blob: 9a35ca732e7455900a9a1deae00945d4db875c82 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <unistd.h>
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <unordered_map>
#include <aidl/metadata.h>
#include <android-base/file.h>
#include <android-base/parseint.h>
#include <android-base/strings.h>
#include <libvts_vintf_test_common/common.h>
#include <vintf/AssembleVintf.h>
#include <vintf/KernelConfigParser.h>
#include <vintf/parse_string.h>
#include <vintf/parse_xml.h>
#include "constants-private.h"
#include "utils.h"
#define BUFFER_SIZE sysconf(_SC_PAGESIZE)
namespace android {
namespace vintf {
static const std::string gConfigPrefix = "android-base-";
static const std::string gConfigSuffix = ".config";
static const std::string gBaseConfig = "android-base.config";
// An input stream with a name.
// The input stream may be an actual file, or a stringstream for testing.
// It takes ownership on the istream.
class NamedIstream {
public:
NamedIstream() = default;
NamedIstream(const std::string& name, std::unique_ptr<std::istream>&& stream)
: mName(name), mStream(std::move(stream)) {}
const std::string& name() const { return mName; }
std::istream& stream() { return *mStream; }
bool hasStream() { return mStream != nullptr; }
private:
std::string mName;
std::unique_ptr<std::istream> mStream;
};
/**
* Slurps the device manifest file and add build time flag to it.
*/
class AssembleVintfImpl : public AssembleVintf {
using Condition = std::unique_ptr<KernelConfig>;
using ConditionedConfig = std::pair<Condition, std::vector<KernelConfig> /* configs */>;
public:
void setFakeAidlMetadata(const std::vector<AidlInterfaceMetadata>& metadata) override {
mFakeAidlMetadata = metadata;
}
std::vector<AidlInterfaceMetadata> getAidlMetadata() const {
if (!mFakeAidlMetadata.empty()) {
return mFakeAidlMetadata;
} else {
return AidlInterfaceMetadata::all();
}
}
void setFakeAidlUseUnfrozen(const std::optional<bool>& use) override {
mFakeAidlUseUnfrozen = use;
}
bool getAidlUseUnfrozen() const {
if (mFakeAidlUseUnfrozen.has_value()) {
return *mFakeAidlUseUnfrozen;
} else {
#ifdef AIDL_USE_UNFROZEN
return true;
#else
return false;
#endif
}
}
void setFakeEnv(const std::string& key, const std::string& value) { mFakeEnv[key] = value; }
std::string getEnv(const std::string& key) const {
auto it = mFakeEnv.find(key);
if (it != mFakeEnv.end()) {
return it->second;
}
const char* envValue = getenv(key.c_str());
return envValue != nullptr ? std::string(envValue) : std::string();
}
// Get environment variable and split with space.
std::vector<std::string> getEnvList(const std::string& key) const {
std::vector<std::string> ret;
for (auto&& v : base::Split(getEnv(key), " ")) {
v = base::Trim(v);
if (!v.empty()) {
ret.push_back(v);
}
}
return ret;
}
template <typename T>
bool getFlag(const std::string& key, T* value, bool log = true) const {
std::string envValue = getEnv(key);
if (envValue.empty()) {
if (log) {
err() << "Warning: " << key << " is missing, defaulted to " << (*value) << "."
<< std::endl;
}
return true;
}
if (!parse(envValue, value)) {
err() << "Cannot parse " << envValue << "." << std::endl;
return false;
}
return true;
}
/**
* Set *out to environment variable only if *out is default constructed.
* Return false if a fatal error has occurred:
* - The environment variable has an unknown format
* - The value of the environment variable does not match a predefined variable in the files
*/
template <typename T>
bool getFlagIfUnset(const std::string& envKey, T* out) const {
bool hasExistingValue = !(*out == T{});
bool hasEnvValue = false;
T envValue;
std::string envStrValue = getEnv(envKey);
if (!envStrValue.empty()) {
if (!parse(envStrValue, &envValue)) {
err() << "Cannot parse " << envValue << "." << std::endl;
return false;
}
hasEnvValue = true;
}
if (hasExistingValue) {
if (hasEnvValue && (*out != envValue)) {
err() << "Cannot override existing value " << *out << " with " << envKey
<< " (which is " << envValue << ")." << std::endl;
return false;
}
return true;
}
if (hasEnvValue) {
*out = envValue;
}
return true;
}
bool getBooleanFlag(const std::string& key) const { return getEnv(key) == std::string("true"); }
size_t getIntegerFlag(const std::string& key, size_t defaultValue = 0) const {
std::string envValue = getEnv(key);
if (envValue.empty()) {
return defaultValue;
}
size_t value;
if (!base::ParseUint(envValue, &value)) {
err() << "Error: " << key << " must be a number." << std::endl;
return defaultValue;
}
return value;
}
static std::string read(std::basic_istream<char>& is) {
std::stringstream ss;
ss << is.rdbuf();
return ss.str();
}
// Return true if name of file is "android-base.config". This file must be specified
// exactly once for each kernel version. These requirements do not have any conditions.
