blob: 362eca7e8a46cf675a835811d4319e2ef29a9be0 [file] [log] [blame]
/* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gtest/gtest.h>
#include <inttypes.h>
#include <linux/dma-buf.h>
#include <poll.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <fstream>
#include <string>
#include <unordered_map>
#include <vector>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#include <ion/ion.h>
#include <unistd.h>
#include <dmabufinfo/dmabuf_sysfs_stats.h>
#include <dmabufinfo/dmabufinfo.h>
using namespace ::android::dmabufinfo;
using namespace ::android::base;
namespace fs = std::filesystem;
#define MAX_HEAP_NAME 32
#define ION_HEAP_ANY_MASK (0x7fffffff)
struct ion_heap_data {
char name[MAX_HEAP_NAME];
__u32 type;
__u32 heap_id;
__u32 reserved0;
__u32 reserved1;
__u32 reserved2;
};
#ifndef DMA_BUF_SET_NAME
#define DMA_BUF_SET_NAME _IOW(DMA_BUF_BASE, 5, const char*)
#endif
class fd_sharer {
public:
fd_sharer();
~fd_sharer() { kill(); }
bool ok() const { return child_pid > 0; }
bool sendfd(int fd);
bool kill();
pid_t pid() const { return child_pid; }
private:
unique_fd parent_fd, child_fd;
pid_t child_pid;
void run();
};
fd_sharer::fd_sharer() : parent_fd{}, child_fd{}, child_pid{-1} {
bool sp_ok = android::base::Socketpair(SOCK_STREAM, &parent_fd, &child_fd);
if (!sp_ok) return;
child_pid = fork();
if (child_pid < 0) return;
if (child_pid == 0) run();
}
bool fd_sharer::kill() {
int err = ::kill(child_pid, SIGKILL);
if (err < 0) return false;
return ::waitpid(child_pid, nullptr, 0) == child_pid;
}
void fd_sharer::run() {
while (true) {
int fd;
char unused = 0;
iovec iov{};
iov.iov_base = &unused;
iov.iov_len = sizeof(unused);
msghdr msg{};
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
char cmsg_buf[CMSG_SPACE(sizeof(fd))];
msg.msg_control = cmsg_buf;
msg.msg_controllen = sizeof(cmsg_buf);
cmsghdr* cmsg = CMSG_FIRSTHDR(&msg);
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
cmsg->cmsg_len = CMSG_LEN(sizeof(fd));
ssize_t s = TEMP_FAILURE_RETRY(recvmsg(child_fd, &msg, 0));
if (s == -1) break;
s = TEMP_FAILURE_RETRY(write(child_fd, &unused, sizeof(unused)));
if (s == -1) break;
}
}
bool fd_sharer::sendfd(int fd) {
char unused = 0;
iovec iov{};
iov.iov_base = &unused;
iov.iov_len = sizeof(unused);
msghdr msg{};
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
char cmsg_buf[CMSG_SPACE(sizeof(fd))];
msg.msg_control = cmsg_buf;
msg.msg_controllen = sizeof(cmsg_buf);
cmsghdr* cmsg = CMSG_FIRSTHDR(&msg);
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
cmsg->cmsg_len = CMSG_LEN(sizeof(fd));
int* fd_buf = reinterpret_cast<int*>(CMSG_DATA(cmsg));
*fd_buf = fd;
ssize_t s = TEMP_FAILURE_RETRY(sendmsg(parent_fd, &msg, 0));
if (s == -1) return false;
// The target process installs the fd into its fd table during recvmsg().
// So if we return now, there's a brief window between sendfd() finishing
// and libmemoryinfo actually seeing that the buffer has been shared. This
// window is just large enough to break tests.
