocketpairOpen(clientSocket, acceptedSocket);
// UID ranges that do contain uid.
uidRanges = {
makeUidRangeParcel(baseUid + 42, baseUid + 449),
makeUidRangeParcel(baseUid + 1536, AID_APP - 4),
makeUidRangeParcel(baseUid + 498, baseUid + 1520),
};
// Add uid to the skip list.
skipUids.push_back(uid);
// Close sockets. Our test socket should still be intact because it's in the skip list.
EXPECT_TRUE(mNetd->socketDestroy(uidRanges, skipUids).isOk());
checkSocketpairOpen(clientSocket, acceptedSocket);
// Now remove uid from skipUids, and close sockets. Our test socket should have been closed.
skipUids.resize(skipUids.size() - 1);
EXPECT_TRUE(mNetd->socketDestroy(uidRanges, skipUids).isOk());
checkSocketpairClosed(clientSocket, acceptedSocket);
close(clientSocket);
close(serverSocket);
close(acceptedSocket);
}
namespace {
int netmaskToPrefixLength(const uint8_t *buf, size_t buflen) {
if (buf == nullptr) return -1;
int prefixLength = 0;
bool endOfContiguousBits = false;
for (unsigned int i = 0; i < buflen; i++) {
const uint8_t value = buf[i];
// Bad bit sequence: check for a contiguous set of bits from the high
// end by verifying that the inverted value + 1 is a power of 2
// (power of 2 iff. (v & (v - 1)) == 0).
const uint8_t inverse = ~value + 1;
if ((inverse & (inverse - 1)) != 0) return -1;
prefixLength += (value == 0) ? 0 : CHAR_BIT - ffs(value) + 1;
// Bogus netmask.
if (endOfContiguousBits && value != 0) return -1;
if (value != 0xff) endOfContiguousBits = true;
}
return prefixLength;
}
template<typename T>
int netmaskToPrefixLength(const T *p) {
return netmaskToPrefixLength(reinterpret_cast<const uint8_t*>(p), sizeof(T));
}
static bool interfaceHasAddress(
const std::string &ifname, const char *addrString, int prefixLength) {
struct addrinfo *addrinfoList = nullptr;
const struct addrinfo hints = {
.ai_flags = AI_NUMERICHOST,
.ai_family = AF_UNSPEC,
.ai_socktype = SOCK_DGRAM,
};
if (getaddrinfo(addrString, nullptr, &hints, &addrinfoList) != 0 ||
addrinfoList == nullptr || addrinfoList->ai_addr == nullptr) {
return false;
}
ScopedAddrinfo addrinfoCleanup(addrinfoList);
struct ifaddrs *ifaddrsList = nullptr;
ScopedIfaddrs ifaddrsCleanup(ifaddrsList);
if (getifaddrs(&ifaddrsList) != 0) {
return false;
}
for (struct ifaddrs *addr = ifaddrsList; addr != nullptr; addr = addr->ifa_next) {
if (std::string(addr->ifa_name) != ifname ||
addr->ifa_addr == nullptr ||
addr->ifa_addr->sa_family != addrinfoList->ai_addr->sa_family) {
continue;
}
switch (addr->ifa_addr->sa_family) {
case AF_INET: {
auto *addr4 = reinterpret_cast<const struct sockaddr_in*>(addr->ifa_addr);
auto *want = reinterpret_cast<const struct sockaddr_in*>(addrinfoList->ai_addr);
if (memcmp(&addr4->sin_addr, &want->sin_addr, sizeof(want->sin_addr)) != 0) {
continue;
}
if (prefixLength < 0) return true; // not checking prefix lengths
if (addr->ifa_netmask == nullptr) return false;
auto *nm = reinterpret_cast<const struct sockaddr_in*>(addr->ifa_netmask);
EXPECT_EQ(prefixLength, netmaskToPrefixLength(&nm->sin_addr));
return (prefixLength == netmaskToPrefixLength(&nm->sin_addr));
}
case AF_INET6: {
auto *addr6 = reinterpret_cast<const struct sockaddr_in6*>(addr->ifa_addr);
auto *want = reinterpret_cast<const struct sockaddr_in6*>(addrinfoList->ai_addr);
if (memcmp(&addr6->sin6_addr, &want->sin6_addr, sizeof(want->sin6_addr)) != 0) {
continue;
}
if (prefixLength < 0) return true; // not checking prefix lengths
if (addr->ifa_netmask == nullptr) return false;
auto *nm = reinterpret_cast<const struct sockaddr_in6*>(addr->ifa_netmask);
EXPECT_EQ(prefixLength, netmaskToPrefixLength(&nm->sin6_addr));
return (prefixLength == netmaskToPrefixLength(&nm->sin6_addr));
}
default:
// Cannot happen because we have already screened for matching
// address families at the top of each iteration.
continue;
}
}
return false;
}
} // namespace
TEST_F(BinderTest, InterfaceAddRemoveAddress) {
static const struct TestData {
const char *addrString;
const int prefixLength;
const bool expectSuccess;
} kTestData[] = {
{ "192.0.2.1", 24, true },
{ "192.0.2.2", 25, true },
{ "192.0.2.3", 32, true },
{ "192.0.2.4", 33, false },
{ "192.not.an.ip", 24, false },
{ "2001:db8::1", 64, true },
{ "2001:db8::2", 65, true },
{ "2001:db8::3", 128, true },
{ "2001:db8::4", 129, false },
{ "foo:bar::bad", 64, false },
};
for (size_t i = 0; i < std::size(kTestData); i++) {
const auto &td = kTestData[i];
// [1.a] Add the address.
binder::Status status = mNetd->interfaceAddAddress(
sTun.name(), td.addrString, td.prefixLength);
if (td.expectSuccess) {
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
} else {
ASSERT_EQ(binder::Status::EX_SERVICE_SPECIFIC, status.exceptionCode());
ASSERT_NE(0, status.serviceSpecificErrorCode());
}
// [1.b] Verify the addition meets the expectation.
if (td.expectSuccess) {
EXPECT_TRUE(interfaceHasAddress(sTun.name(), td.addrString, td.prefixLength));
} else {
EXPECT_FALSE(interfaceHasAddress(sTun.name(), td.addrString, -1));
}
// [2.a] Try to remove the address. If it was not previously added, removing it fails.
status = mNetd->interfaceDelAddress(sTun.name(), td.addrString, td.prefixLength);
if (td.expectSuccess) {
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
} else {
ASSERT_EQ(binder::Status::EX_SERVICE_SPECIFIC, status.exceptionCode());
ASSERT_NE(0, status.serviceSpecificErrorCode());
}
// [2.b] No matter what, the address should not be present.
EXPECT_FALSE(interfaceHasAddress(sTun.name(), td.addrString, -1));
}
}
TEST_F(BinderTest, GetProcSysNet) {
const char LOOPBACK[] = "lo";
static const struct {
const int ipversion;
const int which;
const char* ifname;
const char* parameter;
const char* expectedValue;
const int expectedReturnCode;
} kTestData[] = {
{INetd::IPV4, INetd::CONF, LOOPBACK, "arp_ignore", "0", 0},
{-1, INetd::CONF, sTun.name().c_str(), "arp_ignore", nullptr, EAFNOSUPPORT},
{INetd::IPV4, -1, sTun.name().c_str(), "arp_ignore", nullptr, EINVAL},
{INetd::IPV4, INetd::CONF, "..", "conf/lo/arp_ignore", nullptr, EINVAL},
{INetd::IPV4, INetd::CONF, ".", "lo/arp_ignore", nullptr, EINVAL},
{INetd::IPV4, INetd::CONF, sTun.name().c_str(), "../all/arp_ignore", nullptr, EINVAL},
{INetd::IPV6, INetd::NEIGH, LOOPBACK, "ucast_solicit", "3", 0},
};
for (size_t i = 0; i < std::size(kTestData); i++) {
const auto& td = kTestData[i];
std::string value;
const binder::Status status =
mNetd->getProcSysNet(td.ipversion, td.which, td.ifname, td.parameter, &value);
if (td.expectedReturnCode == 0) {
SCOPED_TRACE(String8::format("test case %zu should have passed", i));
EXPECT_EQ(0, status.exceptionCode());
EXPECT_EQ(0, status.serviceSpecificErrorCode());
EXPECT_EQ(td.expectedValue, value);
} else {
SCOPED_TRACE(String8::format("test case %zu should have failed", i));
EXPECT_EQ(binder::Status::EX_SERVICE_SPECIFIC, status.exceptionCode());
EXPECT_EQ(td.expectedReturnCode, status.serviceSpecificErrorCode());
}
}
}
TEST_F(BinderTest, SetProcSysNet) {
static const struct {
const int ipversion;
const int which;
const char* ifname;
const char* parameter;
const char* value;
const int expectedReturnCode;
} kTestData[] = {
{INetd::IPV4, INetd::CONF, sTun.name().c_str(), "arp_ignore", "1", 0},
{-1, INetd::CONF, sTun.name().c_str(), "arp_ignore", "1", EAFNOSUPPORT},
{INetd::IPV4, -1, sTun.name().c_str(), "arp_ignore", "1", EINVAL},
{INetd::IPV4, INetd::CONF, "..", "conf/lo/arp_ignore", "1", EINVAL},
{INetd::IPV4, INetd::CONF, ".", "lo/arp_ignore", "1", EINVAL},
{INetd::IPV4, INetd::CONF, sTun.name().c_str(), "../all/arp_ignore", "1", EINVAL},
{INetd::IPV6, INetd::NEIGH, sTun.name().c_str(), "ucast_solicit", "7", 0},
};
for (size_t i = 0; i < std::size(kTestData); i++) {
const auto& td = kTestData[i];
const binder::Status status =
mNetd->setProcSysNet(td.ipversion, td.which, td.ifname, td.parameter, td.value);
if (td.expectedReturnCode == 0) {
SCOPED_TRACE(String8::format("test case %zu should have passed", i));
EXPECT_EQ(0, status.exceptionCode());
EXPECT_EQ(0, status.serviceSpecificErrorCode());
} else {
SCOPED_TRACE(String8::format("test case %zu should have failed", i));
EXPECT_EQ(binder::Status::EX_SERVICE_SPECIFIC, status.exceptionCode());
EXPECT_EQ(td.expectedReturnCode, status.serviceSpecificErrorCode());
}
}
}
TEST_F(BinderTest, GetSetProcSysNet) {
const int ipversion = INetd::IPV6;
const int category = INetd::NEIGH;
const std::string& tun = sTun.name();
const std::string parameter("ucast_solicit");
std::string value{};
EXPECT_TRUE(mNetd->getProcSysNet(ipversion, category, tun, parameter, &value).isOk());
ASSERT_FALSE(value.empty());
const int ival = std::stoi(value);
EXPECT_GT(ival, 0);
// Try doubling the parameter value (always best!).
EXPECT_TRUE(mNetd->setProcSysNet(ipversion, category, tun, parameter, std::to_string(2 * ival))
.isOk());
EXPECT_TRUE(mNetd->getProcSysNet(ipversion, category, tun, parameter, &value).isOk());
EXPECT_EQ(2 * ival, std::stoi(value));
// Try resetting the parameter.
EXPECT_TRUE(mNetd->setProcSysNet(ipversion, category, tun, parameter, std::to_string(ival))
.isOk());
EXPECT_TRUE(mNetd->getProcSysNet(ipversion, category, tun, parameter, &value).isOk());
EXPECT_EQ(ival, std::stoi(value));
}
namespace {
void expectNoTestCounterRules() {
for (const auto& binary : { IPTABLES_PATH, IP6TABLES_PATH }) {
std::string command = StringPrintf("%s -w -nvL tetherctrl_counters", binary);
std::string allRules = Join(runCommand(command), "\n");
EXPECT_EQ(std::string::npos, allRules.find("netdtest_"));
}
}
void addTetherCounterValues(const char* path, const std::string& if1, const std::string& if2,
int byte, int pkt) {
runCommand(StringPrintf("%s -w -A tetherctrl_counters -i %s -o %s -j RETURN -c %d %d",
path, if1.c_str(), if2.c_str(), pkt, byte));
}
void delTetherCounterValues(const char* path, const std::string& if1, const std::string& if2) {
runCommand(StringPrintf("%s -w -D tetherctrl_counters -i %s -o %s -j RETURN",
path, if1.c_str(), if2.c_str()));
runCommand(StringPrintf("%s -w -D tetherctrl_counters -i %s -o %s -j RETURN",
path, if2.c_str(), if1.c_str()));
}
std::vector<int64_t> getStatsVectorByIf(const std::vector<TetherStatsParcel>& statsVec,
const std::string& iface) {
for (auto& stats : statsVec) {
if (stats.iface == iface) {
return {stats.rxBytes, stats.rxPackets, stats.txBytes, stats.txPackets};
}
}
return {};
}
} // namespace
TEST_F(BinderTest, TetherGetStats) {
expectNoTestCounterRules();
// TODO: fold this into more comprehensive tests once we have binder RPCs for enabling and
// disabling tethering. We don't check the return value because these commands will fail if
// tethering is already enabled.
runCommand(StringPrintf("%s -w -N tetherctrl_counters", IPTABLES_PATH));
runCommand(StringPrintf("%s -w -N tetherctrl_counters", IP6TABLES_PATH));
std::string intIface1 = StringPrintf("netdtest_%u", arc4random_uniform(10000));
std::string intIface2 = StringPrintf("netdtest_%u", arc4random_uniform(10000));
std::string intIface3 = StringPrintf("netdtest_%u", arc4random_uniform(10000));
// Ensure we won't use the same interface name, otherwise the test will fail.
u_int32_t rNumber = arc4random_uniform(10000);
std::string extIface1 = StringPrintf("netdtest_%u", rNumber);
std::string extIface2 = StringPrintf("netdtest_%u", rNumber + 1);
addTetherCounterValues(IPTABLES_PATH, intIface1, extIface1, 123, 111);
addTetherCounterValues(IP6TABLES_PATH, intIface1, extIface1, 456, 10);
addTetherCounterValues(IPTABLES_PATH, extIface1, intIface1, 321, 222);
addTetherCounterValues(IP6TABLES_PATH, extIface1, intIface1, 654, 20);
// RX is from external to internal, and TX is from internal to external.