static bool isCommonConfig(const std::string& path) {
return ::android::base::Basename(path) == gBaseConfig;
}
// Return true if name of file matches "android-base-foo.config".
// Zero or more conditional configs may be specified for each kernel version. These
// requirements are conditional on CONFIG_FOO=y.
static bool isConditionalConfig(const std::string& path) {
auto fname = ::android::base::Basename(path);
return ::android::base::StartsWith(fname, gConfigPrefix) &&
::android::base::EndsWith(fname, gConfigSuffix);
}
// Return true for all other file names (i.e. not android-base.config, and not conditional
// configs.)
// Zero or more conditional configs may be specified for each kernel version.
// These requirements do not have any conditions.
static bool isExtraCommonConfig(const std::string& path) {
return !isCommonConfig(path) && !isConditionalConfig(path);
}
// nullptr on any error, otherwise the condition.
Condition generateCondition(const std::string& path) {
if (!isConditionalConfig(path)) {
return nullptr;
}
auto fname = ::android::base::Basename(path);
std::string sub = fname.substr(gConfigPrefix.size(),
fname.size() - gConfigPrefix.size() - gConfigSuffix.size());
if (sub.empty()) {
return nullptr; // should not happen
}
for (size_t i = 0; i < sub.size(); ++i) {
if (sub[i] == '-') {
sub[i] = '_';
continue;
}
if (isalnum(sub[i])) {
sub[i] = toupper(sub[i]);
continue;
}
err() << "'" << fname << "' (in " << path
<< ") is not a valid kernel config file name. Must match regex: "
<< "android-base(-[0-9a-zA-Z-]+)?\\" << gConfigSuffix << std::endl;
return nullptr;
}
sub.insert(0, "CONFIG_");
return std::make_unique<KernelConfig>(std::move(sub), Tristate::YES);
}
bool parseFileForKernelConfigs(std::basic_istream<char>& stream,
std::vector<KernelConfig>* out) {
KernelConfigParser parser(true /* processComments */, true /* relaxedFormat */);
status_t status = parser.processAndFinish(read(stream));
if (status != OK) {
err() << parser.error();
return false;
}
for (auto& configPair : parser.configs()) {
out->push_back({});
KernelConfig& config = out->back();
config.first = std::move(configPair.first);
if (!parseKernelConfigTypedValue(configPair.second, &config.second)) {
err() << "Unknown value type for key = '" << config.first << "', value = '"
<< configPair.second << "'\n";
return false;
}
}
return true;
}
bool parseFilesForKernelConfigs(std::vector<NamedIstream>* streams,
std::vector<ConditionedConfig>* out) {
out->clear();
ConditionedConfig commonConfig;
bool foundCommonConfig = false;
bool ret = true;
for (auto& namedStream : *streams) {
if (isCommonConfig(namedStream.name()) || isExtraCommonConfig(namedStream.name())) {
if (!parseFileForKernelConfigs(namedStream.stream(), &commonConfig.second)) {
err() << "Failed to generate common configs for file " << namedStream.name();
ret = false;
}
if (isCommonConfig(namedStream.name())) {
foundCommonConfig = true;
}
} else {
Condition condition = generateCondition(namedStream.name());
if (condition == nullptr) {
err() << "Failed to generate conditional configs for file "
<< namedStream.name();
ret = false;
}
std::vector<KernelConfig> kernelConfigs;
if ((ret &= parseFileForKernelConfigs(namedStream.stream(), &kernelConfigs)))
out->emplace_back(std::move(condition), std::move(kernelConfigs));
}
}
if (!foundCommonConfig) {
err() << "No " << gBaseConfig << " is found in these paths:" << std::endl;
for (auto& namedStream : *streams) {
err() << " " << namedStream.name() << std::endl;
}
ret = false;
}
// first element is always common configs (no conditions).