//
// To work around this, wait for the target process to respond with a dummy
// byte, with a timeout of 1 s.
pollfd p{};
p.fd = parent_fd;
p.events = POLL_IN;
int ready = poll(&p, 1, 1000);
if (ready != 1) return false;
s = TEMP_FAILURE_RETRY(read(parent_fd, &unused, sizeof(unused)));
if (s == -1) return false;
return true;
}
#define EXPECT_ONE_BUF_EQ(_bufptr, _name, _fdrefs, _maprefs, _expname, _count, _size) \
do { \
EXPECT_EQ(_bufptr->name(), _name); \
EXPECT_EQ(_bufptr->fdrefs().size(), _fdrefs); \
EXPECT_EQ(_bufptr->maprefs().size(), _maprefs); \
EXPECT_EQ(_bufptr->exporter(), _expname); \
EXPECT_EQ(_bufptr->count(), _count); \
EXPECT_EQ(_bufptr->size(), _size); \
} while (0)
#define EXPECT_PID_IN_FDREFS(_bufptr, _pid, _expect) \
do { \
const std::unordered_map<pid_t, int>& _fdrefs = _bufptr->fdrefs(); \
auto _ref = _fdrefs.find(_pid); \
EXPECT_EQ((_ref != _fdrefs.end()), _expect); \
} while (0)
#define EXPECT_PID_IN_MAPREFS(_bufptr, _pid, _expect) \
do { \
const std::unordered_map<pid_t, int>& _maprefs = _bufptr->maprefs(); \
auto _ref = _maprefs.find(_pid); \
EXPECT_EQ((_ref != _maprefs.end()), _expect); \
} while (0)
TEST(DmaBufInfoParser, TestReadDmaBufInfo) {
std::string bufinfo = R"bufinfo(00045056 00000002 00000007 00000002 ion 00022069
Attached Devices:
Total 0 devices attached
01048576 00000002 00000007 00000001 ion 00019834 CAMERA
Attached Devices:
soc:qcom,cam_smmu:msm_cam_smmu_icp
Total 1 devices attached)bufinfo";
TemporaryFile tf;
ASSERT_TRUE(tf.fd != -1);
ASSERT_TRUE(::android::base::WriteStringToFd(bufinfo, tf.fd));
std::string path = std::string(tf.path);
std::vector<DmaBuffer> dmabufs;
EXPECT_TRUE(ReadDmaBufInfo(&dmabufs, path));
EXPECT_EQ(dmabufs.size(), 2UL);
EXPECT_EQ(dmabufs[0].size(), 45056UL);
EXPECT_EQ(dmabufs[0].inode(), 22069UL);
EXPECT_EQ(dmabufs[0].count(), 2UL);
EXPECT_EQ(dmabufs[0].exporter(), "ion");
EXPECT_TRUE(dmabufs[0].name().empty());
EXPECT_EQ(dmabufs[0].total_refs(), 0ULL);
EXPECT_TRUE(dmabufs[0].fdrefs().empty());
EXPECT_TRUE(dmabufs[0].maprefs().empty());
EXPECT_EQ(dmabufs[1].size(), 1048576UL);
EXPECT_EQ(dmabufs[1].inode(), 19834UL);
EXPECT_EQ(dmabufs[1].count(), 1UL);
EXPECT_EQ(dmabufs[1].exporter(), "ion");
EXPECT_FALSE(dmabufs[1].name().empty());
EXPECT_EQ(dmabufs[1].name(), "CAMERA");
EXPECT_EQ(dmabufs[1].total_refs(), 0ULL);
EXPECT_TRUE(dmabufs[1].fdrefs().empty());
EXPECT_TRUE(dmabufs[1].maprefs().empty());
}
class DmaBufSysfsStatsParser : public ::testing::Test {
public:
virtual void SetUp() {
fs::current_path(fs::temp_directory_path());
buffer_stats_path = fs::current_path() / "buffers";
ASSERT_TRUE(fs::create_directory(buffer_stats_path));
}
virtual void TearDown() { fs::remove_all(buffer_stats_path); }
std::filesystem::path buffer_stats_path;
};
TEST_F(DmaBufSysfsStatsParser, TestReadDmaBufSysfsStats) {
using android::base::StringPrintf;
const std::string device_name = "my_device";