// So rxBytes is 321 + 654 = 975, txBytes is 123 + 456 = 579, etc.
std::vector<int64_t> expected1 = { 975, 242, 579, 121 };
addTetherCounterValues(IPTABLES_PATH, intIface2, extIface2, 1000, 333);
addTetherCounterValues(IP6TABLES_PATH, intIface2, extIface2, 3000, 30);
addTetherCounterValues(IPTABLES_PATH, extIface2, intIface2, 2000, 444);
addTetherCounterValues(IP6TABLES_PATH, extIface2, intIface2, 4000, 40);
addTetherCounterValues(IP6TABLES_PATH, intIface3, extIface2, 1000, 25);
addTetherCounterValues(IP6TABLES_PATH, extIface2, intIface3, 2000, 35);
std::vector<int64_t> expected2 = { 8000, 519, 5000, 388 };
std::vector<TetherStatsParcel> statsVec;
binder::Status status = mNetd->tetherGetStats(&statsVec);
EXPECT_TRUE(status.isOk()) << "Getting tethering stats failed: " << status;
EXPECT_EQ(expected1, getStatsVectorByIf(statsVec, extIface1));
EXPECT_EQ(expected2, getStatsVectorByIf(statsVec, extIface2));
for (const auto& path : { IPTABLES_PATH, IP6TABLES_PATH }) {
delTetherCounterValues(path, intIface1, extIface1);
delTetherCounterValues(path, intIface2, extIface2);
if (path == IP6TABLES_PATH) {
delTetherCounterValues(path, intIface3, extIface2);
}
}
expectNoTestCounterRules();
}
namespace {
constexpr char IDLETIMER_RAW_PREROUTING[] = "idletimer_raw_PREROUTING";
constexpr char IDLETIMER_MANGLE_POSTROUTING[] = "idletimer_mangle_POSTROUTING";
static std::vector<std::string> listIptablesRuleByTable(const char* binary, const char* table,
const char* chainName) {
std::string command = StringPrintf("%s -t %s -w -n -v -L %s", binary, table, chainName);
return runCommand(command);
}
// TODO: It is a duplicate function, need to remove it
bool iptablesIdleTimerInterfaceRuleExists(const char* binary, const char* chainName,
const std::string& expectedInterface,
const std::string& expectedRule, const char* table) {
std::vector<std::string> rules = listIptablesRuleByTable(binary, table, chainName);
for (const auto& rule : rules) {
if (rule.find(expectedInterface) != std::string::npos) {
if (rule.find(expectedRule) != std::string::npos) {
return true;
}
}
}
return false;
}
void expectIdletimerInterfaceRuleExists(const std::string& ifname, int timeout,
const std::string& classLabel) {
std::string IdletimerRule =
StringPrintf("timeout:%u label:%s send_nl_msg:1", timeout, classLabel.c_str());
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_TRUE(iptablesIdleTimerInterfaceRuleExists(binary, IDLETIMER_RAW_PREROUTING, ifname,
IdletimerRule, RAW_TABLE));
EXPECT_TRUE(iptablesIdleTimerInterfaceRuleExists(binary, IDLETIMER_MANGLE_POSTROUTING,
ifname, IdletimerRule, MANGLE_TABLE));
}
}
void expectIdletimerInterfaceRuleNotExists(const std::string& ifname, int timeout,
const std::string& classLabel) {
std::string IdletimerRule =
StringPrintf("timeout:%u label:%s send_nl_msg:1", timeout, classLabel.c_str());
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_FALSE(iptablesIdleTimerInterfaceRuleExists(binary, IDLETIMER_RAW_PREROUTING, ifname,
IdletimerRule, RAW_TABLE));
EXPECT_FALSE(iptablesIdleTimerInterfaceRuleExists(binary, IDLETIMER_MANGLE_POSTROUTING,
ifname, IdletimerRule, MANGLE_TABLE));
}
}
} // namespace
TEST_F(BinderTest, IdletimerAddRemoveInterface) {
// TODO: We will get error in if expectIdletimerInterfaceRuleNotExists if there are the same
// rule in the table. Because we only check the result after calling remove function. We might
// check the actual rule which is removed by our function (maybe compare the results between
// calling function before and after)
binder::Status status;
const struct TestData {
const std::string ifname;
int32_t timeout;
const std::string classLabel;
} idleTestData[] = {
{"wlan0", 1234, "happyday"},
{"rmnet_data0", 4567, "friday"},
};
for (const auto& td : idleTestData) {
status = mNetd->idletimerAddInterface(td.ifname, td.timeout, td.classLabel);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectIdletimerInterfaceRuleExists(td.ifname, td.timeout, td.classLabel);
status = mNetd->idletimerRemoveInterface(td.ifname, td.timeout, td.classLabel);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectIdletimerInterfaceRuleNotExists(td.ifname, td.timeout, td.classLabel);
}
}
namespace {
constexpr char STRICT_OUTPUT[] = "st_OUTPUT";
constexpr char STRICT_CLEAR_CAUGHT[] = "st_clear_caught";
void expectStrictSetUidAccept(const int uid) {
std::string uidRule = StringPrintf("owner UID match %u", uid);
std::string perUidChain = StringPrintf("st_clear_caught_%u", uid);
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_FALSE(iptablesRuleExists(binary, STRICT_OUTPUT, uidRule));
EXPECT_FALSE(iptablesRuleExists(binary, STRICT_CLEAR_CAUGHT, uidRule));
EXPECT_EQ(0, iptablesRuleLineLength(binary, perUidChain.c_str()));
}
}
void expectStrictSetUidLog(const int uid) {
static const char logRule[] = "st_penalty_log all";
std::string uidRule = StringPrintf("owner UID match %u", uid);
std::string perUidChain = StringPrintf("st_clear_caught_%u", uid);
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_TRUE(iptablesRuleExists(binary, STRICT_OUTPUT, uidRule));
EXPECT_TRUE(iptablesRuleExists(binary, STRICT_CLEAR_CAUGHT, uidRule));
EXPECT_TRUE(iptablesRuleExists(binary, perUidChain.c_str(), logRule));
}
}
void expectStrictSetUidReject(const int uid) {
static const char rejectRule[] = "st_penalty_reject all";
std::string uidRule = StringPrintf("owner UID match %u", uid);
std::string perUidChain = StringPrintf("st_clear_caught_%u", uid);
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_TRUE(iptablesRuleExists(binary, STRICT_OUTPUT, uidRule));
EXPECT_TRUE(iptablesRuleExists(binary, STRICT_CLEAR_CAUGHT, uidRule));
EXPECT_TRUE(iptablesRuleExists(binary, perUidChain.c_str(), rejectRule));
}
}
} // namespace
TEST_F(BinderTest, StrictSetUidCleartextPenalty) {
binder::Status status;
int32_t uid = randomUid();
// setUidCleartextPenalty Policy:Log with randomUid
status = mNetd->strictUidCleartextPenalty(uid, INetd::PENALTY_POLICY_LOG);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectStrictSetUidLog(uid);
// setUidCleartextPenalty Policy:Accept with randomUid
status = mNetd->strictUidCleartextPenalty(uid, INetd::PENALTY_POLICY_ACCEPT);
expectStrictSetUidAccept(uid);
// setUidCleartextPenalty Policy:Reject with randomUid
status = mNetd->strictUidCleartextPenalty(uid, INetd::PENALTY_POLICY_REJECT);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectStrictSetUidReject(uid);
// setUidCleartextPenalty Policy:Accept with randomUid
status = mNetd->strictUidCleartextPenalty(uid, INetd::PENALTY_POLICY_ACCEPT);
expectStrictSetUidAccept(uid);
// test wrong policy
int32_t wrongPolicy = -123;
status = mNetd->strictUidCleartextPenalty(uid, wrongPolicy);
EXPECT_EQ(EINVAL, status.serviceSpecificErrorCode());
}
namespace {
std::vector<std::string> tryToFindProcesses(const std::string& processName, uint32_t maxTries = 1,
uint32_t intervalMs = 50) {
// Output looks like:(clatd)
// clat 4963 850 1 12:16:51 ? 00:00:00 clatd-netd10a88 -i netd10a88 ...
// ...
// root 5221 5219 0 12:18:12 ? 00:00:00 sh -c ps -Af | grep ' clatd-netdcc1a0'
// (dnsmasq)
// dns_tether 4620 792 0 16:51:28 ? 00:00:00 dnsmasq --keep-in-foreground ...
if (maxTries == 0) return {};
std::string cmd = StringPrintf("ps -Af | grep '[0-9] %s'", processName.c_str());
std::vector<std::string> result;
for (uint32_t run = 1;;) {
result = runCommand(cmd);
if (result.size() || ++run > maxTries) {
break;
}
usleep(intervalMs * 1000);
}
return result;
}
void expectProcessExists(const std::string& processName) {
EXPECT_EQ(1U, tryToFindProcesses(processName, 5 /*maxTries*/).size());
}
void expectProcessDoesNotExist(const std::string& processName) {
EXPECT_FALSE(tryToFindProcesses(processName).size());
}
} // namespace
TEST_F(BinderTest, ClatdStartStop) {
binder::Status status;
const std::string clatdName = StringPrintf("clatd-%s", sTun.name().c_str());
std::string clatAddress;
std::string nat64Prefix = "2001:db8:cafe:f00d:1:2::/96";
// Can't start clatd on an interface that's not part of any network...
status = mNetd->clatdStart(sTun.name(), nat64Prefix, &clatAddress);
EXPECT_FALSE(status.isOk());
EXPECT_EQ(ENODEV, status.serviceSpecificErrorCode());
// ... so create a test physical network and add our tun to it.
EXPECT_TRUE(mNetd->networkCreatePhysical(TEST_NETID1, INetd::PERMISSION_NONE).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID1, sTun.name()).isOk());
// Prefix must be 96 bits long.
status = mNetd->clatdStart(sTun.name(), "2001:db8:cafe:f00d::/64", &clatAddress);
EXPECT_FALSE(status.isOk());
EXPECT_EQ(EINVAL, status.serviceSpecificErrorCode());
// Can't start clatd unless there's a default route...
status = mNetd->clatdStart(sTun.name(), nat64Prefix, &clatAddress);
EXPECT_FALSE(status.isOk());
EXPECT_EQ(EADDRNOTAVAIL, status.serviceSpecificErrorCode());
// so add a default route.
EXPECT_TRUE(mNetd->networkAddRoute(TEST_NETID1, sTun.name(), "::/0", "").isOk());
// Can't start clatd unless there's a global address...
status = mNetd->clatdStart(sTun.name(), nat64Prefix, &clatAddress);
EXPECT_FALSE(status.isOk());
EXPECT_EQ(EADDRNOTAVAIL, status.serviceSpecificErrorCode());
// ... so add a global address.
const std::string v6 = "2001:db8:1:2:f076:ae99:124e:aa99";
EXPECT_EQ(0, sTun.addAddress(v6.c_str(), 64));
// Now expect clatd to start successfully.
status = mNetd->clatdStart(sTun.name(), nat64Prefix, &clatAddress);
EXPECT_TRUE(status.isOk());
EXPECT_EQ(0, status.serviceSpecificErrorCode());
// Starting it again returns EBUSY.
status = mNetd->clatdStart(sTun.name(), nat64Prefix, &clatAddress);
EXPECT_FALSE(status.isOk());
EXPECT_EQ(EBUSY, status.serviceSpecificErrorCode());
expectProcessExists(clatdName);
// Expect clatd to stop successfully.
status = mNetd->clatdStop(sTun.name());
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectProcessDoesNotExist(clatdName);
// Stopping a clatd that doesn't exist returns ENODEV.
status = mNetd->clatdStop(sTun.name());
EXPECT_FALSE(status.isOk());
EXPECT_EQ(ENODEV, status.serviceSpecificErrorCode());
expectProcessDoesNotExist(clatdName);
// Clean up.