out->insert(out->begin(), std::move(commonConfig));
return ret;
}
std::basic_ostream<char>& out() const { return mOutRef == nullptr ? std::cout : *mOutRef; }
std::basic_ostream<char>& err() const override {
return mErrRef == nullptr ? std::cerr : *mErrRef;
}
// If -c is provided, check it.
bool checkDualFile(const HalManifest& manifest, const CompatibilityMatrix& matrix) {
if (getBooleanFlag("PRODUCT_ENFORCE_VINTF_MANIFEST")) {
std::string error;
if (!manifest.checkCompatibility(matrix, &error, mCheckFlags)) {
err() << "Not compatible: " << error << std::endl;
return false;
}
}
return true;
}
using HalManifests = std::vector<HalManifest>;
using CompatibilityMatrices = std::vector<CompatibilityMatrix>;
template <typename M>
void outputInputs(const std::vector<M>& inputs) {
out() << "<!--" << std::endl;
out() << " Input:" << std::endl;
for (const auto& e : inputs) {
if (!e.fileName().empty()) {
out() << " " << e.fileName() << std::endl;
}
}
out() << "-->" << std::endl;
}
// Parse --kernel arguments and write to output manifest.
bool setDeviceManifestKernel(HalManifest* manifest) {
if (mKernels.empty()) {
return true;
}
if (mKernels.size() > 1) {
err() << "Warning: multiple --kernel is specified when building device manifest. "
<< "Only the first one will be used." << std::endl;
}
auto& kernelArg = *mKernels.begin();
const auto& kernelVer = kernelArg.first;
auto& kernelConfigFiles = kernelArg.second;
// addKernel() guarantees that !kernelConfigFiles.empty().
if (kernelConfigFiles.size() > 1) {
err() << "Warning: multiple config files are specified in --kernel when building "
<< "device manfiest. Only the first one will be used." << std::endl;
}
KernelConfigParser parser(true /* processComments */, false /* relaxedFormat */);
status_t status = parser.processAndFinish(read(kernelConfigFiles[0].stream()));
if (status != OK) {
err() << parser.error();
return false;
}
// Set version and configs in manifest.
auto kernel_info = std::make_optional<KernelInfo>();
kernel_info->mVersion = kernelVer;
kernel_info->mConfigs = parser.configs();
std::string error;
if (!manifest->mergeKernel(&kernel_info, &error)) {
err() << error << "\n";
return false;
}
return true;
}
// Check to see if each HAL manifest entry only contains interfaces from the
// same aidl_interface module by finding the AidlInterfaceMetadata object
// associated with the interfaces in the manifest entry.
bool verifyAidlMetadataPerManifestEntry(const HalManifest& halManifest) {
const std::vector<AidlInterfaceMetadata> aidlMetadata = getAidlMetadata();
for (const auto& hal : halManifest.getHals()) {
if (hal.format != HalFormat::AIDL) continue;
for (const auto& metadata : aidlMetadata) {
std::map<std::string, bool> isInterfaceInMetadata;
// get the types of each instance
hal.forEachInstance([&](const ManifestInstance& instance) -> bool {
std::string interfaceName = instance.package() + "." + instance.interface();
// check if that instance is covered by this metadata object
if (std::find(metadata.types.begin(), metadata.types.end(), interfaceName) !=
metadata.types.end()) {
isInterfaceInMetadata[interfaceName] = true;
} else {
isInterfaceInMetadata[interfaceName] = false;
}
// Keep going through the rest of the instances
return true;
});
bool found = false;
if (!isInterfaceInMetadata.empty()) {
// Check that all of these entries were found or not
// found in this metadata entry.
found = isInterfaceInMetadata.begin()->second;
if (!std::all_of(
isInterfaceInMetadata.begin(), isInterfaceInMetadata.end(),
[&](const auto& entry) -> bool { return found == entry.second; })) {
err() << "HAL manifest entries must only contain interfaces from the same "
"aidl_interface"
<< std::endl;
for (auto& [interface, isIn] : isInterfaceInMetadata) {
if (isIn) {
err() << " " << interface << " is in " << metadata.name
<< std::endl;
} else {
err() << " "
<< interface << " is from another AIDL interface module "
<< std::endl;
}
}
return false;
}
}
// If we found the AidlInterfaceMetadata associated with this
// HAL, then there is no need to keep looking.
if (found) break;
}
}
return true;
}
// get the first interface name including the package.