for (unsigned int inode_number = 74831; inode_number < 74841; inode_number++) {
auto attach_dir_path = StringPrintf("buffers/%u/attachments/2", inode_number);
ASSERT_TRUE(fs::create_directories(attach_dir_path));
auto buffer_path = buffer_stats_path / StringPrintf("%u", inode_number);
auto buffer_size_path = buffer_path / "size";
const std::string buffer_size = "4096";
ASSERT_TRUE(android::base::WriteStringToFile(buffer_size, buffer_size_path));
auto exp_name_path = buffer_path / "exporter_name";
const std::string exp_name = "system";
ASSERT_TRUE(android::base::WriteStringToFile(exp_name, exp_name_path));
auto attachment_dir = buffer_path / "attachments/2";
auto device_path = attachment_dir / "device";
fs::create_symlink(device_name, device_path);
auto map_count_path = attachment_dir / "map_counter";
const std::string map_count = "1";
ASSERT_TRUE(android::base::WriteStringToFile(map_count, map_count_path));
}
DmabufSysfsStats stats;
ASSERT_TRUE(GetDmabufSysfsStats(&stats, buffer_stats_path.c_str()));
auto buffer_stats = stats.buffer_stats();
ASSERT_EQ(buffer_stats.size(), 10UL);
auto buf_info = buffer_stats[0];
EXPECT_EQ(buf_info.inode, 74831UL);
EXPECT_EQ(buf_info.exp_name, "system");
EXPECT_EQ(buf_info.size, 4096UL);
auto attach_stats = buf_info.attachments;
ASSERT_EQ(attach_stats.size(), 1UL);
auto attach_info = attach_stats[0];
EXPECT_EQ(attach_info.map_count, 1UL);
EXPECT_EQ(attach_info.device, device_name);
auto exporter_stats = stats.exporter_info();
ASSERT_EQ(exporter_stats.size(), 1UL);
auto exp_info = exporter_stats.find("system");
ASSERT_TRUE(exp_info != exporter_stats.end());
EXPECT_EQ(exp_info->second.size, 40960UL);
EXPECT_EQ(exp_info->second.buffer_count, 10UL);
auto importer_stats = stats.importer_info();
ASSERT_EQ(importer_stats.size(), 1UL);
auto imp_info = importer_stats.find(device_name);
ASSERT_TRUE(imp_info != importer_stats.end());
EXPECT_EQ(imp_info->second.size, 40960UL);
EXPECT_EQ(imp_info->second.buffer_count, 10UL);
auto total_size = stats.total_size();
EXPECT_EQ(total_size, 40960UL);
auto total_count = stats.total_count();
EXPECT_EQ(total_count, 10UL);
uint64_t total_exported;
EXPECT_TRUE(GetDmabufTotalExportedKb(&total_exported, buffer_stats_path.c_str()));
EXPECT_EQ(total_exported, 40UL);
}
class DmaBufProcessStatsTest : public ::testing::Test {
public:
virtual void SetUp() {
fs::current_path(fs::temp_directory_path());
dmabuf_sysfs_path = fs::current_path() / "buffers";
procfs_path = fs::current_path() / "proc";
ASSERT_TRUE(fs::create_directory(dmabuf_sysfs_path));
ASSERT_TRUE(fs::create_directory(procfs_path));
pid_path = procfs_path / android::base::StringPrintf("%d", pid);
ASSERT_TRUE(fs::create_directories(pid_path));
pid_fdinfo_path = pid_path / "fdinfo";
ASSERT_TRUE(fs::create_directories(pid_fdinfo_path));
}
virtual void TearDown() {
fs::remove_all(dmabuf_sysfs_path);
fs::remove_all(procfs_path);
}
void AddFdInfo(unsigned int inode, unsigned int size, bool is_dmabuf) {