EXPECT_TRUE(mNetd->networkRemoveRoute(TEST_NETID1, sTun.name(), "::/0", "").isOk());
EXPECT_EQ(0, ifc_del_address(sTun.name().c_str(), v6.c_str(), 64));
EXPECT_TRUE(mNetd->networkDestroy(TEST_NETID1).isOk());
}
namespace {
bool getIpfwdV4Enable() {
static const char ipv4IpfwdCmd[] = "cat /proc/sys/net/ipv4/ip_forward";
std::vector<std::string> result = runCommand(ipv4IpfwdCmd);
EXPECT_TRUE(!result.empty());
int v4Enable = std::stoi(result[0]);
return v4Enable;
}
bool getIpfwdV6Enable() {
static const char ipv6IpfwdCmd[] = "cat /proc/sys/net/ipv6/conf/all/forwarding";
std::vector<std::string> result = runCommand(ipv6IpfwdCmd);
EXPECT_TRUE(!result.empty());
int v6Enable = std::stoi(result[0]);
return v6Enable;
}
void expectIpfwdEnable(bool enable) {
int enableIPv4 = getIpfwdV4Enable();
int enableIPv6 = getIpfwdV6Enable();
EXPECT_EQ(enable, enableIPv4);
EXPECT_EQ(enable, enableIPv6);
}
bool ipRuleIpfwdExists(const char* ipVersion, const std::string& ipfwdRule) {
std::vector<std::string> rules = listIpRules(ipVersion);
for (const auto& rule : rules) {
if (rule.find(ipfwdRule) != std::string::npos) {
return true;
}
}
return false;
}
void expectIpfwdRuleExists(const char* fromIf, const char* toIf) {
std::string ipfwdRule = StringPrintf("18000:\tfrom all iif %s lookup %s ", fromIf, toIf);
for (const auto& ipVersion : {IP_RULE_V4, IP_RULE_V6}) {
EXPECT_TRUE(ipRuleIpfwdExists(ipVersion, ipfwdRule));
}
}
void expectIpfwdRuleNotExists(const char* fromIf, const char* toIf) {
std::string ipfwdRule = StringPrintf("18000:\tfrom all iif %s lookup %s ", fromIf, toIf);
for (const auto& ipVersion : {IP_RULE_V4, IP_RULE_V6}) {
EXPECT_FALSE(ipRuleIpfwdExists(ipVersion, ipfwdRule));
}
}
} // namespace
TEST_F(BinderTest, TestIpfwdEnableDisableStatusForwarding) {
// Get ipfwd requester list from Netd
std::vector<std::string> requesterList;
binder::Status status = mNetd->ipfwdGetRequesterList(&requesterList);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
bool ipfwdEnabled;
if (requesterList.size() == 0) {
// No requester in Netd, ipfwd should be disabled
// So add one test requester and verify
status = mNetd->ipfwdEnableForwarding("TestRequester");
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectIpfwdEnable(true);
status = mNetd->ipfwdEnabled(&ipfwdEnabled);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
EXPECT_TRUE(ipfwdEnabled);
// Remove test one, verify again
status = mNetd->ipfwdDisableForwarding("TestRequester");
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectIpfwdEnable(false);
status = mNetd->ipfwdEnabled(&ipfwdEnabled);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
EXPECT_FALSE(ipfwdEnabled);
} else {
// Disable all requesters
for (const auto& requester : requesterList) {
status = mNetd->ipfwdDisableForwarding(requester);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
}
// After disable all requester, ipfwd should be disabled
expectIpfwdEnable(false);
status = mNetd->ipfwdEnabled(&ipfwdEnabled);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
EXPECT_FALSE(ipfwdEnabled);
// Enable them back
for (const auto& requester : requesterList) {
status = mNetd->ipfwdEnableForwarding(requester);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
}
// ipfwd should be enabled
expectIpfwdEnable(true);
status = mNetd->ipfwdEnabled(&ipfwdEnabled);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
EXPECT_TRUE(ipfwdEnabled);
}
}
TEST_F(BinderTest, TestIpfwdAddRemoveInterfaceForward) {
// Add test physical network
EXPECT_TRUE(
mNetd->networkCreatePhysical(TEST_NETID1, INetd::PERMISSION_NONE).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID1, sTun.name()).isOk());
EXPECT_TRUE(
mNetd->networkCreatePhysical(TEST_NETID2, INetd::PERMISSION_NONE).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID2, sTun2.name()).isOk());
binder::Status status =
mNetd->ipfwdAddInterfaceForward(sTun.name(), sTun2.name());
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectIpfwdRuleExists(sTun.name().c_str(), sTun2.name().c_str());
status = mNetd->ipfwdRemoveInterfaceForward(sTun.name(), sTun2.name());
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectIpfwdRuleNotExists(sTun.name().c_str(), sTun2.name().c_str());
}
namespace {
constexpr char BANDWIDTH_INPUT[] = "bw_INPUT";
constexpr char BANDWIDTH_OUTPUT[] = "bw_OUTPUT";
constexpr char BANDWIDTH_FORWARD[] = "bw_FORWARD";
constexpr char BANDWIDTH_NAUGHTY[] = "bw_penalty_box";
constexpr char BANDWIDTH_NICE[] = "bw_happy_box";
constexpr char BANDWIDTH_ALERT[] = "bw_global_alert";
// TODO: Move iptablesTargetsExists and listIptablesRuleByTable to the top.
// Use either a std::vector<std::string> of things to match, or a variadic function.
bool iptablesTargetsExists(const char* binary, int expectedCount, const char* table,
const char* chainName, const std::string& expectedTargetA,
const std::string& expectedTargetB) {
std::vector<std::string> rules = listIptablesRuleByTable(binary, table, chainName);
int matchCount = 0;
for (const auto& rule : rules) {
if (rule.find(expectedTargetA) != std::string::npos) {
if (rule.find(expectedTargetB) != std::string::npos) {
matchCount++;
}
}
}
return matchCount == expectedCount;
}
void expectXtQuotaValueEqual(const char* ifname, long quotaBytes) {
std::string path = StringPrintf("/proc/net/xt_quota/%s", ifname);
std::string result = "";
EXPECT_TRUE(ReadFileToString(path, &result));
// Quota value might be decreased while matching packets
EXPECT_GE(quotaBytes, std::stol(Trim(result)));
}
void expectBandwidthInterfaceQuotaRuleExists(const char* ifname, long quotaBytes) {
std::string BANDWIDTH_COSTLY_IF = StringPrintf("bw_costly_%s", ifname);
std::string quotaRule = StringPrintf("quota %s", ifname);
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_TRUE(iptablesTargetsExists(binary, 1, FILTER_TABLE, BANDWIDTH_INPUT, ifname,
BANDWIDTH_COSTLY_IF));
EXPECT_TRUE(iptablesTargetsExists(binary, 1, FILTER_TABLE, BANDWIDTH_OUTPUT, ifname,
BANDWIDTH_COSTLY_IF));
EXPECT_TRUE(iptablesTargetsExists(binary, 2, FILTER_TABLE, BANDWIDTH_FORWARD, ifname,
BANDWIDTH_COSTLY_IF));
EXPECT_TRUE(iptablesRuleExists(binary, BANDWIDTH_COSTLY_IF.c_str(), BANDWIDTH_NAUGHTY));
EXPECT_TRUE(iptablesRuleExists(binary, BANDWIDTH_COSTLY_IF.c_str(), quotaRule));
}
expectXtQuotaValueEqual(ifname, quotaBytes);
}
void expectBandwidthInterfaceQuotaRuleDoesNotExist(const char* ifname) {
std::string BANDWIDTH_COSTLY_IF = StringPrintf("bw_costly_%s", ifname);
std::string quotaRule = StringPrintf("quota %s", ifname);
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_FALSE(iptablesTargetsExists(binary, 1, FILTER_TABLE, BANDWIDTH_INPUT, ifname,
BANDWIDTH_COSTLY_IF));
EXPECT_FALSE(iptablesTargetsExists(binary, 1, FILTER_TABLE, BANDWIDTH_OUTPUT, ifname,
BANDWIDTH_COSTLY_IF));
EXPECT_FALSE(iptablesTargetsExists(binary, 2, FILTER_TABLE, BANDWIDTH_FORWARD, ifname,
BANDWIDTH_COSTLY_IF));
EXPECT_FALSE(iptablesRuleExists(binary, BANDWIDTH_COSTLY_IF.c_str(), BANDWIDTH_NAUGHTY));
EXPECT_FALSE(iptablesRuleExists(binary, BANDWIDTH_COSTLY_IF.c_str(), quotaRule));
}
}
void expectBandwidthInterfaceAlertRuleExists(const char* ifname, long alertBytes) {
std::string BANDWIDTH_COSTLY_IF = StringPrintf("bw_costly_%s", ifname);
std::string alertRule = StringPrintf("quota %sAlert", ifname);
std::string alertName = StringPrintf("%sAlert", ifname);
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_TRUE(iptablesRuleExists(binary, BANDWIDTH_COSTLY_IF.c_str(), alertRule));
}
expectXtQuotaValueEqual(alertName.c_str(), alertBytes);
}
void expectBandwidthInterfaceAlertRuleDoesNotExist(const char* ifname) {
std::string BANDWIDTH_COSTLY_IF = StringPrintf("bw_costly_%s", ifname);
std::string alertRule = StringPrintf("quota %sAlert", ifname);
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_FALSE(iptablesRuleExists(binary, BANDWIDTH_COSTLY_IF.c_str(), alertRule));
}
}
void expectBandwidthGlobalAlertRuleExists(long alertBytes) {
static const char globalAlertRule[] = "quota globalAlert";
static const char globalAlertName[] = "globalAlert";
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_TRUE(iptablesRuleExists(binary, BANDWIDTH_ALERT, globalAlertRule));
}
expectXtQuotaValueEqual(globalAlertName, alertBytes);
}
void expectBandwidthManipulateSpecialAppRuleExists(const char* chain, const char* target, int uid) {
std::string uidRule = StringPrintf("owner UID match %u", uid);
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_TRUE(iptablesTargetsExists(binary, 1, FILTER_TABLE, chain, target, uidRule));
}
}
void expectBandwidthManipulateSpecialAppRuleDoesNotExist(const char* chain, int uid) {
std::string uidRule = StringPrintf("owner UID match %u", uid);
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_FALSE(iptablesRuleExists(binary, chain, uidRule));
}
}
} // namespace
TEST_F(BinderTest, BandwidthSetRemoveInterfaceQuota) {
long testQuotaBytes = 5550;
// Add test physical network
EXPECT_TRUE(mNetd->networkCreatePhysical(TEST_NETID1, INetd::PERMISSION_NONE).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID1, sTun.name()).isOk());
binder::Status status = mNetd->bandwidthSetInterfaceQuota(sTun.name(), testQuotaBytes);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectBandwidthInterfaceQuotaRuleExists(sTun.name().c_str(), testQuotaBytes);
status = mNetd->bandwidthRemoveInterfaceQuota(sTun.name());
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectBandwidthInterfaceQuotaRuleDoesNotExist(sTun.name().c_str());
// Remove test physical network
EXPECT_TRUE(mNetd->networkDestroy(TEST_NETID1).isOk());
}
TEST_F(BinderTest, BandwidthSetRemoveInterfaceAlert) {
long testAlertBytes = 373;
// Add test physical network
EXPECT_TRUE(mNetd->networkCreatePhysical(TEST_NETID1, INetd::PERMISSION_NONE).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID1, sTun.name()).isOk());
// Need to have a prior interface quota set to set an alert
binder::Status status = mNetd->bandwidthSetInterfaceQuota(sTun.name(), testAlertBytes);
status = mNetd->bandwidthSetInterfaceAlert(sTun.name(), testAlertBytes);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectBandwidthInterfaceAlertRuleExists(sTun.name().c_str(), testAlertBytes);
status = mNetd->bandwidthRemoveInterfaceAlert(sTun.name());
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectBandwidthInterfaceAlertRuleDoesNotExist(sTun.name().c_str());
// Remove interface quota
status = mNetd->bandwidthRemoveInterfaceQuota(sTun.name());
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectBandwidthInterfaceQuotaRuleDoesNotExist(sTun.name().c_str());
// Remove test physical network
EXPECT_TRUE(mNetd->networkDestroy(TEST_NETID1).isOk());
}
TEST_F(BinderTest, BandwidthSetGlobalAlert) {
int64_t testAlertBytes = 2097200;
binder::Status status = mNetd->bandwidthSetGlobalAlert(testAlertBytes);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectBandwidthGlobalAlertRuleExists(testAlertBytes);
testAlertBytes = 2098230;
status = mNetd->bandwidthSetGlobalAlert(testAlertBytes);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectBandwidthGlobalAlertRuleExists(testAlertBytes);
}
TEST_F(BinderTest, BandwidthManipulateSpecialApp) {
SKIP_IF_BPF_SUPPORTED;
int32_t uid = randomUid();
static const char targetReject[] = "REJECT";
static const char targetReturn[] = "RETURN";
// add NaughtyApp
binder::Status status = mNetd->bandwidthAddNaughtyApp(uid);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectBandwidthManipulateSpecialAppRuleExists(BANDWIDTH_NAUGHTY, targetReject, uid);
