blob: 7c99eb36fd0e3ac0c2c049046c84fdf8fd85a2f9 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <android/hardware/tests/libhwbinder/1.0/IScheduleTest.h>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <string>
#include <tuple>
#include <vector>
#include <pthread.h>
#include <sys/wait.h>
#include <unistd.h>
using namespace std;
using namespace android;
using namespace android::hardware;
using android::hardware::tests::libhwbinder::V1_0::IScheduleTest;
#define ASSERT(cond) \
do { \
if (!(cond)) { \
cerr << __func__ << ":" << __LINE__ << " condition:" << #cond \
<< " failed\n" \
<< endl; \
exit(EXIT_FAILURE); \
} \
} while (0)
vector<sp<IScheduleTest> > services;
// the ratio that the service is synced on the same cpu beyond
// GOOD_SYNC_MIN is considered as good
#define GOOD_SYNC_MIN (0.6)
#define DUMP_PRICISION 2
string trace_path = "/sys/kernel/debug/tracing";
// the default value
int no_pair = 1;
int iterations = 100;
int no_inherent = 0;
int no_sync = 0;
int verbose = 0;
int trace;
bool pass_through = false;
static bool traceIsOn() {
fstream file;
file.open(trace_path + "/tracing_on", ios::in);
char on;
file >> on;
file.close();
return on == '1';
}
static void traceStop() {
ofstream file;
file.open(trace_path + "/tracing_on", ios::out | ios::trunc);
file << '0' << endl;
file.close();
}
// the deadline latency that we are interested in
uint64_t deadline_us = 2500;
static int threadPri() {
struct sched_param param;
int policy;
ASSERT(!pthread_getschedparam(pthread_self(), &policy, &param));
return param.sched_priority;
}
static void threadDump(const char* prefix) {
struct sched_param param;
int policy;
if (!verbose) return;
cout << "--------------------------------------------------" << endl;
cout << setw(12) << left << prefix << " pid: " << getpid()
<< " tid: " << gettid() << " cpu: " << sched_getcpu() << endl;
ASSERT(!pthread_getschedparam(pthread_self(), &policy, &param));
string s = (policy == SCHED_OTHER)
? "SCHED_OTHER"
: (policy == SCHED_FIFO)
? "SCHED_FIFO"
: (policy == SCHED_RR) ? "SCHED_RR" : "???";
cout << setw(12) << left << s << param.sched_priority << endl;
return;
}
// This IPC class is widely used in binder/hwbinder tests.
// The common usage is the main process to create the Pipe and forks.
// Both parent and child hold a object and each wait() on parent
// needs a signal() on the child to wake up and vice versa.
class Pipe {
int m_readFd;
int m_writeFd;
Pipe(int readFd, int writeFd) : m_readFd{readFd}, m_writeFd{writeFd} {}
Pipe(const Pipe&) = delete;
Pipe& operator=(const Pipe&) = delete;
Pipe& operator=(const Pipe&&) = delete;
public:
Pipe(Pipe&& rval) noexcept {
m_readFd = rval.m_readFd;
m_writeFd = rval.m_writeFd;
rval.m_readFd = 0;
rval.m_writeFd = 0;
}
~Pipe() {
if (m_readFd) close(m_readFd);
if (m_writeFd) close(m_writeFd);
}
void signal() {
bool val = true;
int error = write(m_writeFd, &val, sizeof(val));
ASSERT(error >= 0);
};
void wait() {
bool val = false;
int error = read(m_readFd, &val, sizeof(val));
ASSERT(error >= 0);
}
template <typename T>
void send(const T& v) {
int error = write(m_writeFd, &v, sizeof(T));
ASSERT(error >= 0);
}
template <typename T>
void recv(T& v) {
int error = read(m_readFd, &v, sizeof(T));
ASSERT(error >= 0);
}
static tuple<Pipe, Pipe> createPipePair() {
int a[2];
int b[2];