// Example: android.foo.IFoo
static std::string getFirstInterfaceName(const ManifestHal& manifestHal) {
std::string interfaceName;
manifestHal.forEachInstance([&](const ManifestInstance& instance) -> bool {
interfaceName = instance.package() + "." + instance.interface();
return false;
});
return interfaceName;
}
// Check if this HAL is covered by this metadata entry. The name field in
// AidlInterfaceMetadata is the module name, which isn't the same as the
// package that would be found in the manifest, so we check all of the types
// in the metadata.
// Implementation detail: Returns true if the interface of the first
// <fqname> is in `aidlMetadata.types`
static bool isInMetadata(const ManifestHal& manifestHal,
const AidlInterfaceMetadata& aidlMetadata) {
// Get the first interface type. The instance isn't
// needed to find a matching AidlInterfaceMetadata
std::string interfaceName = getFirstInterfaceName(manifestHal);
return std::find(aidlMetadata.types.begin(), aidlMetadata.types.end(), interfaceName) !=
aidlMetadata.types.end();
}
// Set the manifest version for AIDL interfaces to 'version - 1' if the HAL is
// implementing the latest unfrozen version and the release configuration
// prevents the use of the unfrozen version.
// If the AIDL interface has no previous frozen version, then the HAL
// manifest entry is removed entirely.
bool setManifestAidlHalVersion(HalManifest* manifest) {
if (getAidlUseUnfrozen()) {
// If we are using unfrozen interfaces, then we have no work to do.
return true;
}
const std::vector<AidlInterfaceMetadata> aidlMetadata = getAidlMetadata();
std::vector<std::string> halsToRemove;
for (ManifestHal& hal : manifest->getHals()) {
if (hal.format != HalFormat::AIDL) continue;
if (hal.versions.size() != 1) {
err() << "HAL manifest entries must only contain one version of an AIDL HAL but "
"found "
<< hal.versions.size() << " for " << hal.getName() << std::endl;
return false;
}
size_t halVersion = hal.versions.front().minorVer;
bool foundMetadata = false;
for (const AidlInterfaceMetadata& metadata : aidlMetadata) {
if (!isInMetadata(hal, metadata)) continue;
foundMetadata = true;
if (!metadata.has_development) continue;
if (metadata.use_unfrozen) {
err() << "INFO: " << hal.getName()
<< " is explicitly marked to use unfrozen version, so it will not be "
"downgraded. If this interface is used, it will fail "
"vts_treble_vintf_vendor_test.";
continue;
}
auto it = std::max_element(metadata.versions.begin(), metadata.versions.end());
if (it == metadata.versions.end()) {
// v1 manifest entries that are declaring unfrozen versions must be removed
// from the manifest when the release configuration prevents the use of
// unfrozen versions. this ensures service manager will deny registration.
halsToRemove.push_back(hal.getName());
} else {
size_t latestVersion = *it;
if (latestVersion < halVersion) {
if (halVersion - latestVersion != 1) {
err()
<< "The declared version of " << hal.getName() << " (" << halVersion
<< ") can't be more than one greater than its last frozen version ("
<< latestVersion << ")." << std::endl;
return false;
}
err() << "INFO: Downgrading HAL " << hal.getName()
<< " in the manifest from V" << halVersion << " to V"
<< halVersion - 1
<< " because it is unfrozen and unfrozen interfaces "
<< "are not allowed in this release configuration." << std::endl;
hal.versions[0] = hal.versions[0].withMinor(halVersion - 1);
}
}
}
if (!foundMetadata) {
// This can happen for prebuilt interfaces from partners that we
// don't know about. We can ignore them here since the AIDL tool
// is not going to build the libraries differently anyways.
err() << "INFO: Couldn't find AIDL metadata for: " << getFirstInterfaceName(hal)
<< " in file " << hal.fileName() << ". Check spelling? This is expected"
<< " for prebuilt interfaces." << std::endl;
}
}
for (const auto& name : halsToRemove) {
// These services should not be installed on the device, but there
// are cases where the service is also service other HAL interfaces
// and will remain on the device.