// remove NaughtyApp
status = mNetd->bandwidthRemoveNaughtyApp(uid);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectBandwidthManipulateSpecialAppRuleDoesNotExist(BANDWIDTH_NAUGHTY, uid);
// add NiceApp
status = mNetd->bandwidthAddNiceApp(uid);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectBandwidthManipulateSpecialAppRuleExists(BANDWIDTH_NICE, targetReturn, uid);
// remove NiceApp
status = mNetd->bandwidthRemoveNiceApp(uid);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectBandwidthManipulateSpecialAppRuleDoesNotExist(BANDWIDTH_NICE, uid);
}
namespace {
std::string ipRouteString(const std::string& ifName, const std::string& dst,
const std::string& nextHop) {
std::string dstString = (dst == "0.0.0.0/0" || dst == "::/0") ? "default" : dst;
if (!nextHop.empty()) {
dstString += " via " + nextHop;
}
return dstString + " dev " + ifName;
}
void expectNetworkRouteExists(const char* ipVersion, const std::string& ifName,
const std::string& dst, const std::string& nextHop,
const char* table) {
EXPECT_TRUE(ipRouteExists(ipVersion, table, ipRouteString(ifName, dst, nextHop)));
}
void expectNetworkRouteDoesNotExist(const char* ipVersion, const std::string& ifName,
const std::string& dst, const std::string& nextHop,
const char* table) {
EXPECT_FALSE(ipRouteExists(ipVersion, table, ipRouteString(ifName, dst, nextHop)));
}
bool ipRuleExists(const char* ipVersion, const std::string& ipRule) {
std::vector<std::string> rules = listIpRules(ipVersion);
for (const auto& rule : rules) {
if (rule.find(ipRule) != std::string::npos) {
return true;
}
}
return false;
}
void expectNetworkDefaultIpRuleExists(const char* ifName) {
std::string networkDefaultRule =
StringPrintf("22000:\tfrom all fwmark 0x0/0xffff iif lo lookup %s", ifName);
for (const auto& ipVersion : {IP_RULE_V4, IP_RULE_V6}) {
EXPECT_TRUE(ipRuleExists(ipVersion, networkDefaultRule));
}
}
void expectNetworkDefaultIpRuleDoesNotExist() {
static const char networkDefaultRule[] = "22000:\tfrom all fwmark 0x0/0xffff iif lo";
for (const auto& ipVersion : {IP_RULE_V4, IP_RULE_V6}) {
EXPECT_FALSE(ipRuleExists(ipVersion, networkDefaultRule));
}
}
void expectNetworkPermissionIpRuleExists(const char* ifName, int permission) {
std::string networkPermissionRule = "";
switch (permission) {
case INetd::PERMISSION_NONE:
networkPermissionRule = StringPrintf(
"13000:\tfrom all fwmark 0x1ffdd/0x1ffff iif lo lookup %s", ifName);
break;
case INetd::PERMISSION_NETWORK:
networkPermissionRule = StringPrintf(
"13000:\tfrom all fwmark 0x5ffdd/0x5ffff iif lo lookup %s", ifName);
break;
case INetd::PERMISSION_SYSTEM:
networkPermissionRule = StringPrintf(
"13000:\tfrom all fwmark 0xdffdd/0xdffff iif lo lookup %s", ifName);
break;
}
for (const auto& ipVersion : {IP_RULE_V4, IP_RULE_V6}) {
EXPECT_TRUE(ipRuleExists(ipVersion, networkPermissionRule));
}
}
// TODO: It is a duplicate function, need to remove it
bool iptablesNetworkPermissionIptablesRuleExists(const char* binary, const char* chainName,
const std::string& expectedInterface,
const std::string& expectedRule,
const char* table) {
std::vector<std::string> rules = listIptablesRuleByTable(binary, table, chainName);
for (const auto& rule : rules) {
if (rule.find(expectedInterface) != std::string::npos) {
if (rule.find(expectedRule) != std::string::npos) {
return true;
}
}
}
return false;
}
void expectNetworkPermissionIptablesRuleExists(const char* ifName, int permission) {
static const char ROUTECTRL_INPUT[] = "routectrl_mangle_INPUT";
std::string networkIncomingPacketMarkRule = "";
switch (permission) {
case INetd::PERMISSION_NONE:
networkIncomingPacketMarkRule = "MARK xset 0x3ffdd/0xffefffff";
break;
case INetd::PERMISSION_NETWORK:
networkIncomingPacketMarkRule = "MARK xset 0x7ffdd/0xffefffff";
break;
case INetd::PERMISSION_SYSTEM:
networkIncomingPacketMarkRule = "MARK xset 0xfffdd/0xffefffff";
break;
}
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_TRUE(iptablesNetworkPermissionIptablesRuleExists(
binary, ROUTECTRL_INPUT, ifName, networkIncomingPacketMarkRule, MANGLE_TABLE));
}
}
} // namespace
TEST_F(BinderTest, NetworkAddRemoveRouteUserPermission) {
static const struct {
const char* ipVersion;
const char* testDest;
const char* testNextHop;
const bool expectSuccess;
} kTestData[] = {
{IP_RULE_V4, "0.0.0.0/0", "", true},
{IP_RULE_V4, "0.0.0.0/0", "10.251.10.0", true},
{IP_RULE_V4, "10.251.0.0/16", "", true},
{IP_RULE_V4, "10.251.0.0/16", "10.251.10.0", true},
{IP_RULE_V4, "10.251.0.0/16", "fe80::/64", false},
{IP_RULE_V6, "::/0", "", true},
{IP_RULE_V6, "::/0", "2001:db8::", true},
{IP_RULE_V6, "2001:db8:cafe::/64", "2001:db8::", true},
{IP_RULE_V4, "fe80::/64", "0.0.0.0", false},
};
static const struct {
const char* ipVersion;
const char* testDest;
const char* testNextHop;
} kTestDataWithNextHop[] = {
{IP_RULE_V4, "10.251.10.0/30", ""},
{IP_RULE_V6, "2001:db8::/32", ""},
};
static const char testTableLegacySystem[] = "legacy_system";
static const char testTableLegacyNetwork[] = "legacy_network";
const int testUid = randomUid();
const std::vector<int32_t> testUids = {testUid};
// Add test physical network
EXPECT_TRUE(mNetd->networkCreatePhysical(TEST_NETID1, INetd::PERMISSION_NONE).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID1, sTun.name()).isOk());
// Setup route for testing nextHop
for (size_t i = 0; i < std::size(kTestDataWithNextHop); i++) {
const auto& td = kTestDataWithNextHop[i];
// All route for test tun will disappear once the tun interface is deleted.
binder::Status status =
mNetd->networkAddRoute(TEST_NETID1, sTun.name(), td.testDest, td.testNextHop);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkRouteExists(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
sTun.name().c_str());
// Add system permission for test uid, setup route in legacy system table.
EXPECT_TRUE(mNetd->networkSetPermissionForUser(INetd::PERMISSION_SYSTEM, testUids).isOk());
status = mNetd->networkAddLegacyRoute(TEST_NETID1, sTun.name(), td.testDest, td.testNextHop,
testUid);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkRouteExists(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
testTableLegacySystem);
// Remove system permission for test uid, setup route in legacy network table.
EXPECT_TRUE(mNetd->networkClearPermissionForUser(testUids).isOk());
status = mNetd->networkAddLegacyRoute(TEST_NETID1, sTun.name(), td.testDest, td.testNextHop,
testUid);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkRouteExists(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
testTableLegacyNetwork);
}
for (size_t i = 0; i < std::size(kTestData); i++) {
const auto& td = kTestData[i];
binder::Status status =
mNetd->networkAddRoute(TEST_NETID1, sTun.name(), td.testDest, td.testNextHop);
if (td.expectSuccess) {
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkRouteExists(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
sTun.name().c_str());
} else {
EXPECT_EQ(binder::Status::EX_SERVICE_SPECIFIC, status.exceptionCode());
EXPECT_NE(0, status.serviceSpecificErrorCode());
}
status = mNetd->networkRemoveRoute(TEST_NETID1, sTun.name(), td.testDest, td.testNextHop);
if (td.expectSuccess) {
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkRouteDoesNotExist(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
sTun.name().c_str());
} else {
EXPECT_EQ(binder::Status::EX_SERVICE_SPECIFIC, status.exceptionCode());
EXPECT_NE(0, status.serviceSpecificErrorCode());
}
// Add system permission for test uid, route will be added into legacy system table.
EXPECT_TRUE(mNetd->networkSetPermissionForUser(INetd::PERMISSION_SYSTEM, testUids).isOk());
status = mNetd->networkAddLegacyRoute(TEST_NETID1, sTun.name(), td.testDest, td.testNextHop,
testUid);
if (td.expectSuccess) {
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkRouteExists(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
testTableLegacySystem);
} else {
EXPECT_EQ(binder::Status::EX_SERVICE_SPECIFIC, status.exceptionCode());
EXPECT_NE(0, status.serviceSpecificErrorCode());
}
status = mNetd->networkRemoveLegacyRoute(TEST_NETID1, sTun.name(), td.testDest,
td.testNextHop, testUid);
if (td.expectSuccess) {
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkRouteDoesNotExist(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
testTableLegacySystem);
} else {
EXPECT_EQ(binder::Status::EX_SERVICE_SPECIFIC, status.exceptionCode());
EXPECT_NE(0, status.serviceSpecificErrorCode());
}
// Remove system permission for test uid, route will be added into legacy network table.
EXPECT_TRUE(mNetd->networkClearPermissionForUser(testUids).isOk());
status = mNetd->networkAddLegacyRoute(TEST_NETID1, sTun.name(), td.testDest, td.testNextHop,
testUid);
if (td.expectSuccess) {
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkRouteExists(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
testTableLegacyNetwork);
} else {
EXPECT_EQ(binder::Status::EX_SERVICE_SPECIFIC, status.exceptionCode());
EXPECT_NE(0, status.serviceSpecificErrorCode());
}
status = mNetd->networkRemoveLegacyRoute(TEST_NETID1, sTun.name(), td.testDest,
td.testNextHop, testUid);
if (td.expectSuccess) {
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkRouteDoesNotExist(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
testTableLegacyNetwork);
} else {
EXPECT_EQ(binder::Status::EX_SERVICE_SPECIFIC, status.exceptionCode());
EXPECT_NE(0, status.serviceSpecificErrorCode());
}
}
// Remove test physical network
EXPECT_TRUE(mNetd->networkDestroy(TEST_NETID1).isOk());
}
TEST_F(BinderTest, NetworkPermissionDefault) {
// Add test physical network
EXPECT_TRUE(mNetd->networkCreatePhysical(TEST_NETID1, INetd::PERMISSION_NONE).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID1, sTun.name()).isOk());
// Get current default network NetId
binder::Status status = mNetd->networkGetDefault(&mStoredDefaultNetwork);
ASSERT_TRUE(status.isOk()) << status.exceptionMessage();
// Test SetDefault
status = mNetd->networkSetDefault(TEST_NETID1);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkDefaultIpRuleExists(sTun.name().c_str());
status = mNetd->networkClearDefault();
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkDefaultIpRuleDoesNotExist();
// Set default network back
status = mNetd->networkSetDefault(mStoredDefaultNetwork);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
// Test SetPermission
status = mNetd->networkSetPermissionForNetwork(TEST_NETID1, INetd::PERMISSION_SYSTEM);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkPermissionIpRuleExists(sTun.name().c_str(), INetd::PERMISSION_SYSTEM);
expectNetworkPermissionIptablesRuleExists(sTun.name().c_str(), INetd::PERMISSION_SYSTEM);
status = mNetd->networkSetPermissionForNetwork(TEST_NETID1, INetd::PERMISSION_NONE);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNetworkPermissionIpRuleExists(sTun.name().c_str(), INetd::PERMISSION_NONE);
expectNetworkPermissionIptablesRuleExists(sTun.name().c_str(), INetd::PERMISSION_NONE);
// Remove test physical network
EXPECT_TRUE(mNetd->networkDestroy(TEST_NETID1).isOk());
}
TEST_F(BinderTest, NetworkSetProtectAllowDeny) {
binder::Status status = mNetd->networkSetProtectAllow(TEST_UID1);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
bool ret = false;
status = mNetd->networkCanProtect(TEST_UID1, &ret);
EXPECT_TRUE(ret);
status = mNetd->networkSetProtectDeny(TEST_UID1);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
// Clear uid permission before calling networkCanProtect to ensure
// the call won't be affected by uid permission.