std::string dmabuf_fdinfo = android::base::StringPrintf(
"size:\t%u\ncount:\t1\nexp_name:\t%s\n", size, exporter.c_str());
std::string fdinfo =
android::base::StringPrintf("pos:\t21\nflags:\t0032\nmnt_id:\t02\nino:\t%u\n%s",
inode, (is_dmabuf) ? dmabuf_fdinfo.c_str() : "");
auto fdinfo_file_path = pid_fdinfo_path / android::base::StringPrintf("%d", fd++);
ASSERT_TRUE(android::base::WriteStringToFile(fdinfo, fdinfo_file_path));
}
void AddSysfsDmaBufStats(unsigned int inode, unsigned int size, unsigned int mmap_count) {
auto buffer_path = dmabuf_sysfs_path / android::base::StringPrintf("%u", inode);
ASSERT_TRUE(fs::create_directory(buffer_path));
auto size_path = buffer_path / "size";
ASSERT_TRUE(android::base::WriteStringToFile(android::base::StringPrintf("%u", size),
size_path));
auto mmap_count_path = buffer_path / "mmap_count";
ASSERT_TRUE(android::base::WriteStringToFile(
android::base::StringPrintf("%u", mmap_count), mmap_count_path));
auto exporter_path = buffer_path / "exporter_name";
ASSERT_TRUE(android::base::WriteStringToFile(exporter, exporter_path));
}
std::string CreateMapEntry(unsigned int inode, unsigned int size, bool is_dmabuf) {
return android::base::StringPrintf("0000000000-%010x rw-s 00000000 00:08 %u %s", size,
inode, (is_dmabuf) ? "/dmabuf:" : "/not/dmabuf/");
}
void AddMapEntries(std::vector<std::string> entries) {
std::string maps_content = android::base::Join(entries, '\n');
auto maps_file_path = pid_path / "maps";
ASSERT_TRUE(android::base::WriteStringToFile(maps_content, maps_file_path));
}
std::filesystem::path dmabuf_sysfs_path;
std::filesystem::path procfs_path;
std::filesystem::path pid_path;
std::filesystem::path pid_fdinfo_path;
std::string exporter = "system_heap";
int pid = 10;
int fd = 0;
};
TEST_F(DmaBufProcessStatsTest, TestReadDmaBufInfo) {
AddFdInfo(1, 1024, false);
AddFdInfo(2, 2048, true); // Dmabuf 1
std::vector<std::string> map_entries;
map_entries.emplace_back(CreateMapEntry(3, 1024, false));
map_entries.emplace_back(CreateMapEntry(4, 1024, true)); // Dmabuf 2
AddMapEntries(map_entries);
AddSysfsDmaBufStats(2, 2048, 4); // Dmabuf 1
AddSysfsDmaBufStats(4, 1024, 1); // Dmabuf 2
std::vector<DmaBuffer> dmabufs;
ASSERT_TRUE(ReadDmaBufInfo(pid, &dmabufs, true, procfs_path, dmabuf_sysfs_path));
ASSERT_EQ(dmabufs.size(), 2u);
auto dmabuf1 = std::find_if(dmabufs.begin(), dmabufs.end(),
[](const DmaBuffer& dmabuf) { return dmabuf.inode() == 2; });
ASSERT_NE(dmabuf1, dmabufs.end());
ASSERT_EQ(dmabuf1->size(), 2048u);
ASSERT_EQ(dmabuf1->fdrefs().size(), 1u);
ASSERT_EQ(dmabuf1->maprefs().size(), 0u);
ASSERT_EQ(dmabuf1->total_refs(), 1u);
ASSERT_EQ(dmabuf1->exporter(), exporter);
auto dmabuf2 = std::find_if(dmabufs.begin(), dmabufs.end(),
[](const DmaBuffer& dmabuf) { return dmabuf.inode() == 4; });
ASSERT_NE(dmabuf2, dmabufs.end());
ASSERT_EQ(dmabuf2->size(), 1024u);
ASSERT_EQ(dmabuf2->fdrefs().size(), 0u);