err() << "INFO: Removing HAL from the manifest because it is declaring V1 of a new "
"unfrozen interface which is not allowed in this release configuration: "
<< name << std::endl;
manifest->removeHals(name, details::kDefaultAidlVersion.majorVer);
}
return true;
}
bool checkDeviceManifestNoKernelLevel(const HalManifest& manifest) {
if (manifest.level() != Level::UNSPECIFIED &&
manifest.level() >= details::kEnforceDeviceManifestNoKernelLevel &&
// Use manifest.kernel()->level() directly because inferredKernelLevel()
// reads manifest.level().
manifest.kernel().has_value() && manifest.kernel()->level() != Level::UNSPECIFIED) {
err() << "Error: Device manifest with level " << manifest.level()
<< " must not set kernel level " << manifest.kernel()->level() << std::endl;
return false;
}
return true;
}
bool assembleHalManifest(HalManifests* halManifests) {
std::string error;
HalManifest* halManifest = &halManifests->front();
HalManifest* manifestWithLevel = nullptr;
if (halManifest->level() != Level::UNSPECIFIED) {
manifestWithLevel = halManifest;
}
for (auto it = halManifests->begin() + 1; it != halManifests->end(); ++it) {
const std::string& path = it->fileName();
HalManifest& manifestToAdd = *it;
if (manifestToAdd.level() != Level::UNSPECIFIED) {
if (halManifest->level() == Level::UNSPECIFIED) {
halManifest->mLevel = manifestToAdd.level();
manifestWithLevel = &manifestToAdd;
} else if (halManifest->level() != manifestToAdd.level()) {
err() << "Inconsistent FCM Version in HAL manifests:" << std::endl
<< " File '"
<< (manifestWithLevel ? manifestWithLevel->fileName() : "<unknown>")
<< "' has level " << halManifest->level() << std::endl
<< " File '" << path << "' has level " << manifestToAdd.level()
<< std::endl;
return false;
}
}
if (!halManifest->addAll(&manifestToAdd, &error)) {
err() << "File \"" << path << "\" cannot be added: " << error << std::endl;
return false;
}
}
if (halManifest->mType == SchemaType::DEVICE) {
if (!getFlagIfUnset("BOARD_SEPOLICY_VERS", &halManifest->device.mSepolicyVersion)) {
return false;
}
if (!getBooleanFlag("VINTF_IGNORE_TARGET_FCM_VERSION") &&
!getBooleanFlag("PRODUCT_ENFORCE_VINTF_MANIFEST")) {
halManifest->mLevel = Level::LEGACY;
}
if (!setDeviceManifestKernel(halManifest)) {
return false;
}
if (!checkDeviceManifestNoKernelLevel(*halManifest)) {
return false;
}
}
if (halManifest->mType == SchemaType::FRAMEWORK) {
for (auto&& v : getEnvList("PROVIDED_VNDK_VERSIONS")) {
halManifest->framework.mVendorNdks.emplace_back(std::move(v));
}
for (auto&& v : getEnvList("PLATFORM_SYSTEMSDK_VERSIONS")) {
halManifest->framework.mSystemSdk.mVersions.emplace(std::move(v));
}
}
if (!verifyAidlMetadataPerManifestEntry(*halManifest)) {
return false;
}
if (!setManifestAidlHalVersion(halManifest)) {
return false;
}
outputInputs(*halManifests);
if (mOutputMatrix) {
CompatibilityMatrix generatedMatrix = halManifest->generateCompatibleMatrix();
if (!halManifest->checkCompatibility(generatedMatrix, &error, mCheckFlags)) {
err() << "FATAL ERROR: cannot generate a compatible matrix: " << error << std::endl;
}
out() << "<!-- \n"
" Autogenerated skeleton compatibility matrix. \n"
" Use with caution. Modify it to suit your needs.\n"
" All HALs are set to optional.\n"
" Many entries other than HALs are zero-filled and\n"
" require human attention. \n"
"-->\n"
<< toXml(generatedMatrix, mSerializeFlags);
} else {
out() << toXml(*halManifest, mSerializeFlags);
}
out().flush();
if (mCheckFile.hasStream()) {
CompatibilityMatrix checkMatrix;
checkMatrix.setFileName(mCheckFile.name());
if (!fromXml(&checkMatrix, read(mCheckFile.stream()), &error)) {
err() << "Cannot parse check file as a compatibility matrix: " << error
<< std::endl;
return false;
}
if (!checkDualFile(*halManifest, checkMatrix)) {
return false;
}
}
return true;
}
// Parse --kernel arguments and write to output matrix.