EXPECT_TRUE(mNetd->networkClearPermissionForUser({TEST_UID1}).isOk());
status = mNetd->networkCanProtect(TEST_UID1, &ret);
EXPECT_FALSE(ret);
}
namespace {
int readIntFromPath(const std::string& path) {
std::string result = "";
EXPECT_TRUE(ReadFileToString(path, &result));
return std::stoi(result);
}
int getTetherAcceptIPv6Ra(const std::string& ifName) {
std::string path = StringPrintf("/proc/sys/net/ipv6/conf/%s/accept_ra", ifName.c_str());
return readIntFromPath(path);
}
bool getTetherAcceptIPv6Dad(const std::string& ifName) {
std::string path = StringPrintf("/proc/sys/net/ipv6/conf/%s/accept_dad", ifName.c_str());
return readIntFromPath(path);
}
int getTetherIPv6DadTransmits(const std::string& ifName) {
std::string path = StringPrintf("/proc/sys/net/ipv6/conf/%s/dad_transmits", ifName.c_str());
return readIntFromPath(path);
}
bool getTetherEnableIPv6(const std::string& ifName) {
std::string path = StringPrintf("/proc/sys/net/ipv6/conf/%s/disable_ipv6", ifName.c_str());
int disableIPv6 = readIntFromPath(path);
return !disableIPv6;
}
bool interfaceListContains(const std::vector<std::string>& ifList, const std::string& ifName) {
for (const auto& iface : ifList) {
if (iface == ifName) {
return true;
}
}
return false;
}
void expectTetherInterfaceConfigureForIPv6Router(const std::string& ifName) {
EXPECT_EQ(getTetherAcceptIPv6Ra(ifName), 0);
EXPECT_FALSE(getTetherAcceptIPv6Dad(ifName));
EXPECT_EQ(getTetherIPv6DadTransmits(ifName), 0);
EXPECT_TRUE(getTetherEnableIPv6(ifName));
}
void expectTetherInterfaceConfigureForIPv6Client(const std::string& ifName) {
EXPECT_EQ(getTetherAcceptIPv6Ra(ifName), 2);
EXPECT_TRUE(getTetherAcceptIPv6Dad(ifName));
EXPECT_EQ(getTetherIPv6DadTransmits(ifName), 1);
EXPECT_FALSE(getTetherEnableIPv6(ifName));
}
void expectTetherInterfaceExists(const std::vector<std::string>& ifList,
const std::string& ifName) {
EXPECT_TRUE(interfaceListContains(ifList, ifName));
}
void expectTetherInterfaceNotExists(const std::vector<std::string>& ifList,
const std::string& ifName) {
EXPECT_FALSE(interfaceListContains(ifList, ifName));
}
void expectTetherDnsListEquals(const std::vector<std::string>& dnsList,
const std::vector<std::string>& testDnsAddrs) {
EXPECT_TRUE(dnsList == testDnsAddrs);
}
} // namespace
TEST_F(BinderTest, TetherStartStopStatus) {
std::vector<std::string> noDhcpRange = {};
static const char dnsdName[] = "dnsmasq";
for (bool usingLegacyDnsProxy : {true, false}) {
binder::Status status =
mNetd->tetherStartWithConfiguration(usingLegacyDnsProxy, noDhcpRange);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
SCOPED_TRACE(StringPrintf("usingLegacyDnsProxy: %d", usingLegacyDnsProxy));
if (usingLegacyDnsProxy == true) {
expectProcessExists(dnsdName);
} else {
expectProcessDoesNotExist(dnsdName);
}
bool tetherEnabled;
status = mNetd->tetherIsEnabled(&tetherEnabled);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
EXPECT_TRUE(tetherEnabled);
status = mNetd->tetherStop();
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectProcessDoesNotExist(dnsdName);
status = mNetd->tetherIsEnabled(&tetherEnabled);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
EXPECT_FALSE(tetherEnabled);
}
}
TEST_F(BinderTest, TetherInterfaceAddRemoveList) {
// TODO: verify if dnsmasq update interface successfully
binder::Status status = mNetd->tetherInterfaceAdd(sTun.name());
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectTetherInterfaceConfigureForIPv6Router(sTun.name());
std::vector<std::string> ifList;
status = mNetd->tetherInterfaceList(&ifList);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectTetherInterfaceExists(ifList, sTun.name());
status = mNetd->tetherInterfaceRemove(sTun.name());
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectTetherInterfaceConfigureForIPv6Client(sTun.name());
status = mNetd->tetherInterfaceList(&ifList);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectTetherInterfaceNotExists(ifList, sTun.name());
}
TEST_F(BinderTest, TetherDnsSetList) {
// TODO: verify if dnsmasq update dns successfully
std::vector<std::string> testDnsAddrs = {"192.168.1.37", "213.137.100.3",
"fe80::1%" + sTun.name()};
binder::Status status = mNetd->tetherDnsSet(TEST_NETID1, testDnsAddrs);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
std::vector<std::string> dnsList;
status = mNetd->tetherDnsList(&dnsList);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectTetherDnsListEquals(dnsList, testDnsAddrs);
}
namespace {
constexpr char FIREWALL_INPUT[] = "fw_INPUT";
constexpr char FIREWALL_OUTPUT[] = "fw_OUTPUT";
constexpr char FIREWALL_FORWARD[] = "fw_FORWARD";
constexpr char FIREWALL_DOZABLE[] = "fw_dozable";
constexpr char FIREWALL_POWERSAVE[] = "fw_powersave";
constexpr char FIREWALL_STANDBY[] = "fw_standby";
constexpr char targetReturn[] = "RETURN";
constexpr char targetDrop[] = "DROP";
void expectFirewallWhitelistMode() {
static const char dropRule[] = "DROP all";
static const char rejectRule[] = "REJECT all";
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_TRUE(iptablesRuleExists(binary, FIREWALL_INPUT, dropRule));
EXPECT_TRUE(iptablesRuleExists(binary, FIREWALL_OUTPUT, rejectRule));
EXPECT_TRUE(iptablesRuleExists(binary, FIREWALL_FORWARD, rejectRule));
}
}
void expectFirewallBlacklistMode() {
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_EQ(2, iptablesRuleLineLength(binary, FIREWALL_INPUT));
EXPECT_EQ(2, iptablesRuleLineLength(binary, FIREWALL_OUTPUT));
EXPECT_EQ(2, iptablesRuleLineLength(binary, FIREWALL_FORWARD));
}
}
bool iptablesFirewallInterfaceFirstRuleExists(const char* binary, const char* chainName,
const std::string& expectedInterface,
const std::string& expectedRule) {
std::vector<std::string> rules = listIptablesRuleByTable(binary, FILTER_TABLE, chainName);
// Expected rule:
// Chain fw_INPUT (1 references)
// pkts bytes target prot opt in out source destination
// 0 0 RETURN all -- expectedInterface * 0.0.0.0/0 0.0.0.0/0
// 0 0 DROP all -- * * 0.0.0.0/0 0.0.0.0/0
int firstRuleIndex = 2;
if (rules.size() < 4) return false;
if (rules[firstRuleIndex].find(expectedInterface) != std::string::npos) {
if (rules[firstRuleIndex].find(expectedRule) != std::string::npos) {
return true;
}
}
return false;
}
// TODO: It is a duplicate function, need to remove it
bool iptablesFirewallInterfaceRuleExists(const char* binary, const char* chainName,
const std::string& expectedInterface,
const std::string& expectedRule) {
std::vector<std::string> rules = listIptablesRuleByTable(binary, FILTER_TABLE, chainName);
for (const auto& rule : rules) {
if (rule.find(expectedInterface) != std::string::npos) {
if (rule.find(expectedRule) != std::string::npos) {
return true;
}
}
}
return false;
}
void expectFirewallInterfaceRuleAllowExists(const std::string& ifname) {
static const char returnRule[] = "RETURN all";
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_TRUE(iptablesFirewallInterfaceFirstRuleExists(binary, FIREWALL_INPUT, ifname,
returnRule));
EXPECT_TRUE(iptablesFirewallInterfaceFirstRuleExists(binary, FIREWALL_OUTPUT, ifname,
returnRule));
}
}
void expectFireWallInterfaceRuleAllowDoesNotExist(const std::string& ifname) {
static const char returnRule[] = "RETURN all";
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_FALSE(
iptablesFirewallInterfaceRuleExists(binary, FIREWALL_INPUT, ifname, returnRule));
EXPECT_FALSE(
iptablesFirewallInterfaceRuleExists(binary, FIREWALL_OUTPUT, ifname, returnRule));
}
}
bool iptablesFirewallUidFirstRuleExists(const char* binary, const char* chainName,
const std::string& expectedTarget,
const std::string& expectedRule) {
std::vector<std::string> rules = listIptablesRuleByTable(binary, FILTER_TABLE, chainName);
int firstRuleIndex = 2;
if (rules.size() < 4) return false;
if (rules[firstRuleIndex].find(expectedTarget) != std::string::npos) {
if (rules[firstRuleIndex].find(expectedRule) != std::string::npos) {
return true;
}
}
return false;
}
bool iptablesFirewallUidLastRuleExists(const char* binary, const char* chainName,
const std::string& expectedTarget,
const std::string& expectedRule) {
std::vector<std::string> rules = listIptablesRuleByTable(binary, FILTER_TABLE, chainName);
int lastRuleIndex = rules.size() - 1;
if (lastRuleIndex < 0) return false;
if (rules[lastRuleIndex].find(expectedTarget) != std::string::npos) {
if (rules[lastRuleIndex].find(expectedRule) != std::string::npos) {
return true;
}
}
return false;
}
void expectFirewallUidFirstRuleExists(const char* chainName, int32_t uid) {
std::string uidRule = StringPrintf("owner UID match %u", uid);
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH})
EXPECT_TRUE(iptablesFirewallUidFirstRuleExists(binary, chainName, targetReturn, uidRule));
}
void expectFirewallUidFirstRuleDoesNotExist(const char* chainName, int32_t uid) {
std::string uidRule = StringPrintf("owner UID match %u", uid);
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH})
EXPECT_FALSE(iptablesFirewallUidFirstRuleExists(binary, chainName, targetReturn, uidRule));
}
void expectFirewallUidLastRuleExists(const char* chainName, int32_t uid) {
std::string uidRule = StringPrintf("owner UID match %u", uid);
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH})
EXPECT_TRUE(iptablesFirewallUidLastRuleExists(binary, chainName, targetDrop, uidRule));
}
void expectFirewallUidLastRuleDoesNotExist(const char* chainName, int32_t uid) {
std::string uidRule = StringPrintf("owner UID match %u", uid);
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH})
EXPECT_FALSE(iptablesFirewallUidLastRuleExists(binary, chainName, targetDrop, uidRule));
}
bool iptablesFirewallChildChainsLastRuleExists(const char* binary, const char* chainName) {
std::vector<std::string> inputRules =
listIptablesRuleByTable(binary, FILTER_TABLE, FIREWALL_INPUT);
std::vector<std::string> outputRules =
listIptablesRuleByTable(binary, FILTER_TABLE, FIREWALL_OUTPUT);
int inputLastRuleIndex = inputRules.size() - 1;
int outputLastRuleIndex = outputRules.size() - 1;
if (inputLastRuleIndex < 0 || outputLastRuleIndex < 0) return false;
if (inputRules[inputLastRuleIndex].find(chainName) != std::string::npos) {
if (outputRules[outputLastRuleIndex].find(chainName) != std::string::npos) {
return true;
}
}
return false;
}
void expectFirewallChildChainsLastRuleExists(const char* chainRule) {
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH})
EXPECT_TRUE(iptablesFirewallChildChainsLastRuleExists(binary, chainRule));
}
void expectFirewallChildChainsLastRuleDoesNotExist(const char* chainRule) {
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_FALSE(iptablesRuleExists(binary, FIREWALL_INPUT, chainRule));
EXPECT_FALSE(iptablesRuleExists(binary, FIREWALL_OUTPUT, chainRule));
}
}
} // namespace
TEST_F(BinderTest, FirewallSetFirewallType) {
binder::Status status = mNetd->firewallSetFirewallType(INetd::FIREWALL_WHITELIST);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallWhitelistMode();
status = mNetd->firewallSetFirewallType(INetd::FIREWALL_BLACKLIST);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallBlacklistMode();
// set firewall type blacklist twice
mNetd->firewallSetFirewallType(INetd::FIREWALL_BLACKLIST);
status = mNetd->firewallSetFirewallType(INetd::FIREWALL_BLACKLIST);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallBlacklistMode();
// set firewall type whitelist twice
mNetd->firewallSetFirewallType(INetd::FIREWALL_WHITELIST);
status = mNetd->firewallSetFirewallType(INetd::FIREWALL_WHITELIST);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallWhitelistMode();
// reset firewall type to default
status = mNetd->firewallSetFirewallType(INetd::FIREWALL_BLACKLIST);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallBlacklistMode();
}
TEST_F(BinderTest, FirewallSetInterfaceRule) {
// setinterfaceRule is not supported in BLACKLIST MODE
binder::Status status = mNetd->firewallSetFirewallType(INetd::FIREWALL_BLACKLIST);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
status = mNetd->firewallSetInterfaceRule(sTun.name(), INetd::FIREWALL_RULE_ALLOW);
EXPECT_FALSE(status.isOk()) << status.exceptionMessage();
// set WHITELIST mode first
