blob: 5f3dcbe6f7afee61e1ed78a9afa98e239cfcde10 [file] [log] [blame]
/*
* Copyright 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// #define LOG_NDEBUG 0
#define LOG_TAG "audio_utils_power"
#include <log/log.h>
#include <audio_utils/power.h>
#include <audio_utils/intrinsic_utils.h>
#include <audio_utils/primitives.h>
#if defined(__aarch64__) || defined(__ARM_NEON__)
#define USE_NEON
#endif
namespace {
constexpr inline bool isFormatSupported(audio_format_t format) {
switch (format) {
case AUDIO_FORMAT_PCM_8_BIT:
case AUDIO_FORMAT_PCM_16_BIT:
case AUDIO_FORMAT_PCM_24_BIT_PACKED:
case AUDIO_FORMAT_PCM_8_24_BIT:
case AUDIO_FORMAT_PCM_32_BIT:
case AUDIO_FORMAT_PCM_FLOAT:
return true;
default:
return false;
}
}
template <typename T>
inline T getPtrPtrValueAndIncrement(const void **data)
{
return *(*reinterpret_cast<const T **>(data))++;
}
template <audio_format_t FORMAT>
inline float convertToFloatAndIncrement(const void **data)
{
switch (FORMAT) {
case AUDIO_FORMAT_PCM_8_BIT:
return float_from_u8(getPtrPtrValueAndIncrement<uint8_t>(data));
case AUDIO_FORMAT_PCM_16_BIT:
return float_from_i16(getPtrPtrValueAndIncrement<int16_t>(data));
case AUDIO_FORMAT_PCM_24_BIT_PACKED: {
const uint8_t *uptr = reinterpret_cast<const uint8_t *>(*data);
*data = uptr + 3;
return float_from_p24(uptr);
}
case AUDIO_FORMAT_PCM_8_24_BIT:
return float_from_q8_23(getPtrPtrValueAndIncrement<int32_t>(data));
case AUDIO_FORMAT_PCM_32_BIT:
return float_from_i32(getPtrPtrValueAndIncrement<int32_t>(data));
case AUDIO_FORMAT_PCM_FLOAT:
return getPtrPtrValueAndIncrement<float>(data);
default:
// static_assert cannot use false because the compiler may interpret it
// even though this code path may never be taken.
static_assert(isFormatSupported(FORMAT), "unsupported format");
}
}
// used to normalize integer fixed point value to the floating point equivalent.
template <audio_format_t FORMAT>
constexpr inline float normalizeAmplitude()
{
switch (FORMAT) {
case AUDIO_FORMAT_PCM_8_BIT:
return 1.f / (1 << 7);
case AUDIO_FORMAT_PCM_16_BIT:
return 1.f / (1 << 15);
case AUDIO_FORMAT_PCM_24_BIT_PACKED: // fall through
case AUDIO_FORMAT_PCM_8_24_BIT:
return 1.f / (1 << 23);
case AUDIO_FORMAT_PCM_32_BIT:
return 1.f / (1U << 31);
case AUDIO_FORMAT_PCM_FLOAT:
return 1.f;
default:
// static_assert cannot use false because the compiler may interpret it
// even though this code path may never be taken.
static_assert(isFormatSupported(FORMAT), "unsupported format");
}
}
template <audio_format_t FORMAT>
constexpr inline float normalizeEnergy()
{
const float val = normalizeAmplitude<FORMAT>();
return val * val;
}
template <audio_format_t FORMAT>
inline float energyMonoRef(const void *amplitudes, size_t size)
{
float accum(0.f);
for (size_t i = 0; i < size; ++i) {
const float amplitude = convertToFloatAndIncrement<FORMAT>(&amplitudes);
accum += amplitude * amplitude;
}
return accum;
}
template <audio_format_t FORMAT>
inline void energyRef(const void *amplitudes, size_t size, size_t numChannels, float* out)
{
const size_t framesSize = size / numChannels;
for (size_t i = 0; i < framesSize; ++i) {
for (size_t c = 0; c < numChannels; ++c) {
const float amplitude = convertToFloatAndIncrement<FORMAT>(&amplitudes);
out[c] += amplitude * amplitude;
}
}
}
template <audio_format_t FORMAT>
inline float energyMono(const void *amplitudes, size_t size)
{
return energyMonoRef<FORMAT>(amplitudes, size);
}
// TODO: optimize with NEON
template <audio_format_t FORMAT>
inline void energy(const void *amplitudes, size_t size, size_t numChannels, float* out)
{
energyRef<FORMAT>(amplitudes, size, numChannels, out);
}
// TODO(b/323611666) in some cases having a large kVectorWidth generic internal array is
// faster than the NEON intrinsic version. Optimize this.
#ifdef USE_NEON
// The type conversion appears faster if we use a neon accumulator type.
// Using a vector length of 4 triggers the code below to use the neon type float32x4_t.
constexpr size_t kVectorWidth16 = 4; // neon float32x4_t
constexpr size_t kVectorWidth32 = 4; // neon float32x4_t
constexpr size_t kVectorWidthFloat = 8; // use generic intrinsics for float.