int error1 = pipe(a);
int error2 = pipe(b);
ASSERT(error1 >= 0);
ASSERT(error2 >= 0);
return make_tuple(Pipe(a[0], b[1]), Pipe(b[0], a[1]));
}
};
typedef chrono::time_point<chrono::high_resolution_clock> Tick;
static inline Tick tickNow() { return chrono::high_resolution_clock::now(); }
static inline uint64_t tickNano(Tick& sta, Tick& end) {
return uint64_t(
chrono::duration_cast<chrono::nanoseconds>(end - sta).count());
}
struct Results {
uint64_t m_best = 0xffffffffffffffffULL;
uint64_t m_worst = 0;
uint64_t m_transactions = 0;
uint64_t m_total_time = 0;
uint64_t m_miss = 0;
bool tracing;
Results(bool _tracing) : tracing(_tracing) {}
inline bool miss_deadline(uint64_t nano) { return nano > deadline_us * 1000; }
void add_time(uint64_t nano) {
m_best = min(nano, m_best);
m_worst = max(nano, m_worst);
m_transactions += 1;
m_total_time += nano;
if (miss_deadline(nano)) m_miss++;
if (miss_deadline(nano) && tracing) {
// There might be multiple process pair running the test concurrently
// each may execute following statements and only the first one actually
// stop the trace and any traceStop() afterthen has no effect.
traceStop();
cout << endl;
cout << "deadline triggered: halt & stop trace" << endl;
cout << "log:" + trace_path + "/trace" << endl;
cout << endl;
exit(1);
}
}
void dump() {
double best = (double)m_best / 1.0E6;
double worst = (double)m_worst / 1.0E6;
double average = (double)m_total_time / m_transactions / 1.0E6;
int W = DUMP_PRICISION + 2;
cout << std::setprecision(DUMP_PRICISION) << "{ \"avg\":" << setw(W) << left
<< average << ", \"wst\":" << setw(W) << left << worst
<< ", \"bst\":" << setw(W) << left << best << ", \"miss\":" << left
<< m_miss << ", \"meetR\":" << setprecision(DUMP_PRICISION + 3) << left
<< (1.0 - (double)m_miss / m_transactions) << "}";
}
};
static string generateServiceName(int num) {
string serviceName = "hwbinderService" + to_string(num);
return serviceName;
}
// This private struct is used to pass the argument to threadStart
// result: a pointer to Results
// target: the terget service number
typedef struct {
void* result;
int target;
} thread_priv_t;
static void* threadStart(void* p) {
thread_priv_t* priv = (thread_priv_t*)p;
int target = priv->target;
Results* results_fifo = (Results*)priv->result;
Tick sta, end;
threadDump("fifo-caller");
uint32_t call_sta = (threadPri() << 16) | sched_getcpu();
sp<IScheduleTest> service = services[target];
sta = tickNow();
uint32_t ret = service->send(verbose, call_sta);
end = tickNow();
results_fifo->add_time(tickNano(sta, end));
no_inherent += (ret >> 16) & 0xffff;
no_sync += ret & 0xffff;
return 0;
}
// create a fifo thread to transact and wait it to finished
static void threadTransaction(int target, Results* results_fifo) {
thread_priv_t thread_priv;
void* dummy;
pthread_t thread;
pthread_attr_t attr;
struct sched_param param;
thread_priv.target = target;
thread_priv.result = results_fifo;
ASSERT(!pthread_attr_init(&attr));
ASSERT(!pthread_attr_setschedpolicy(&attr, SCHED_FIFO));
param.sched_priority = sched_get_priority_max(SCHED_FIFO);
ASSERT(!pthread_attr_setschedparam(&attr, &param));
ASSERT(!pthread_create(&thread, &attr, threadStart, &thread_priv));
ASSERT(!pthread_join(thread, &dummy));
}
static void serviceFx(const string& serviceName, Pipe p) {
// Start service.