status = mNetd->firewallSetFirewallType(INetd::FIREWALL_WHITELIST);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
status = mNetd->firewallSetInterfaceRule(sTun.name(), INetd::FIREWALL_RULE_ALLOW);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallInterfaceRuleAllowExists(sTun.name());
status = mNetd->firewallSetInterfaceRule(sTun.name(), INetd::FIREWALL_RULE_DENY);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFireWallInterfaceRuleAllowDoesNotExist(sTun.name());
// reset firewall mode to default
status = mNetd->firewallSetFirewallType(INetd::FIREWALL_BLACKLIST);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallBlacklistMode();
}
TEST_F(BinderTest, FirewallSetUidRule) {
SKIP_IF_BPF_SUPPORTED;
int32_t uid = randomUid();
// Doze allow
binder::Status status = mNetd->firewallSetUidRule(INetd::FIREWALL_CHAIN_DOZABLE, uid,
INetd::FIREWALL_RULE_ALLOW);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallUidFirstRuleExists(FIREWALL_DOZABLE, uid);
// Doze deny
status = mNetd->firewallSetUidRule(INetd::FIREWALL_CHAIN_DOZABLE, uid,
INetd::FIREWALL_RULE_DENY);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallUidFirstRuleDoesNotExist(FIREWALL_DOZABLE, uid);
// Powersave allow
status = mNetd->firewallSetUidRule(INetd::FIREWALL_CHAIN_POWERSAVE, uid,
INetd::FIREWALL_RULE_ALLOW);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallUidFirstRuleExists(FIREWALL_POWERSAVE, uid);
// Powersave deny
status = mNetd->firewallSetUidRule(INetd::FIREWALL_CHAIN_POWERSAVE, uid,
INetd::FIREWALL_RULE_DENY);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallUidFirstRuleDoesNotExist(FIREWALL_POWERSAVE, uid);
// Standby deny
status = mNetd->firewallSetUidRule(INetd::FIREWALL_CHAIN_STANDBY, uid,
INetd::FIREWALL_RULE_DENY);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallUidLastRuleExists(FIREWALL_STANDBY, uid);
// Standby allow
status = mNetd->firewallSetUidRule(INetd::FIREWALL_CHAIN_STANDBY, uid,
INetd::FIREWALL_RULE_ALLOW);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallUidLastRuleDoesNotExist(FIREWALL_STANDBY, uid);
// None deny in BLACKLIST
status = mNetd->firewallSetUidRule(INetd::FIREWALL_CHAIN_NONE, uid, INetd::FIREWALL_RULE_DENY);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallUidLastRuleExists(FIREWALL_INPUT, uid);
expectFirewallUidLastRuleExists(FIREWALL_OUTPUT, uid);
// None allow in BLACKLIST
status = mNetd->firewallSetUidRule(INetd::FIREWALL_CHAIN_NONE, uid, INetd::FIREWALL_RULE_ALLOW);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallUidLastRuleDoesNotExist(FIREWALL_INPUT, uid);
expectFirewallUidLastRuleDoesNotExist(FIREWALL_OUTPUT, uid);
// set firewall type whitelist twice
status = mNetd->firewallSetFirewallType(INetd::FIREWALL_WHITELIST);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallWhitelistMode();
// None allow in WHITELIST
status = mNetd->firewallSetUidRule(INetd::FIREWALL_CHAIN_NONE, uid, INetd::FIREWALL_RULE_ALLOW);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallUidFirstRuleExists(FIREWALL_INPUT, uid);
expectFirewallUidFirstRuleExists(FIREWALL_OUTPUT, uid);
// None deny in WHITELIST
status = mNetd->firewallSetUidRule(INetd::FIREWALL_CHAIN_NONE, uid, INetd::FIREWALL_RULE_DENY);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallUidFirstRuleDoesNotExist(FIREWALL_INPUT, uid);
expectFirewallUidFirstRuleDoesNotExist(FIREWALL_OUTPUT, uid);
// reset firewall mode to default
status = mNetd->firewallSetFirewallType(INetd::FIREWALL_BLACKLIST);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallBlacklistMode();
}
TEST_F(BinderTest, FirewallEnableDisableChildChains) {
SKIP_IF_BPF_SUPPORTED;
binder::Status status = mNetd->firewallEnableChildChain(INetd::FIREWALL_CHAIN_DOZABLE, true);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallChildChainsLastRuleExists(FIREWALL_DOZABLE);
status = mNetd->firewallEnableChildChain(INetd::FIREWALL_CHAIN_STANDBY, true);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallChildChainsLastRuleExists(FIREWALL_STANDBY);
status = mNetd->firewallEnableChildChain(INetd::FIREWALL_CHAIN_POWERSAVE, true);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallChildChainsLastRuleExists(FIREWALL_POWERSAVE);
status = mNetd->firewallEnableChildChain(INetd::FIREWALL_CHAIN_DOZABLE, false);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallChildChainsLastRuleDoesNotExist(FIREWALL_DOZABLE);
status = mNetd->firewallEnableChildChain(INetd::FIREWALL_CHAIN_STANDBY, false);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallChildChainsLastRuleDoesNotExist(FIREWALL_STANDBY);
status = mNetd->firewallEnableChildChain(INetd::FIREWALL_CHAIN_POWERSAVE, false);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectFirewallChildChainsLastRuleDoesNotExist(FIREWALL_POWERSAVE);
}
namespace {
std::string hwAddrToStr(unsigned char* hwaddr) {
return StringPrintf("%02x:%02x:%02x:%02x:%02x:%02x", hwaddr[0], hwaddr[1], hwaddr[2], hwaddr[3],
hwaddr[4], hwaddr[5]);
}
int ipv4NetmaskToPrefixLength(in_addr_t mask) {
int prefixLength = 0;
uint32_t m = ntohl(mask);
while (m & (1 << 31)) {
prefixLength++;
m = m << 1;
}
return prefixLength;
}
std::string toStdString(const String16& s) {
return std::string(String8(s.string()));
}
android::netdutils::StatusOr<ifreq> ioctlByIfName(const std::string& ifName, unsigned long flag) {
const auto& sys = sSyscalls.get();
auto fd = sys.socket(AF_INET, SOCK_DGRAM | SOCK_CLOEXEC, 0);
EXPECT_TRUE(isOk(fd.status()));
struct ifreq ifr = {};
strlcpy(ifr.ifr_name, ifName.c_str(), IFNAMSIZ);
return sys.ioctl(fd.value(), flag, &ifr);
}
std::string getInterfaceHwAddr(const std::string& ifName) {
auto res = ioctlByIfName(ifName, SIOCGIFHWADDR);
unsigned char hwaddr[ETH_ALEN] = {};
if (isOk(res.status())) {
memcpy((void*) hwaddr, &res.value().ifr_hwaddr.sa_data, ETH_ALEN);
}
return hwAddrToStr(hwaddr);
}
int getInterfaceIPv4Prefix(const std::string& ifName) {
auto res = ioctlByIfName(ifName, SIOCGIFNETMASK);
int prefixLength = 0;
if (isOk(res.status())) {
prefixLength = ipv4NetmaskToPrefixLength(
((struct sockaddr_in*) &res.value().ifr_addr)->sin_addr.s_addr);
}
return prefixLength;
}
std::string getInterfaceIPv4Addr(const std::string& ifName) {
auto res = ioctlByIfName(ifName, SIOCGIFADDR);
struct in_addr addr = {};
if (isOk(res.status())) {
addr.s_addr = ((struct sockaddr_in*) &res.value().ifr_addr)->sin_addr.s_addr;
}
return std::string(inet_ntoa(addr));
}
std::vector<std::string> getInterfaceFlags(const std::string& ifName) {
auto res = ioctlByIfName(ifName, SIOCGIFFLAGS);
unsigned flags = 0;
if (isOk(res.status())) {
flags = res.value().ifr_flags;
}
std::vector<std::string> ifFlags;
ifFlags.push_back(flags & IFF_UP ? toStdString(INetd::IF_STATE_UP())
: toStdString(INetd::IF_STATE_DOWN()));
if (flags & IFF_BROADCAST) ifFlags.push_back(toStdString(INetd::IF_FLAG_BROADCAST()));
if (flags & IFF_LOOPBACK) ifFlags.push_back(toStdString(INetd::IF_FLAG_LOOPBACK()));
if (flags & IFF_POINTOPOINT) ifFlags.push_back(toStdString(INetd::IF_FLAG_POINTOPOINT()));
if (flags & IFF_RUNNING) ifFlags.push_back(toStdString(INetd::IF_FLAG_RUNNING()));
if (flags & IFF_MULTICAST) ifFlags.push_back(toStdString(INetd::IF_FLAG_MULTICAST()));
return ifFlags;
}
bool compareListInterface(const std::vector<std::string>& interfaceList) {
const auto& res = InterfaceController::getIfaceNames();
EXPECT_TRUE(isOk(res));
std::vector<std::string> resIfList;
resIfList.reserve(res.value().size());
resIfList.insert(end(resIfList), begin(res.value()), end(res.value()));
return resIfList == interfaceList;
}
int getInterfaceIPv6PrivacyExtensions(const std::string& ifName) {
std::string path = StringPrintf("/proc/sys/net/ipv6/conf/%s/use_tempaddr", ifName.c_str());
return readIntFromPath(path);
}
bool getInterfaceEnableIPv6(const std::string& ifName) {
std::string path = StringPrintf("/proc/sys/net/ipv6/conf/%s/disable_ipv6", ifName.c_str());
int disableIPv6 = readIntFromPath(path);
return !disableIPv6;
}
int getInterfaceMtu(const std::string& ifName) {
std::string path = StringPrintf("/sys/class/net/%s/mtu", ifName.c_str());
return readIntFromPath(path);
}
void expectInterfaceList(const std::vector<std::string>& interfaceList) {
EXPECT_TRUE(compareListInterface(interfaceList));
}
void expectCurrentInterfaceConfigurationEquals(const std::string& ifName,
const InterfaceConfigurationParcel& interfaceCfg) {
EXPECT_EQ(getInterfaceIPv4Addr(ifName), interfaceCfg.ipv4Addr);
EXPECT_EQ(getInterfaceIPv4Prefix(ifName), interfaceCfg.prefixLength);
EXPECT_EQ(getInterfaceHwAddr(ifName), interfaceCfg.hwAddr);
EXPECT_EQ(getInterfaceFlags(ifName), interfaceCfg.flags);
}
void expectCurrentInterfaceConfigurationAlmostEqual(const InterfaceConfigurationParcel& setCfg) {
EXPECT_EQ(getInterfaceIPv4Addr(setCfg.ifName), setCfg.ipv4Addr);
EXPECT_EQ(getInterfaceIPv4Prefix(setCfg.ifName), setCfg.prefixLength);
const auto& ifFlags = getInterfaceFlags(setCfg.ifName);
for (const auto& flag : setCfg.flags) {
EXPECT_TRUE(std::find(ifFlags.begin(), ifFlags.end(), flag) != ifFlags.end());
}
}
void expectInterfaceIPv6PrivacyExtensions(const std::string& ifName, bool enable) {
int v6PrivacyExtensions = getInterfaceIPv6PrivacyExtensions(ifName);
EXPECT_EQ(v6PrivacyExtensions, enable ? 2 : 0);
}
void expectInterfaceNoAddr(const std::string& ifName) {
// noAddr
EXPECT_EQ(getInterfaceIPv4Addr(ifName), "0.0.0.0");
// noPrefix
EXPECT_EQ(getInterfaceIPv4Prefix(ifName), 0);
}
void expectInterfaceEnableIPv6(const std::string& ifName, bool enable) {
int enableIPv6 = getInterfaceEnableIPv6(ifName);
EXPECT_EQ(enableIPv6, enable);
}
void expectInterfaceMtu(const std::string& ifName, const int mtu) {
int mtuSize = getInterfaceMtu(ifName);
EXPECT_EQ(mtu, mtuSize);
}
InterfaceConfigurationParcel makeInterfaceCfgParcel(const std::string& ifName,
const std::string& addr, int prefixLength,
const std::vector<std::string>& flags) {
InterfaceConfigurationParcel cfg;
cfg.ifName = ifName;
cfg.hwAddr = "";
cfg.ipv4Addr = addr;
cfg.prefixLength = prefixLength;
cfg.flags = flags;
return cfg;
}
void expectTunFlags(const InterfaceConfigurationParcel& interfaceCfg) {
std::vector<std::string> expectedFlags = {"up", "point-to-point", "running", "multicast"};
std::vector<std::string> unexpectedFlags = {"down", "broadcast"};
for (const auto& flag : expectedFlags) {
EXPECT_TRUE(std::find(interfaceCfg.flags.begin(), interfaceCfg.flags.end(), flag) !=
interfaceCfg.flags.end());
}
for (const auto& flag : unexpectedFlags) {
EXPECT_TRUE(std::find(interfaceCfg.flags.begin(), interfaceCfg.flags.end(), flag) ==
interfaceCfg.flags.end());
}
}
} // namespace
TEST_F(BinderTest, InterfaceList) {
std::vector<std::string> interfaceListResult;
binder::Status status = mNetd->interfaceGetList(&interfaceListResult);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectInterfaceList(interfaceListResult);
}
TEST_F(BinderTest, InterfaceGetCfg) {
InterfaceConfigurationParcel interfaceCfgResult;
// Add test physical network
EXPECT_TRUE(mNetd->networkCreatePhysical(TEST_NETID1, INetd::PERMISSION_NONE).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID1, sTun.name()).isOk());
binder::Status status = mNetd->interfaceGetCfg(sTun.name(), &interfaceCfgResult);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectCurrentInterfaceConfigurationEquals(sTun.name(), interfaceCfgResult);
expectTunFlags(interfaceCfgResult);
// Remove test physical network
EXPECT_TRUE(mNetd->networkDestroy(TEST_NETID1).isOk());
}
TEST_F(BinderTest, InterfaceSetCfg) {
const std::string testAddr = "192.0.2.3";
const int testPrefixLength = 24;
std::vector<std::string> upFlags = {"up"};
std::vector<std::string> downFlags = {"down"};
// Add test physical network
EXPECT_TRUE(mNetd->networkCreatePhysical(TEST_NETID1, INetd::PERMISSION_NONE).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID1, sTun.name()).isOk());
// Set tun interface down.
auto interfaceCfg = makeInterfaceCfgParcel(sTun.name(), testAddr, testPrefixLength, downFlags);
binder::Status status = mNetd->interfaceSetCfg(interfaceCfg);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectCurrentInterfaceConfigurationAlmostEqual(interfaceCfg);
// Set tun interface up again.