bool assembleFrameworkCompatibilityMatrixKernels(CompatibilityMatrix* matrix) {
for (auto& pair : mKernels) {
std::vector<ConditionedConfig> conditionedConfigs;
if (!parseFilesForKernelConfigs(&pair.second, &conditionedConfigs)) {
return false;
}
for (ConditionedConfig& conditionedConfig : conditionedConfigs) {
MatrixKernel kernel(KernelVersion{pair.first}, std::move(conditionedConfig.second));
if (conditionedConfig.first != nullptr)
kernel.mConditions.push_back(std::move(*conditionedConfig.first));
std::string error;
if (!matrix->addKernel(std::move(kernel), &error)) {
err() << "Error:" << error << std::endl;
return false;
};
}
}
return true;
}
Level getLowestFcmVersion(const CompatibilityMatrices& matrices) {
Level ret = Level::UNSPECIFIED;
for (const auto& e : matrices) {
if (ret == Level::UNSPECIFIED || ret > e.level()) {
ret = e.level();
}
}
return ret;
}
bool assembleCompatibilityMatrix(CompatibilityMatrices* matrices) {
std::string error;
CompatibilityMatrix* matrix = nullptr;
std::unique_ptr<HalManifest> checkManifest;
std::unique_ptr<CompatibilityMatrix> builtMatrix;
if (mCheckFile.hasStream()) {
checkManifest = std::make_unique<HalManifest>();
checkManifest->setFileName(mCheckFile.name());
if (!fromXml(checkManifest.get(), read(mCheckFile.stream()), &error)) {
err() << "Cannot parse check file as a HAL manifest: " << error << std::endl;
return false;
}
}
if (matrices->front().mType == SchemaType::DEVICE) {
builtMatrix = CompatibilityMatrix::combineDeviceMatrices(matrices, &error);
matrix = builtMatrix.get();
if (matrix == nullptr) {
err() << error << std::endl;
return false;
}
auto vndkVersion = base::Trim(getEnv("REQUIRED_VNDK_VERSION"));
if (!vndkVersion.empty()) {
auto& valueInMatrix = matrix->device.mVendorNdk;
if (!valueInMatrix.version().empty() && valueInMatrix.version() != vndkVersion) {
err() << "Hard-coded <vendor-ndk> version in device compatibility matrix ("
<< matrices->front().fileName() << "), '" << valueInMatrix.version()
<< "', does not match value inferred "
<< "from BOARD_VNDK_VERSION '" << vndkVersion << "'" << std::endl;
return false;
}
valueInMatrix = VendorNdk{std::move(vndkVersion)};
}
for (auto&& v : getEnvList("BOARD_SYSTEMSDK_VERSIONS")) {
matrix->device.mSystemSdk.mVersions.emplace(std::move(v));
}
}
if (matrices->front().mType == SchemaType::FRAMEWORK) {
Level deviceLevel =
checkManifest != nullptr ? checkManifest->level() : Level::UNSPECIFIED;
if (deviceLevel == Level::UNSPECIFIED) {
deviceLevel = getLowestFcmVersion(*matrices);
if (checkManifest != nullptr && deviceLevel != Level::UNSPECIFIED) {
err() << "Warning: No Target FCM Version for device. Assuming \""
<< to_string(deviceLevel)
<< "\" when building final framework compatibility matrix." << std::endl;
}
}
// No <kernel> tags to assemble at this point
const auto kernelLevel = Level::UNSPECIFIED;
builtMatrix = CompatibilityMatrix::combine(deviceLevel, kernelLevel, matrices, &error);
matrix = builtMatrix.get();
if (matrix == nullptr) {
err() << error << std::endl;
return false;
}
if (!assembleFrameworkCompatibilityMatrixKernels(matrix)) {
return false;
}
// Add PLATFORM_SEPOLICY_* to sepolicy.sepolicy-version. Remove dupes.
