blob: 5c3f8b07d39e751ac361c83f9bfe2153c1c0141a [file] [log] [blame]
/*
* Copyright 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#define LOG_TAG "audio_utils_power_tests"
#include <cmath>
#include <math.h>
#include <audio_utils/power.h>
#include <gtest/gtest.h>
#include <log/log.h>
typedef struct { uint8_t c[3]; } __attribute__((__packed__)) uint8x3_t;
void testFloatValue(float f_value, size_t length) {
const float power = audio_utils_power_from_amplitude(f_value);
float f_ary[length];
uint8_t u8_ary[length];
int16_t i16_ary[length];
int32_t i32_ary[length];
int32_t q8_23_ary[length];
uint8x3_t p24_ary[length];
// magic formulas to convert floating point to fixed point representations.
// we negate the floating point value to ensure full integer range for 1.f.
const uint8_t u8_value((1.f - f_value) * 128);
const int16_t i16_value(f_value * INT16_MIN);
const int32_t i32_value (f_value * INT32_MIN);
const int32_t q8_23_value(f_value * -(1 << 23));
// PCM_24_BIT_PACKED is native endian.
#if HAVE_BIG_ENDIAN
const uint8x3_t p24_value{{
uint8_t(q8_23_value >> 16),
uint8_t(q8_23_value >> 8),
uint8_t(q8_23_value),
}};
#else
const uint8x3_t p24_value{{
uint8_t(q8_23_value),
uint8_t(q8_23_value >> 8),
uint8_t(q8_23_value >> 16),
}};
#endif
for (size_t i = 0; i < length; ++i) {
f_ary[i] = f_value;
u8_ary[i] = u8_value;
i16_ary[i] = i16_value;
i32_ary[i] = i32_value;
q8_23_ary[i] = q8_23_value;
p24_ary[i] = p24_value;
}
// check offset by 1, 2, 3 elements for unaligned NEON vector handling.
for (size_t i = 0; i < 3; ++i) {
if (i >= length) break;
EXPECT_EQ(power,
audio_utils_compute_power_mono(f_ary + i, AUDIO_FORMAT_PCM_FLOAT, length - i));
EXPECT_EQ(power,
audio_utils_compute_power_mono(u8_ary + i, AUDIO_FORMAT_PCM_8_BIT, length - i));
EXPECT_EQ(power,
audio_utils_compute_power_mono(i16_ary + i, AUDIO_FORMAT_PCM_16_BIT, length - i));
EXPECT_EQ(power,
audio_utils_compute_power_mono(i32_ary + i, AUDIO_FORMAT_PCM_32_BIT, length - i));
EXPECT_EQ(power,
audio_utils_compute_power_mono(
q8_23_ary + i, AUDIO_FORMAT_PCM_8_24_BIT, length - i));
EXPECT_EQ(power,
audio_utils_compute_power_mono(
p24_ary + i, AUDIO_FORMAT_PCM_24_BIT_PACKED, length - i));
}
}
void testFloatRamp(size_t length) {
float f_ary[length];
uint8_t u8_ary[length];
int16_t i16_ary[length];
int32_t i32_ary[length];
int32_t q8_23_ary[length];
uint8x3_t p24_ary[length];
for (size_t i = 0; i < length; ++i) {
// must be expressed cleanly in uint8_t
const float f_value = (int(length & 0xff) - 128) / 128.f;
// magic formulas to convert floating point to fixed point representations.
// we negate the floating point value to ensure full integer range for 1.f.
const uint8_t u8_value((1.f - f_value) * 128);
const int16_t i16_value(f_value * INT16_MIN);
const int32_t i32_value (f_value * INT32_MIN);
const int32_t q8_23_value(f_value * -(1 << 23));
// PCM_24_BIT_PACKED is native endian.
#if HAVE_BIG_ENDIAN
const uint8x3_t p24_value{{
uint8_t(q8_23_value >> 16),
uint8_t(q8_23_value >> 8),
uint8_t(q8_23_value),
}};
#else
const uint8x3_t p24_value{{
uint8_t(q8_23_value),
uint8_t(q8_23_value >> 8),
uint8_t(q8_23_value >> 16),
}};
#endif
f_ary[i] = f_value;
u8_ary[i] = u8_value;
i16_ary[i] = i16_value;
i32_ary[i] = i32_value;
q8_23_ary[i] = q8_23_value;
p24_ary[i] = p24_value;
}
const float power8 = audio_utils_compute_power_mono(u8_ary, AUDIO_FORMAT_PCM_8_BIT, length);
EXPECT_EQ(power8,
audio_utils_compute_power_mono(f_ary, AUDIO_FORMAT_PCM_FLOAT, length));
EXPECT_EQ(power8,
audio_utils_compute_power_mono(i16_ary, AUDIO_FORMAT_PCM_16_BIT, length));
EXPECT_EQ(power8,
audio_utils_compute_power_mono(i32_ary, AUDIO_FORMAT_PCM_32_BIT, length));
EXPECT_EQ(power8,
audio_utils_compute_power_mono(q8_23_ary, AUDIO_FORMAT_PCM_8_24_BIT, length));
EXPECT_EQ(power8,
audio_utils_compute_power_mono(p24_ary, AUDIO_FORMAT_PCM_24_BIT_PACKED, length));
}
// power_mono implicitly tests energy_mono
TEST(audio_utils_power, power_mono) {
// f_values should have limited mantissa
for (float f_value : { 0.f, 0.25f, 0.5f, 0.75f, 1.f }) {
const float power = audio_utils_power_from_amplitude(f_value);
printf("power_mono: amplitude: %f power: %f\n", f_value, power);
for (size_t length : { 1, 3, 5, 7, 16, 21, 32, 37 }) {
testFloatValue(f_value, length);
}
}
}
// power_mono implicitly tests energy_mono
TEST(audio_utils_power, power_mono_ramp) {
for (size_t length : { 1, 3, 5, 7, 16, 21, 32, 37, 297 }) {
testFloatRamp(length);
}
}
TEST(audio_utils_power, power_from) {
EXPECT_EQ(0.f, audio_utils_power_from_amplitude(1.f));
EXPECT_EQ(-INFINITY, audio_utils_power_from_amplitude(0.f));
EXPECT_EQ(0.f, audio_utils_power_from_amplitude(-1.f));
EXPECT_EQ(0.f, audio_utils_power_from_energy(1.f));
EXPECT_EQ(-INFINITY, audio_utils_power_from_energy(0.f));
EXPECT_TRUE(std::isnan(audio_utils_power_from_energy(-1.f)));
}