interfaceCfg = makeInterfaceCfgParcel(sTun.name(), testAddr, testPrefixLength, upFlags);
status = mNetd->interfaceSetCfg(interfaceCfg);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
status = mNetd->interfaceClearAddrs(sTun.name());
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
// Remove test physical network
EXPECT_TRUE(mNetd->networkDestroy(TEST_NETID1).isOk());
}
TEST_F(BinderTest, InterfaceSetIPv6PrivacyExtensions) {
// enable
binder::Status status = mNetd->interfaceSetIPv6PrivacyExtensions(sTun.name(), true);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectInterfaceIPv6PrivacyExtensions(sTun.name(), true);
// disable
status = mNetd->interfaceSetIPv6PrivacyExtensions(sTun.name(), false);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectInterfaceIPv6PrivacyExtensions(sTun.name(), false);
}
TEST_F(BinderTest, InterfaceClearAddr) {
const std::string testAddr = "192.0.2.3";
const int testPrefixLength = 24;
std::vector<std::string> noFlags{};
// Add test physical network
EXPECT_TRUE(mNetd->networkCreatePhysical(TEST_NETID1, INetd::PERMISSION_NONE).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID1, sTun.name()).isOk());
auto interfaceCfg = makeInterfaceCfgParcel(sTun.name(), testAddr, testPrefixLength, noFlags);
binder::Status status = mNetd->interfaceSetCfg(interfaceCfg);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectCurrentInterfaceConfigurationAlmostEqual(interfaceCfg);
status = mNetd->interfaceClearAddrs(sTun.name());
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectInterfaceNoAddr(sTun.name());
// Remove test physical network
EXPECT_TRUE(mNetd->networkDestroy(TEST_NETID1).isOk());
}
TEST_F(BinderTest, InterfaceSetEnableIPv6) {
// Add test physical network
EXPECT_TRUE(mNetd->networkCreatePhysical(TEST_NETID1, INetd::PERMISSION_NONE).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID1, sTun.name()).isOk());
// disable
binder::Status status = mNetd->interfaceSetEnableIPv6(sTun.name(), false);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectInterfaceEnableIPv6(sTun.name(), false);
// enable
status = mNetd->interfaceSetEnableIPv6(sTun.name(), true);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectInterfaceEnableIPv6(sTun.name(), true);
// Remove test physical network
EXPECT_TRUE(mNetd->networkDestroy(TEST_NETID1).isOk());
}
TEST_F(BinderTest, InterfaceSetMtu) {
const int testMtu = 1200;
// Add test physical network
EXPECT_TRUE(mNetd->networkCreatePhysical(TEST_NETID1, INetd::PERMISSION_NONE).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID1, sTun.name()).isOk());
binder::Status status = mNetd->interfaceSetMtu(sTun.name(), testMtu);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectInterfaceMtu(sTun.name(), testMtu);
// Remove test physical network
EXPECT_TRUE(mNetd->networkDestroy(TEST_NETID1).isOk());
}
namespace {
constexpr const char TETHER_FORWARD[] = "tetherctrl_FORWARD";
constexpr const char TETHER_NAT_POSTROUTING[] = "tetherctrl_nat_POSTROUTING";
constexpr const char TETHER_RAW_PREROUTING[] = "tetherctrl_raw_PREROUTING";
constexpr const char TETHER_COUNTERS_CHAIN[] = "tetherctrl_counters";
int iptablesCountRules(const char* binary, const char* table, const char* chainName) {
return listIptablesRuleByTable(binary, table, chainName).size();
}
bool iptablesChainMatch(const char* binary, const char* table, const char* chainName,
const std::vector<std::string>& targetVec) {
std::vector<std::string> rules = listIptablesRuleByTable(binary, table, chainName);
if (targetVec.size() != rules.size() - 2) {
return false;
}
/*
* Check that the rules match. Note that this function matches substrings, not entire rules,
* because otherwise rules where "pkts" or "bytes" are nonzero would not match.
* Skip first two lines since rules start from third line.
* Chain chainName (x references)
* pkts bytes target prot opt in out source destination
* ...
*/
int rIndex = 2;
for (const auto& target : targetVec) {
if (rules[rIndex].find(target) == std::string::npos) {
return false;
}
rIndex++;
}
return true;
}
void expectNatEnable(const std::string& intIf, const std::string& extIf) {
std::vector<std::string> postroutingV4Match = {"MASQUERADE"};
std::vector<std::string> preroutingV4Match = {"CT helper ftp", "CT helper pptp"};
std::vector<std::string> forwardV4Match = {
"bw_global_alert", "state RELATED", "state INVALID",
StringPrintf("tetherctrl_counters all -- %s %s", intIf.c_str(), extIf.c_str()),
"DROP"};
// V4
EXPECT_TRUE(iptablesChainMatch(IPTABLES_PATH, NAT_TABLE, TETHER_NAT_POSTROUTING,
postroutingV4Match));
EXPECT_TRUE(
iptablesChainMatch(IPTABLES_PATH, RAW_TABLE, TETHER_RAW_PREROUTING, preroutingV4Match));
EXPECT_TRUE(iptablesChainMatch(IPTABLES_PATH, FILTER_TABLE, TETHER_FORWARD, forwardV4Match));
std::vector<std::string> forwardV6Match = {"bw_global_alert", "tetherctrl_counters"};
std::vector<std::string> preroutingV6Match = {"rpfilter invert"};
// V6
EXPECT_TRUE(iptablesChainMatch(IP6TABLES_PATH, FILTER_TABLE, TETHER_FORWARD, forwardV6Match));
EXPECT_TRUE(iptablesChainMatch(IP6TABLES_PATH, RAW_TABLE, TETHER_RAW_PREROUTING,
preroutingV6Match));
for (const auto& binary : {IPTABLES_PATH, IP6TABLES_PATH}) {
EXPECT_TRUE(iptablesTargetsExists(binary, 2, FILTER_TABLE, TETHER_COUNTERS_CHAIN, intIf,
extIf));
}
}
void expectNatDisable() {
// It is the default DROP rule with tethering disable.
// Chain tetherctrl_FORWARD (1 references)
// pkts bytes target prot opt in out source destination
// 0 0 DROP all -- * * 0.0.0.0/0 0.0.0.0/0
std::vector<std::string> forwardV4Match = {"DROP"};
EXPECT_TRUE(iptablesChainMatch(IPTABLES_PATH, FILTER_TABLE, TETHER_FORWARD, forwardV4Match));
// We expect that these chains should be empty.
EXPECT_EQ(2, iptablesCountRules(IPTABLES_PATH, NAT_TABLE, TETHER_NAT_POSTROUTING));
EXPECT_EQ(2, iptablesCountRules(IPTABLES_PATH, RAW_TABLE, TETHER_RAW_PREROUTING));
EXPECT_EQ(2, iptablesCountRules(IP6TABLES_PATH, FILTER_TABLE, TETHER_FORWARD));
EXPECT_EQ(2, iptablesCountRules(IP6TABLES_PATH, RAW_TABLE, TETHER_RAW_PREROUTING));
// Netd won't clear tether quota rule, we don't care rule in tetherctrl_counters.
}
} // namespace
TEST_F(BinderTest, TetherForwardAddRemove) {
binder::Status status = mNetd->tetherAddForward(sTun.name(), sTun2.name());
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNatEnable(sTun.name(), sTun2.name());
status = mNetd->tetherRemoveForward(sTun.name(), sTun2.name());
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
expectNatDisable();
}
namespace {
using TripleInt = std::array<int, 3>;
TripleInt readProcFileToTripleInt(const std::string& path) {
std::string valueString;
int min, def, max;
EXPECT_TRUE(ReadFileToString(path, &valueString));
EXPECT_EQ(3, sscanf(valueString.c_str(), "%d %d %d", &min, &def, &max));
return {min, def, max};
}
void updateAndCheckTcpBuffer(sp<INetd>& netd, TripleInt& rmemValues, TripleInt& wmemValues) {
std::string testRmemValues =
StringPrintf("%u %u %u", rmemValues[0], rmemValues[1], rmemValues[2]);
std::string testWmemValues =
StringPrintf("%u %u %u", wmemValues[0], wmemValues[1], wmemValues[2]);
EXPECT_TRUE(netd->setTcpRWmemorySize(testRmemValues, testWmemValues).isOk());
TripleInt newRmemValues = readProcFileToTripleInt(TCP_RMEM_PROC_FILE);
TripleInt newWmemValues = readProcFileToTripleInt(TCP_WMEM_PROC_FILE);
for (int i = 0; i < 3; i++) {
SCOPED_TRACE(StringPrintf("tcp_mem value %d should be equal", i));
EXPECT_EQ(rmemValues[i], newRmemValues[i]);
EXPECT_EQ(wmemValues[i], newWmemValues[i]);
}
}
} // namespace
TEST_F(BinderTest, TcpBufferSet) {
TripleInt rmemValue = readProcFileToTripleInt(TCP_RMEM_PROC_FILE);
TripleInt testRmemValue{rmemValue[0] + 42, rmemValue[1] + 42, rmemValue[2] + 42};
TripleInt wmemValue = readProcFileToTripleInt(TCP_WMEM_PROC_FILE);
TripleInt testWmemValue{wmemValue[0] + 42, wmemValue[1] + 42, wmemValue[2] + 42};
updateAndCheckTcpBuffer(mNetd, testRmemValue, testWmemValue);
updateAndCheckTcpBuffer(mNetd, rmemValue, wmemValue);
}
namespace {
void checkUidsInPermissionMap(std::vector<int32_t>& uids, bool exist) {
android::bpf::BpfMap<uint32_t, uint8_t> uidPermissionMap(
android::bpf::mapRetrieve(UID_PERMISSION_MAP_PATH, 0));
for (int32_t uid : uids) {
android::netdutils::StatusOr<uint8_t> permission = uidPermissionMap.readValue(uid);
if (exist) {
EXPECT_TRUE(isOk(permission));
EXPECT_EQ(INetd::PERMISSION_NONE, permission.value());
} else {
EXPECT_FALSE(isOk(permission));
EXPECT_EQ(ENOENT, permission.status().code());
}
}
}
} // namespace
TEST_F(BinderTest, TestInternetPermission) {
SKIP_IF_BPF_NOT_SUPPORTED;
std::vector<int32_t> appUids = {TEST_UID1, TEST_UID2};
mNetd->trafficSetNetPermForUids(INetd::PERMISSION_INTERNET, appUids);
checkUidsInPermissionMap(appUids, false);
mNetd->trafficSetNetPermForUids(INetd::PERMISSION_NONE, appUids);
checkUidsInPermissionMap(appUids, true);
mNetd->trafficSetNetPermForUids(INetd::PERMISSION_UNINSTALLED, appUids);
checkUidsInPermissionMap(appUids, false);
}
TEST_F(BinderTest, UnsolEvents) {
auto testUnsolService = android::net::TestUnsolService::start();
std::string oldTunName = sTun.name();
std::string newTunName = "unsolTest";
testUnsolService->tarVec.push_back(oldTunName);
testUnsolService->tarVec.push_back(newTunName);
auto& cv = testUnsolService->getCv();
auto& cvMutex = testUnsolService->getCvMutex();
binder::Status status = mNetd->registerUnsolicitedEventListener(
android::interface_cast<android::net::INetdUnsolicitedEventListener>(testUnsolService));
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
// TODO: Add test for below events
// StrictCleartextDetected / InterfaceDnsServersAdded
// InterfaceClassActivity / QuotaLimitReached / InterfaceAddressRemoved
{
std::unique_lock lock(cvMutex);
// Re-init test Tun, and we expect that we will get some unsol events.
// Use the test Tun device name to verify if we receive its unsol events.