std::set<SepolicyVersion> sepolicyVersions;
auto sepolicyVersionStrings = getEnvList("PLATFORM_SEPOLICY_COMPAT_VERSIONS");
auto currentSepolicyVersionString = getEnv("PLATFORM_SEPOLICY_VERSION");
if (!currentSepolicyVersionString.empty()) {
sepolicyVersionStrings.push_back(currentSepolicyVersionString);
}
for (auto&& s : sepolicyVersionStrings) {
SepolicyVersion v;
if (!parse(s, &v)) {
err() << "Error: unknown sepolicy version '" << s << "' specified by "
<< (s == currentSepolicyVersionString
? "PLATFORM_SEPOLICY_VERSION"
: "PLATFORM_SEPOLICY_COMPAT_VERSIONS")
<< ".";
return false;
}
sepolicyVersions.insert(v);
}
for (auto&& v : sepolicyVersions) {
matrix->framework.mSepolicy.mSepolicyVersionRanges.emplace_back(v.majorVer,
v.minorVer);
}
if (!getFlagIfUnset("POLICYVERS",
&matrix->framework.mSepolicy.mKernelSepolicyVersion)) {
return false;
}
if (!getFlagIfUnset("FRAMEWORK_VBMETA_VERSION", &matrix->framework.mAvbMetaVersion)) {
return false;
}
// Hard-override existing AVB version
getFlag("FRAMEWORK_VBMETA_VERSION_OVERRIDE", &matrix->framework.mAvbMetaVersion,
false /* log */);
}
outputInputs(*matrices);
out() << toXml(*matrix, mSerializeFlags);
out().flush();
if (checkManifest != nullptr && !checkDualFile(*checkManifest, *matrix)) {
return false;
}
return true;
}
enum AssembleStatus { SUCCESS, FAIL_AND_EXIT, TRY_NEXT };
template <typename Schema, typename AssembleFunc>
AssembleStatus tryAssemble(const std::string& schemaName, AssembleFunc assemble,
std::string* error) {
std::vector<Schema> schemas;
Schema schema;
schema.setFileName(mInFiles.front().name());
if (!fromXml(&schema, read(mInFiles.front().stream()), error)) {
return TRY_NEXT;
}
auto firstType = schema.type();
schemas.emplace_back(std::move(schema));
for (auto it = mInFiles.begin() + 1; it != mInFiles.end(); ++it) {
Schema additionalSchema;
const std::string& fileName = it->name();
additionalSchema.setFileName(fileName);
if (!fromXml(&additionalSchema, read(it->stream()), error)) {
err() << "File \"" << fileName << "\" is not a valid " << firstType << " "
<< schemaName << " (but the first file is a valid " << firstType << " "
<< schemaName << "). Error: " << *error << std::endl;
return FAIL_AND_EXIT;
}
if (additionalSchema.type() != firstType) {
err() << "File \"" << fileName << "\" is a " << additionalSchema.type() << " "
<< schemaName << " (but a " << firstType << " " << schemaName
<< " is expected)." << std::endl;
return FAIL_AND_EXIT;
}
schemas.emplace_back(std::move(additionalSchema));
}
return assemble(&schemas) ? SUCCESS : FAIL_AND_EXIT;
}
bool assemble() override {
using std::placeholders::_1;
if (mInFiles.empty()) {
err() << "Missing input file." << std::endl;
return false;
}
std::string manifestError;
auto status = tryAssemble<HalManifest>(
"manifest", std::bind(&AssembleVintfImpl::assembleHalManifest, this, _1),
&manifestError);
if (status == SUCCESS) return true;
if (status == FAIL_AND_EXIT) return false;
resetInFiles();
std::string matrixError;
status = tryAssemble<CompatibilityMatrix>(
"compatibility matrix",
std::bind(&AssembleVintfImpl::assembleCompatibilityMatrix, this, _1), &matrixError);
if (status == SUCCESS) return true;
if (status == FAIL_AND_EXIT) return false;
err() << "Input file has unknown format." << std::endl
<< "Error when attempting to convert to manifest: " << manifestError << std::endl
<< "Error when attempting to convert to compatibility matrix: " << matrixError
<< std::endl;
return false;
}
std::ostream& setOutputStream(Ostream&& out) override {
mOutRef = std::move(out);
return *mOutRef;
}
std::ostream& setErrorStream(Ostream&& err) override {
mErrRef = std::move(err);
return *mErrRef;
}
std::istream& addInputStream(const std::string& name, Istream&& in) override {
auto it = mInFiles.emplace(mInFiles.end(), name, std::move(in));
return it->stream();
}
std::istream& setCheckInputStream(const std::string& name, Istream&& in) override {
mCheckFile = NamedIstream(name, std::move(in));
return mCheckFile.stream();
}
bool hasKernelVersion(const KernelVersion& kernelVer) const override {
return mKernels.find(kernelVer) != mKernels.end();
}
std::istream& addKernelConfigInputStream(const KernelVersion& kernelVer,
const std::string& name, Istream&& in) override {
auto&& kernel = mKernels[kernelVer];
auto it = kernel.emplace(kernel.end(), name, std::move(in));
return it->stream();
}
void resetInFiles() {
for (auto& inFile : mInFiles) {
inFile.stream().clear();
inFile.stream().seekg(0);
}
}
void setOutputMatrix() override { mOutputMatrix = true; }
bool setHalsOnly() override {
if (mHasSetHalsOnlyFlag) {
err() << "Error: Cannot set --hals-only with --no-hals." << std::endl;
return false;
}
// Just override it with HALS_ONLY because other flags that modify mSerializeFlags
// does not interfere with this (except --no-hals).