#else
constexpr size_t kVectorWidth16 = 8;
constexpr size_t kVectorWidth32 = 8;
constexpr size_t kVectorWidthFloat = 8;
#endif
template <typename Scalar, size_t N>
inline float energyMonoVector(const void *amplitudes, size_t size)
{ // check pointer validity, must be aligned with scalar type.
const Scalar *samplitudes = reinterpret_cast<const Scalar *>(amplitudes);
LOG_ALWAYS_FATAL_IF((uintptr_t)samplitudes % alignof(Scalar) != 0,
"Non-element aligned address: %p %zu", samplitudes, alignof(Scalar));
float accumulator = 0;
#ifdef USE_NEON
using AccumulatorType = std::conditional_t<N == 4, float32x4_t,
android::audio_utils::intrinsics::internal_array_t<float, N>>;
#else
using AccumulatorType = android::audio_utils::intrinsics::internal_array_t<float, N>;
#endif
// seems that loading input data is fine using our generic intrinsic.
using Vector = android::audio_utils::intrinsics::internal_array_t<Scalar, N>;
// handle pointer unaligned to vector type.
while ((uintptr_t)samplitudes % sizeof(Vector) != 0 /* compiler optimized */ && size > 0) {
const float amp = (float)*samplitudes++;
accumulator += amp * amp;
--size;
}
// samplitudes is now adjusted for proper vector alignment, cast to Vector *
const Vector *vamplitudes = reinterpret_cast<const Vector *>(samplitudes);
// clear vector accumulator
AccumulatorType accum{};
// iterate over array getting sum of squares in vectorLength lanes.
size_t i;
const size_t limit = size - size % N;
for (i = 0; i < limit; i += N) {
const auto famplitude = vconvert<AccumulatorType>(*vamplitudes++);
accum = android::audio_utils::intrinsics::vmla(accum, famplitude, famplitude);
}
// add all components of the vector.
accumulator += android::audio_utils::intrinsics::vaddv(accum);
// accumulate any trailing elements too small for vector size
for (; i < size; ++i) {
const float amp = (float)samplitudes[i];
accumulator += amp * amp;
}
return accumulator;
}
template <>
inline float energyMono<AUDIO_FORMAT_PCM_FLOAT>(const void *amplitudes, size_t size)
{
return energyMonoVector<float, kVectorWidthFloat>(amplitudes, size);
}
template <>
inline float energyMono<AUDIO_FORMAT_PCM_16_BIT>(const void *amplitudes, size_t size)
{
return energyMonoVector<int16_t, kVectorWidth16>(amplitudes, size)
* normalizeEnergy<AUDIO_FORMAT_PCM_16_BIT>();
}
// fast int32_t power computation for PCM_32
template <>
inline float energyMono<AUDIO_FORMAT_PCM_32_BIT>(const void *amplitudes, size_t size)
{
return energyMonoVector<int32_t, kVectorWidth32>(amplitudes, size)
* normalizeEnergy<AUDIO_FORMAT_PCM_32_BIT>();
}
// fast int32_t power computation for PCM_8_24 (essentially identical to PCM_32 above)
template <>
inline float energyMono<AUDIO_FORMAT_PCM_8_24_BIT>(const void *amplitudes, size_t size)
{
return energyMonoVector<int32_t, kVectorWidth32>(amplitudes, size)
* normalizeEnergy<AUDIO_FORMAT_PCM_8_24_BIT>();
}
} // namespace
float audio_utils_compute_energy_mono(const void *buffer, audio_format_t format, size_t samples)
{
switch (format) {
case AUDIO_FORMAT_PCM_8_BIT:
return energyMono<AUDIO_FORMAT_PCM_8_BIT>(buffer, samples);
case AUDIO_FORMAT_PCM_16_BIT:
return energyMono<AUDIO_FORMAT_PCM_16_BIT>(buffer, samples);
case AUDIO_FORMAT_PCM_24_BIT_PACKED:
return energyMono<AUDIO_FORMAT_PCM_24_BIT_PACKED>(buffer, samples);
case AUDIO_FORMAT_PCM_8_24_BIT:
return energyMono<AUDIO_FORMAT_PCM_8_24_BIT>(buffer, samples);
case AUDIO_FORMAT_PCM_32_BIT:
return energyMono<AUDIO_FORMAT_PCM_32_BIT>(buffer, samples);
case AUDIO_FORMAT_PCM_FLOAT:
return energyMono<AUDIO_FORMAT_PCM_FLOAT>(buffer, samples);
default:
LOG_ALWAYS_FATAL("invalid format: %#x", format);
}
}
void audio_utils_accumulate_energy(const void* buffer,
audio_format_t format,
size_t samples,
size_t numChannels,
float* out)
{
switch (format) {
case AUDIO_FORMAT_PCM_8_BIT:
energy<AUDIO_FORMAT_PCM_8_BIT>(buffer, samples, numChannels, out);
break;
case AUDIO_FORMAT_PCM_16_BIT:
energy<AUDIO_FORMAT_PCM_16_BIT>(buffer, samples, numChannels, out);
break;
case AUDIO_FORMAT_PCM_24_BIT_PACKED:
energy<AUDIO_FORMAT_PCM_24_BIT_PACKED>(buffer, samples, numChannels, out);
break;
case AUDIO_FORMAT_PCM_8_24_BIT:
energy<AUDIO_FORMAT_PCM_8_24_BIT>(buffer, samples, numChannels, out);
break;
case AUDIO_FORMAT_PCM_32_BIT:
energy<AUDIO_FORMAT_PCM_32_BIT>(buffer, samples, numChannels, out);
break;
case AUDIO_FORMAT_PCM_FLOAT:
energy<AUDIO_FORMAT_PCM_FLOAT>(buffer, samples, numChannels, out);
break;
default:
LOG_ALWAYS_FATAL("invalid format: %#x", format);
}
}
float audio_utils_compute_power_mono(const void *buffer, audio_format_t format, size_t samples)
{
return audio_utils_power_from_energy(
audio_utils_compute_energy_mono(buffer, format, samples) / samples);
}
bool audio_utils_is_compute_power_format_supported(audio_format_t format)
{
return isFormatSupported(format);
}