ASSERT_EQ(dmabuf2->maprefs().size(), 1u);
ASSERT_EQ(dmabuf2->total_refs(), 1u);
ASSERT_EQ(dmabuf2->exporter(), exporter);
}
TEST_F(DmaBufProcessStatsTest, TestReadDmaBufPss) {
AddFdInfo(1, 1024, false);
AddFdInfo(2, 2048, true); // Dmabuf 1
std::vector<std::string> map_entries;
map_entries.emplace_back(CreateMapEntry(3, 1024, false));
map_entries.emplace_back(CreateMapEntry(4, 1024, true)); // Dmabuf 2
map_entries.emplace_back(CreateMapEntry(4, 1024, true)); // Dmabuf 2
AddMapEntries(map_entries);
AddSysfsDmaBufStats(2, 2048, 1); // Dmabuf 1
AddSysfsDmaBufStats(4, 1024, 5); // Dmabuf 2
uint64_t expected_pss = 2 / 5 * 1024;
uint64_t pss = 0;
ASSERT_TRUE(ReadDmaBufPss(pid, &pss, procfs_path, dmabuf_sysfs_path));
ASSERT_EQ(pss, expected_pss);
}
TEST_F(DmaBufProcessStatsTest, TestReadDmaBufFdRefs) {
AddFdInfo(1, 1024, false);
AddFdInfo(2, 2048, true); // Dmabuf 1
AddFdInfo(2, 2048, true); // Dmabuf 1
AddFdInfo(3, 1024, true); // Dmabuf 2
std::vector<DmaBuffer> dmabufs;
ASSERT_TRUE(ReadDmaBufFdRefs(pid, &dmabufs, procfs_path));
ASSERT_EQ(dmabufs.size(), 2u);
const auto& dmabuf1 = std::find_if(dmabufs.begin(), dmabufs.end(),
[](const DmaBuffer& dmabuf) { return dmabuf.inode() == 2; });
ASSERT_EQ(dmabuf1->size(), 2048u);
ASSERT_EQ(dmabuf1->fdrefs().size(), 1u); // Only one process has FDs to this buffer
ASSERT_EQ(dmabuf1->maprefs().size(), 0u);
ASSERT_EQ(dmabuf1->total_refs(), 2u);
ASSERT_EQ(dmabuf1->exporter(), exporter);
// Verify process has 2 FDs to this buffer
ASSERT_NE(dmabuf1, dmabufs.end());
const auto& fdrefs1 = dmabuf1->fdrefs();
const auto& pid_fdrefs1 = fdrefs1.find(pid);
ASSERT_NE(pid_fdrefs1, fdrefs1.end());
ASSERT_EQ(pid_fdrefs1->second, 2);
const auto& dmabuf2 = std::find_if(dmabufs.begin(), dmabufs.end(),
[](const DmaBuffer& dmabuf) { return dmabuf.inode() == 3; });
ASSERT_EQ(dmabuf2->size(), 1024u);
ASSERT_EQ(dmabuf2->fdrefs().size(), 1u); // Only one process has FDs to this buffer
ASSERT_EQ(dmabuf2->maprefs().size(), 0u);
ASSERT_EQ(dmabuf2->total_refs(), 1u);
ASSERT_EQ(dmabuf2->exporter(), exporter);
// Verify process only has 1 FD to this buffer
ASSERT_NE(dmabuf2, dmabufs.end());
const auto& fdrefs2 = dmabuf2->fdrefs();
const auto& pid_fdrefs2 = fdrefs2.find(pid);
ASSERT_NE(pid_fdrefs2, fdrefs2.end());
ASSERT_EQ(pid_fdrefs2->second, 1);
}
TEST_F(DmaBufProcessStatsTest, TestReadDmaBufMapRefs) {
std::vector<std::string> map_entries;
map_entries.emplace_back(CreateMapEntry(1, 1024, false));
map_entries.emplace_back(CreateMapEntry(2, 1024, true)); // Dmabuf 1
map_entries.emplace_back(CreateMapEntry(2, 1024, true)); // Dmabuf 1
map_entries.emplace_back(CreateMapEntry(3, 2048, true)); // Dmabuf 2
AddMapEntries(map_entries);
AddSysfsDmaBufStats(2, 1024, 2); // Dmabuf 1
AddSysfsDmaBufStats(3, 1024, 1); // Dmabuf 2
std::vector<DmaBuffer> dmabufs;
ASSERT_TRUE(ReadDmaBufMapRefs(pid, &dmabufs, procfs_path, dmabuf_sysfs_path));
ASSERT_EQ(dmabufs.size(), 2u);