sTun.destroy();
// Use predefined name
sTun.init(newTunName);
EXPECT_EQ(std::cv_status::no_timeout, cv.wait_for(lock, std::chrono::seconds(2)));
}
// bit mask 1101101000
// Test only covers below events currently
const uint32_t kExpectedEvents = InterfaceAddressUpdated | InterfaceAdded | InterfaceRemoved |
InterfaceLinkStatusChanged | RouteChanged;
EXPECT_EQ(kExpectedEvents, testUnsolService->getReceived());
// Re-init sTun to clear predefined name
sTun.destroy();
sTun.init();
}
TEST_F(BinderTest, NDC) {
struct Command {
const std::string cmdString;
const std::string expectedResult;
};
// clang-format off
// Do not change the commands order
const Command networkCmds[] = {
{StringPrintf("ndc network create %d", TEST_NETID1),
"200 0 success"},
{StringPrintf("ndc network interface add %d %s", TEST_NETID1, sTun.name().c_str()),
"200 0 success"},
{StringPrintf("ndc network interface remove %d %s", TEST_NETID1, sTun.name().c_str()),
"200 0 success"},
{StringPrintf("ndc network interface add %d %s", TEST_NETID2, sTun.name().c_str()),
"400 0 addInterfaceToNetwork() failed (Machine is not on the network)"},
{StringPrintf("ndc network destroy %d", TEST_NETID1),
"200 0 success"},
};
const std::vector<Command> ipfwdCmds = {
{"ndc ipfwd enable " + sTun.name(),
"200 0 ipfwd operation succeeded"},
{"ndc ipfwd disable " + sTun.name(),
"200 0 ipfwd operation succeeded"},
{"ndc ipfwd add lo2 lo3",
"400 0 ipfwd operation failed (No such process)"},
{"ndc ipfwd add " + sTun.name() + " " + sTun2.name(),
"200 0 ipfwd operation succeeded"},
{"ndc ipfwd remove " + sTun.name() + " " + sTun2.name(),
"200 0 ipfwd operation succeeded"},
};
static const struct {
const char* ipVersion;
const char* testDest;
const char* testNextHop;
const bool expectSuccess;
const std::string expectedResult;
} kTestData[] = {
{IP_RULE_V4, "0.0.0.0/0", "", true,
"200 0 success"},
{IP_RULE_V4, "10.251.0.0/16", "", true,
"200 0 success"},
{IP_RULE_V4, "10.251.0.0/16", "fe80::/64", false,
"400 0 addRoute() failed (Invalid argument)",},
{IP_RULE_V6, "::/0", "", true,
"200 0 success"},
{IP_RULE_V6, "2001:db8:cafe::/64", "", true,
"200 0 success"},
{IP_RULE_V6, "fe80::/64", "0.0.0.0", false,
"400 0 addRoute() failed (Invalid argument)"},
};
// clang-format on
for (const auto& cmd : networkCmds) {
const std::vector<std::string> result = runCommand(cmd.cmdString);
SCOPED_TRACE(cmd.cmdString);
EXPECT_EQ(result.size(), 1U);
EXPECT_EQ(cmd.expectedResult, Trim(result[0]));
}
for (const auto& cmd : ipfwdCmds) {
const std::vector<std::string> result = runCommand(cmd.cmdString);
SCOPED_TRACE(cmd.cmdString);
EXPECT_EQ(result.size(), 1U);
EXPECT_EQ(cmd.expectedResult, Trim(result[0]));
}
// Add test physical network
EXPECT_TRUE(mNetd->networkCreatePhysical(TEST_NETID1, INetd::PERMISSION_NONE).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(TEST_NETID1, sTun.name()).isOk());
for (const auto& td : kTestData) {
const std::string routeAddCmd =
StringPrintf("ndc network route add %d %s %s %s", TEST_NETID1, sTun.name().c_str(),
td.testDest, td.testNextHop);
const std::string routeRemoveCmd =
StringPrintf("ndc network route remove %d %s %s %s", TEST_NETID1,
sTun.name().c_str(), td.testDest, td.testNextHop);
std::vector<std::string> result = runCommand(routeAddCmd);
SCOPED_TRACE(routeAddCmd);
EXPECT_EQ(result.size(), 1U);
EXPECT_EQ(td.expectedResult, Trim(result[0]));
if (td.expectSuccess) {
expectNetworkRouteExists(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
sTun.name().c_str());
result = runCommand(routeRemoveCmd);
EXPECT_EQ(result.size(), 1U);
EXPECT_EQ(td.expectedResult, Trim(result[0]));
expectNetworkRouteDoesNotExist(td.ipVersion, sTun.name(), td.testDest, td.testNextHop,
sTun.name().c_str());
}
}
// Remove test physical network
EXPECT_TRUE(mNetd->networkDestroy(TEST_NETID1).isOk());
}
TEST_F(BinderTest, OemNetdRelated) {
sp<IBinder> binder;
binder::Status status = mNetd->getOemNetd(&binder);
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
sp<com::android::internal::net::IOemNetd> oemNetd;
if (binder != nullptr) {
oemNetd = android::interface_cast<com::android::internal::net::IOemNetd>(binder);
}
ASSERT_NE(nullptr, oemNetd.get());
TimedOperation t("OemNetd isAlive RPC");
bool isAlive = false;
oemNetd->isAlive(&isAlive);
ASSERT_TRUE(isAlive);
class TestOemUnsolListener
: public com::android::internal::net::BnOemNetdUnsolicitedEventListener {
public:
android::binder::Status onRegistered() override {
std::lock_guard lock(mCvMutex);
mCv.notify_one();
return android::binder::Status::ok();
}
std::condition_variable& getCv() { return mCv; }
std::mutex& getCvMutex() { return mCvMutex; }
private:
std::mutex mCvMutex;
std::condition_variable mCv;
};
// Start the Binder thread pool.
android::ProcessState::self()->startThreadPool();
android::sp<TestOemUnsolListener> testListener = new TestOemUnsolListener();
auto& cv = testListener->getCv();
auto& cvMutex = testListener->getCvMutex();
{
std::unique_lock lock(cvMutex);
status = oemNetd->registerOemUnsolicitedEventListener(
::android::interface_cast<
com::android::internal::net::IOemNetdUnsolicitedEventListener>(
testListener));
EXPECT_TRUE(status.isOk()) << status.exceptionMessage();
// Wait for receiving expected events.
EXPECT_EQ(std::cv_status::no_timeout, cv.wait_for(lock, std::chrono::seconds(2)));
}
}
void BinderTest::createVpnNetworkWithUid(bool secure, uid_t uid, int vpnNetId,
int fallthroughNetId) {
// Re-init sTun* to ensure route rule exists.
sTun.destroy();
sTun.init();
sTun2.destroy();
sTun2.init();
// Create physical network with fallthroughNetId but not set it as default network
EXPECT_TRUE(mNetd->networkCreatePhysical(fallthroughNetId, INetd::PERMISSION_NONE).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(fallthroughNetId, sTun.name()).isOk());
// Create VPN with vpnNetId
EXPECT_TRUE(mNetd->networkCreateVpn(vpnNetId, secure).isOk());
// Add uid to VPN
EXPECT_TRUE(mNetd->networkAddUidRanges(vpnNetId, {makeUidRangeParcel(uid, uid)}).isOk());
EXPECT_TRUE(mNetd->networkAddInterface(vpnNetId, sTun2.name()).isOk());
// Add default route to fallthroughNetwork
EXPECT_TRUE(mNetd->networkAddRoute(TEST_NETID1, sTun.name(), "::/0", "").isOk());
// Add limited route
EXPECT_TRUE(mNetd->networkAddRoute(TEST_NETID2, sTun2.name(), "2001:db8::/32", "").isOk());
}
namespace {
class ScopedUidChange {
public:
explicit ScopedUidChange(uid_t uid) : mInputUid(uid) {
mStoredUid = getuid();
if (mInputUid == mStoredUid) return;
EXPECT_TRUE(seteuid(uid) == 0);
}
~ScopedUidChange() {
if (mInputUid == mStoredUid) return;
EXPECT_TRUE(seteuid(mStoredUid) == 0);
}
private:
uid_t mInputUid;
uid_t mStoredUid;
};
constexpr uint32_t RULE_PRIORITY_VPN_FALLTHROUGH = 21000;
void clearQueue(int tunFd) {
char buf[4096];
int ret;
do {
ret = read(tunFd, buf, sizeof(buf));
} while (ret > 0);
}
void checkDataReceived(int udpSocket, int tunFd) {
char buf[4096] = {};
// Clear tunFd's queue before write something because there might be some
// arbitrary packets in the queue. (e.g. ICMPv6 packet)
clearQueue(tunFd);
EXPECT_EQ(4, write(udpSocket, "foo", sizeof("foo")));
// TODO: extract header and verify data
EXPECT_GT(read(tunFd, buf, sizeof(buf)), 0);
}
bool sendIPv6PacketFromUid(uid_t uid, const in6_addr& dstAddr, Fwmark* fwmark, int tunFd) {
ScopedUidChange scopedUidChange(uid);
android::base::unique_fd testSocket(socket(AF_INET6, SOCK_DGRAM | SOCK_CLOEXEC, 0));
if (testSocket < 0) return false;
const sockaddr_in6 dst6 = {.sin6_family = AF_INET6, .sin6_addr = dstAddr, .sin6_port = 42};
int res = connect(testSocket, (sockaddr*)&dst6, sizeof(dst6));
socklen_t fwmarkLen = sizeof(fwmark->intValue);
EXPECT_NE(-1, getsockopt(testSocket, SOL_SOCKET, SO_MARK, &(fwmark->intValue), &fwmarkLen));
if (res == -1) return false;
char addr[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6, &dstAddr, addr, INET6_ADDRSTRLEN);
SCOPED_TRACE(StringPrintf("sendIPv6PacketFromUid, addr: %s, uid: %u", addr, uid));
checkDataReceived(testSocket, tunFd);
return true;
}
void expectVpnFallthroughRuleExists(const std::string& ifName, int vpnNetId) {
std::string vpnFallthroughRule =
StringPrintf("%d:\tfrom all fwmark 0x%x/0xffff lookup %s",
RULE_PRIORITY_VPN_FALLTHROUGH, vpnNetId, ifName.c_str());
for (const auto& ipVersion : {IP_RULE_V4, IP_RULE_V6}) {
EXPECT_TRUE(ipRuleExists(ipVersion, vpnFallthroughRule));
}
}
void expectVpnFallthroughWorks(android::net::INetd* netdService, bool bypassable, uid_t uid,
const TunInterface& fallthroughNetwork,
const TunInterface& vpnNetwork, int vpnNetId = TEST_NETID2,
int fallthroughNetId = TEST_NETID1) {
// Set default network to NETID_UNSET
EXPECT_TRUE(netdService->networkSetDefault(NETID_UNSET).isOk());
// insideVpnAddr based on the route we added in createVpnNetworkWithUid
in6_addr insideVpnAddr = {
{// 2001:db8:cafe::1
.u6_addr8 = {0x20, 0x01, 0x0d, 0xb8, 0xca, 0xfe, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}}};
// outsideVpnAddr will hit the route in the fallthrough network route table
// because we added default route in createVpnNetworkWithUid
in6_addr outsideVpnAddr = {
{// 2607:f0d0:1002::4
.u6_addr8 = {0x26, 0x07, 0xf0, 0xd0, 0x10, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4}}};
int fallthroughFd = fallthroughNetwork.getFdForTesting();
int vpnFd = vpnNetwork.getFdForTesting();
// Expect all connections to fail because UID 0 is not routed to the VPN and there is no
// default network.
Fwmark fwmark;
EXPECT_FALSE(sendIPv6PacketFromUid(0, outsideVpnAddr, &fwmark, fallthroughFd));
EXPECT_FALSE(sendIPv6PacketFromUid(0, insideVpnAddr, &fwmark, fallthroughFd));
// Set default network
EXPECT_TRUE(netdService->networkSetDefault(fallthroughNetId).isOk());
// Connections go on the default network because UID 0 is not subject to the VPN.
EXPECT_TRUE(sendIPv6PacketFromUid(0, outsideVpnAddr, &fwmark, fallthroughFd));
EXPECT_EQ(fallthroughNetId | 0xC0000, static_cast<int>(fwmark.intValue));
EXPECT_TRUE(sendIPv6PacketFromUid(0, insideVpnAddr, &fwmark, fallthroughFd));
EXPECT_EQ(fallthroughNetId | 0xC0000, static_cast<int>(fwmark.intValue));
// Check if fallthrough rule exists
expectVpnFallthroughRuleExists(fallthroughNetwork.name(), vpnNetId);
// Expect fallthrough to default network
// The fwmark differs depending on whether the VPN is bypassable or not.
EXPECT_TRUE(sendIPv6PacketFromUid(uid, outsideVpnAddr, &fwmark, fallthroughFd));
EXPECT_EQ(bypassable ? vpnNetId : fallthroughNetId, static_cast<int>(fwmark.intValue));
// Expect connect success, packet will be sent to vpnFd.
EXPECT_TRUE(sendIPv6PacketFromUid(uid, insideVpnAddr, &fwmark, vpnFd));
EXPECT_EQ(bypassable ? vpnNetId : fallthroughNetId, static_cast<int>(fwmark.intValue));
// Explicitly select vpn network
setNetworkForProcess(vpnNetId);
// Expect fallthrough to default network
EXPECT_TRUE(sendIPv6PacketFromUid(0, outsideVpnAddr, &fwmark, fallthroughFd));
// Expect the mark contains all the bit because we've selected network.
EXPECT_EQ(vpnNetId | 0xF0000, static_cast<int>(fwmark.intValue));
// Expect connect success, packet will be sent to vpnFd.
EXPECT_TRUE(sendIPv6PacketFromUid(0, insideVpnAddr, &fwmark, vpnFd));
// Expect the mark contains all the bit because we've selected network.
EXPECT_EQ(vpnNetId | 0xF0000, static_cast<int>(fwmark.intValue));
// Explicitly select fallthrough network
setNetworkForProcess(fallthroughNetId);
// The mark is set to fallthrough network because we've selected it.
EXPECT_TRUE(sendIPv6PacketFromUid(0, outsideVpnAddr, &fwmark, fallthroughFd));
EXPECT_TRUE(sendIPv6PacketFromUid(0, insideVpnAddr, &fwmark, fallthroughFd));
// If vpn is BypassableVPN, connections can also go on the fallthrough network under vpn uid.
if (bypassable) {
EXPECT_TRUE(sendIPv6PacketFromUid(uid, outsideVpnAddr, &fwmark, fallthroughFd));
EXPECT_TRUE(sendIPv6PacketFromUid(uid, insideVpnAddr, &fwmark, fallthroughFd));
} else {
// If not, no permission to bypass vpn.
EXPECT_FALSE(sendIPv6PacketFromUid(uid, outsideVpnAddr, &fwmark, fallthroughFd));
EXPECT_FALSE(sendIPv6PacketFromUid(uid, insideVpnAddr, &fwmark, fallthroughFd));
}
}
} // namespace
TEST_F(BinderTest, SecureVPNFallthrough) {
createVpnNetworkWithUid(true /* secure */, TEST_UID1);
// Get current default network NetId
ASSERT_TRUE(mNetd->networkGetDefault(&mStoredDefaultNetwork).isOk());
expectVpnFallthroughWorks(mNetd.get(), false /* bypassable */, TEST_UID1, sTun, sTun2);
}
TEST_F(BinderTest, BypassableVPNFallthrough) {
createVpnNetworkWithUid(false /* secure */, TEST_UID1);
// Get current default network NetId
ASSERT_TRUE(mNetd->networkGetDefault(&mStoredDefaultNetwork).isOk());
expectVpnFallthroughWorks(mNetd.get(), true /* bypassable */, TEST_UID1, sTun, sTun2);
}