mSerializeFlags = SerializeFlags::HALS_ONLY;
mHasSetHalsOnlyFlag = true;
return true;
}
bool setNoHals() override {
if (mHasSetHalsOnlyFlag) {
err() << "Error: Cannot set --hals-only with --no-hals." << std::endl;
return false;
}
mSerializeFlags = mSerializeFlags.disableHals();
mHasSetHalsOnlyFlag = true;
return true;
}
bool setNoKernelRequirements() override {
mSerializeFlags = mSerializeFlags.disableKernelConfigs().disableKernelMinorRevision();
mCheckFlags = mCheckFlags.disableKernel();
return true;
}
private:
std::vector<NamedIstream> mInFiles;
Ostream mOutRef;
Ostream mErrRef;
NamedIstream mCheckFile;
bool mOutputMatrix = false;
bool mHasSetHalsOnlyFlag = false;
SerializeFlags::Type mSerializeFlags = SerializeFlags::EVERYTHING;
std::map<KernelVersion, std::vector<NamedIstream>> mKernels;
std::map<std::string, std::string> mFakeEnv;
std::vector<AidlInterfaceMetadata> mFakeAidlMetadata;
std::optional<bool> mFakeAidlUseUnfrozen;
CheckFlags::Type mCheckFlags = CheckFlags::DEFAULT;
};
bool AssembleVintf::openOutFile(const std::string& path) {
return static_cast<std::ofstream&>(setOutputStream(std::make_unique<std::ofstream>(path)))
.is_open();
}
bool AssembleVintf::openInFile(const std::string& path) {
return static_cast<std::ifstream&>(addInputStream(path, std::make_unique<std::ifstream>(path)))
.is_open();
}
bool AssembleVintf::openCheckFile(const std::string& path) {
return static_cast<std::ifstream&>(
setCheckInputStream(path, std::make_unique<std::ifstream>(path)))
.is_open();
}
bool AssembleVintf::addKernel(const std::string& kernelArg) {
auto tokens = base::Split(kernelArg, ":");
if (tokens.size() <= 1) {
err() << "Unrecognized --kernel option '" << kernelArg << "'" << std::endl;
return false;
}
KernelVersion kernelVer;
if (!parse(tokens.front(), &kernelVer)) {
err() << "Unrecognized kernel version '" << tokens.front() << "'" << std::endl;
return false;
}
if (hasKernelVersion(kernelVer)) {
err() << "Multiple --kernel for " << kernelVer << " is specified." << std::endl;
return false;
}
for (auto it = tokens.begin() + 1; it != tokens.end(); ++it) {
bool opened =
static_cast<std::ifstream&>(
addKernelConfigInputStream(kernelVer, *it, std::make_unique<std::ifstream>(*it)))
.is_open();
if (!opened) {
err() << "Cannot open file '" << *it << "'." << std::endl;
return false;
}
}
return true;
}
std::unique_ptr<AssembleVintf> AssembleVintf::newInstance() {
return std::make_unique<AssembleVintfImpl>();
}
} // namespace vintf
} // namespace android