const auto& dmabuf1 = std::find_if(dmabufs.begin(), dmabufs.end(),
[](const DmaBuffer& dmabuf) { return dmabuf.inode() == 2; });
ASSERT_EQ(dmabuf1->size(), 1024u);
ASSERT_EQ(dmabuf1->fdrefs().size(), 0u);
ASSERT_EQ(dmabuf1->maprefs().size(), 1u); // Only one process mapped this buffer
ASSERT_EQ(dmabuf1->total_refs(), 2u);
ASSERT_EQ(dmabuf1->exporter(), exporter);
// Verify process mapped this buffer twice
ASSERT_NE(dmabuf1, dmabufs.end());
const auto& maprefs1 = dmabuf1->maprefs();
const auto& pid_maprefs1 = maprefs1.find(pid);
ASSERT_NE(pid_maprefs1, maprefs1.end());
ASSERT_EQ(pid_maprefs1->second, 2);
const auto& dmabuf2 = std::find_if(dmabufs.begin(), dmabufs.end(),
[](const DmaBuffer& dmabuf) { return dmabuf.inode() == 3; });
ASSERT_EQ(dmabuf2->size(), 2048u);
ASSERT_EQ(dmabuf2->fdrefs().size(), 0u);
ASSERT_EQ(dmabuf2->maprefs().size(), 1u); // Only one process mapped this buffer
ASSERT_EQ(dmabuf2->total_refs(), 1u);
ASSERT_EQ(dmabuf2->exporter(), exporter);
// Verify process mapped this buffer only once
ASSERT_NE(dmabuf2, dmabufs.end());
const auto& maprefs2 = dmabuf2->maprefs();
const auto& pid_maprefs2 = maprefs2.find(pid);
ASSERT_NE(pid_maprefs2, maprefs2.end());
ASSERT_EQ(pid_maprefs2->second, 1);
}
class DmaBufTester : public ::testing::Test {
public:
DmaBufTester() : ion_fd(ion_open()), ion_heap_mask(get_ion_heap_mask()) {}
~DmaBufTester() {
if (ion_fd >= 0) {
ion_close(ion_fd);
}
}
bool is_valid() { return (ion_fd >= 0 && ion_heap_mask > 0); }
unique_fd allocate(uint64_t size, const std::string& name) {
int fd;
int err = ion_alloc_fd(ion_fd, size, 0, ion_heap_mask, 0, &fd);
if (err < 0) {
printf("Failed ion_alloc_fd, return value: %d\n", err);
return unique_fd{};
}
if (!name.empty()) {
if (ioctl(fd, DMA_BUF_SET_NAME, name.c_str()) == -1) {
printf("Failed ioctl(DMA_BUF_SET_NAME): %s\n", strerror(errno));
close(fd);
return unique_fd{};
}
}
return unique_fd{fd};
}
void readAndCheckDmaBuffer(std::vector<DmaBuffer>* dmabufs, pid_t pid, const std::string name,
size_t fdrefs_size, size_t maprefs_size, const std::string exporter,
size_t refcount, uint64_t buf_size, bool expectFdrefs,
bool expectMapRefs) {
EXPECT_TRUE(ReadDmaBufInfo(pid, dmabufs));
EXPECT_EQ(dmabufs->size(), 1UL);
EXPECT_ONE_BUF_EQ(dmabufs->begin(), name, fdrefs_size, maprefs_size, exporter, refcount,
buf_size);
// Make sure the buffer has the right pid too.
EXPECT_PID_IN_FDREFS(dmabufs->begin(), pid, expectFdrefs);
EXPECT_PID_IN_MAPREFS(dmabufs->begin(), pid, expectMapRefs);
}
bool checkPidRef(DmaBuffer& dmabuf, pid_t pid, int expectFdrefs) {
int fdrefs = dmabuf.fdrefs().find(pid)->second;
return fdrefs == expectFdrefs;
}
private:
int get_ion_heap_mask() {
if (ion_fd < 0) {
return 0;
}
if (ion_is_legacy(ion_fd)) {
// Since ION is still in staging, we've seen that the heap mask ids are also
// changed across kernels for some reason. So, here we basically ask for a buffer
// from _any_ heap.
return ION_HEAP_ANY_MASK;
}
int cnt;
int err = ion_query_heap_cnt(ion_fd, &cnt);
if (err < 0) {
return err;
}
std::vector<ion_heap_data> heaps;
heaps.resize(cnt);
err = ion_query_get_heaps(ion_fd, cnt, &heaps[0]);
if (err < 0) {
return err;
}
unsigned int ret = 0;
for (auto& it : heaps) {
if (!strcmp(it.name, "ion_system_heap")) {
ret |= (1 << it.heap_id);
}
}
return ret;
}
int ion_fd;
const int ion_heap_mask;
};
TEST_F(DmaBufTester, TestFdRef) {
// Test if a dma buffer is found while the corresponding file descriptor
// is open
ASSERT_TRUE(is_valid());
pid_t pid = getpid();
std::vector<DmaBuffer> dmabufs;
{
// Allocate one buffer and make sure the library can see it
unique_fd buf = allocate(4096, "dmabuftester-4k");
ASSERT_GT(buf, 0) << "Allocated buffer is invalid";
ASSERT_TRUE(ReadDmaBufInfo(pid, &dmabufs));
EXPECT_EQ(dmabufs.size(), 1UL);
EXPECT_ONE_BUF_EQ(dmabufs.begin(), "dmabuftester-4k", 1UL, 0UL, "ion", 1UL, 4096ULL);
// Make sure the buffer has the right pid too.
EXPECT_PID_IN_FDREFS(dmabufs.begin(), pid, true);
}
// Now make sure the buffer has disappeared
ASSERT_TRUE(ReadDmaBufInfo(pid, &dmabufs));
EXPECT_TRUE(dmabufs.empty());
}
TEST_F(DmaBufTester, TestMapRef) {
// Test to make sure we can find a buffer if the fd is closed but the buffer
// is mapped
ASSERT_TRUE(is_valid());
pid_t pid = getpid();
std::vector<DmaBuffer> dmabufs;
{
// Allocate one buffer and make sure the library can see it
unique_fd buf = allocate(4096, "dmabuftester-4k");
ASSERT_GT(buf, 0) << "Allocated buffer is invalid";
auto ptr = mmap(0, 4096, PROT_READ, MAP_SHARED, buf, 0);
ASSERT_NE(ptr, MAP_FAILED);
ASSERT_TRUE(ReadDmaBufInfo(pid, &dmabufs));
EXPECT_EQ(dmabufs.size(), 1UL);
EXPECT_ONE_BUF_EQ(dmabufs.begin(), "dmabuftester-4k", 1UL, 1UL, "ion", 2UL, 4096ULL);
// Make sure the buffer has the right pid too.
EXPECT_PID_IN_FDREFS(dmabufs.begin(), pid, true);
EXPECT_PID_IN_MAPREFS(dmabufs.begin(), pid, true);
// close the file descriptor and re-read the stats
buf.reset(-1);
ASSERT_TRUE(ReadDmaBufInfo(pid, &dmabufs));
EXPECT_EQ(dmabufs.size(), 1UL);
EXPECT_ONE_BUF_EQ(dmabufs.begin(), "<unknown>", 0UL, 1UL, "<unknown>", 0UL, 4096ULL);
EXPECT_PID_IN_FDREFS(dmabufs.begin(), pid, false);
EXPECT_PID_IN_MAPREFS(dmabufs.begin(), pid, true);
// unmap the bufer and lose all references
munmap(ptr, 4096);
}
// Now make sure the buffer has disappeared
ASSERT_TRUE(ReadDmaBufInfo(pid, &dmabufs));
EXPECT_TRUE(dmabufs.empty());
}
TEST_F(DmaBufTester, TestSharedfd) {
// Each time a shared buffer is received over a socket, the remote process
// will take an extra reference on it.
ASSERT_TRUE(is_valid());
pid_t pid = getpid();
std::vector<DmaBuffer> dmabufs;
{
fd_sharer sharer{};
ASSERT_TRUE(sharer.ok());
// Allocate one buffer and make sure the library can see it
unique_fd buf = allocate(4096, "dmabuftester-4k");
ASSERT_GT(buf, 0) << "Allocated buffer is invalid";
readAndCheckDmaBuffer(&dmabufs, pid, "dmabuftester-4k", 1UL, 0UL, "ion", 1UL, 4096ULL, true,
false);
ASSERT_TRUE(sharer.sendfd(buf));
readAndCheckDmaBuffer(&dmabufs, pid, "dmabuftester-4k", 1UL, 0UL, "ion", 2UL, 4096ULL, true,
false);
EXPECT_TRUE(checkPidRef(dmabufs[0], pid, 1));
readAndCheckDmaBuffer(&dmabufs, sharer.pid(), "dmabuftester-4k", 1UL, 0UL, "ion", 2UL,
4096ULL, true, false);
EXPECT_TRUE(checkPidRef(dmabufs[0], sharer.pid(), 1));
ASSERT_TRUE(sharer.sendfd(buf));
readAndCheckDmaBuffer(&dmabufs, pid, "dmabuftester-4k", 1UL, 0UL, "ion", 3UL, 4096ULL, true,
false);
EXPECT_TRUE(checkPidRef(dmabufs[0], pid, 1));
readAndCheckDmaBuffer(&dmabufs, sharer.pid(), "dmabuftester-4k", 1UL, 0UL, "ion", 3UL,
4096ULL, true, false);
EXPECT_TRUE(checkPidRef(dmabufs[0], sharer.pid(), 2));
ASSERT_TRUE(sharer.kill());
readAndCheckDmaBuffer(&dmabufs, pid, "dmabuftester-4k", 1UL, 0UL, "ion", 1UL, 4096ULL, true,
false);
}
// Now make sure the buffer has disappeared
ASSERT_TRUE(ReadDmaBufInfo(pid, &dmabufs));
EXPECT_TRUE(dmabufs.empty());
}
TEST_F(DmaBufTester, DupFdTest) {
// dup()ing an fd will make this process take an extra reference on the
// shared buffer.
ASSERT_TRUE(is_valid());
pid_t pid = getpid();
std::vector<DmaBuffer> dmabufs;
{
// Allocate one buffer and make sure the library can see it
unique_fd buf = allocate(4096, "dmabuftester-4k");
ASSERT_GT(buf, 0) << "Allocated buffer is invalid";
readAndCheckDmaBuffer(&dmabufs, pid, "dmabuftester-4k", 1UL, 0UL, "ion", 1UL, 4096ULL, true,
false);
unique_fd buf2{dup(buf)};
readAndCheckDmaBuffer(&dmabufs, pid, "dmabuftester-4k", 1UL, 0UL, "ion", 2UL, 4096ULL, true,
false);
EXPECT_TRUE(checkPidRef(dmabufs[0], pid, 2));
close(buf2.release());
readAndCheckDmaBuffer(&dmabufs, pid, "dmabuftester-4k", 1UL, 0UL, "ion", 1UL, 4096ULL, true,
false);
EXPECT_TRUE(checkPidRef(dmabufs[0], pid, 1));
}
// Now make sure the buffer has disappeared
ASSERT_TRUE(ReadDmaBufInfo(pid, &dmabufs));
EXPECT_TRUE(dmabufs.empty());
}
TEST_F(DmaBufTester, ForkTest) {
// fork()ing a child will cause the child to automatically take a reference
// on any existing shared buffers.
ASSERT_TRUE(is_valid());
pid_t pid = getpid();
std::vector<DmaBuffer> dmabufs;
{
// Allocate one buffer and make sure the library can see it
unique_fd buf = allocate(4096, "dmabuftester-4k");
ASSERT_GT(buf, 0) << "Allocated buffer is invalid";
readAndCheckDmaBuffer(&dmabufs, pid, "dmabuftester-4k", 1UL, 0UL, "ion", 1UL, 4096ULL, true,
false);
fd_sharer sharer{};
ASSERT_TRUE(sharer.ok());
readAndCheckDmaBuffer(&dmabufs, pid, "dmabuftester-4k", 1UL, 0UL, "ion", 2UL, 4096ULL, true,
false);
readAndCheckDmaBuffer(&dmabufs, sharer.pid(), "dmabuftester-4k", 1UL, 0UL, "ion", 2UL,
4096ULL, true, false);
ASSERT_TRUE(sharer.kill());
readAndCheckDmaBuffer(&dmabufs, pid, "dmabuftester-4k", 1UL, 0UL, "ion", 1UL, 4096ULL, true,
false);
}
// Now make sure the buffer has disappeared
ASSERT_TRUE(ReadDmaBufInfo(pid, &dmabufs));
EXPECT_TRUE(dmabufs.empty());
}
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
::android::base::InitLogging(argv, android::base::StderrLogger);
return RUN_ALL_TESTS();
}