sp<IScheduleTest> server = IScheduleTest::getService(serviceName, true);
status_t status = server->registerAsService(serviceName);
if (status != ::android::OK) {
cout << "Failed to register service " << serviceName.c_str() << endl;
exit(EXIT_FAILURE);
}
// tell main I'm init-ed
p.signal();
// wait for kill
p.wait();
exit(EXIT_SUCCESS);
}
static Pipe makeServiceProces(string service_name) {
auto pipe_pair = Pipe::createPipePair();
pid_t pid = fork();
if (pid) {
// parent
return move(get<0>(pipe_pair));
} else {
threadDump("service");
// child
serviceFx(service_name, move(get<1>(pipe_pair)));
// never get here
ASSERT(0);
return move(get<0>(pipe_pair));
}
}
static void clientFx(int num, int server_count, int iterations, Pipe p) {
Results results_other(false), results_fifo(trace);
for (int i = 0; i < server_count; i++) {
sp<IScheduleTest> service =
IScheduleTest::getService(generateServiceName(i), pass_through);
ASSERT(service != nullptr);
if (pass_through) {
ASSERT(!service->isRemote());
} else {
ASSERT(service->isRemote());
}
services.push_back(service);
}
// tell main I'm init-ed
p.signal();
// wait for kick-off
p.wait();
// Client for each pair iterates here
// each iterations contains exatcly 2 transactions
for (int i = 0; i < iterations; i++) {
Tick sta, end;
// the target is paired to make it easier to diagnose
int target = num;
// 1. transaction by fifo thread
threadTransaction(target, &results_fifo);
threadDump("other-caller");
uint32_t call_sta = (threadPri() << 16) | sched_getcpu();
sp<IScheduleTest> service = services[target];
// 2. transaction by other thread
sta = tickNow();
uint32_t ret = service->send(verbose, call_sta);
end = tickNow();
results_other.add_time(tickNano(sta, end));
no_inherent += (ret >> 16) & 0xffff;
no_sync += ret & 0xffff;
}
// tell main i'm done
p.signal();
// wait for kill
p.wait();
// Client for each pair dump here
int no_trans = iterations * 2;
double sync_ratio = (1.0 - (double)no_sync / no_trans);
cout << "\"P" << num << "\":{\"SYNC\":\""
<< ((sync_ratio > GOOD_SYNC_MIN) ? "GOOD" : "POOR") << "\","
<< "\"S\":" << (no_trans - no_sync) << ",\"I\":" << no_trans << ","
<< "\"R\":" << sync_ratio << "," << endl;
cout << " \"other_ms\":";
results_other.dump();
cout << "," << endl;
cout << " \"fifo_ms\": ";
results_fifo.dump();
cout << endl;
cout << "}," << endl;
exit(no_inherent);
}
static Pipe makeClientProcess(int num, int iterations, int no_pair) {
auto pipe_pair = Pipe::createPipePair();
pid_t pid = fork();
if (pid) {
// parent
return move(get<0>(pipe_pair));
} else {
// child
threadDump("client");
clientFx(num, no_pair, iterations, move(get<1>(pipe_pair)));
// never get here
ASSERT(0);
return move(get<0>(pipe_pair));
}
}
static void waitAll(vector<Pipe>& v) {
for (size_t i = 0; i < v.size(); i++) {
v[i].wait();
}
}
static void signalAll(vector<Pipe>& v) {
for (size_t i = 0; i < v.size(); i++) {
v[i].signal();
}
}
// This test is modified from frameworks/native/libs/binder/tests/sch-dbg.cpp
// The difference is sch-dbg tests binder transaction and this one test
// HwBinder transaction.
int main(int argc, char** argv) {
setenv("TREBLE_TESTING_OVERRIDE", "true", true);
vector<Pipe> client_pipes;
vector<Pipe> service_pipes;
for (int i = 1; i < argc; i++) {
if (string(argv[i]) == "-passthrough") {
pass_through = true;
}
if (string(argv[i]) == "-i") {
iterations = atoi(argv[i + 1]);
i++;
continue;
}
if (string(argv[i]) == "-pair") {
no_pair = atoi(argv[i + 1]);
i++;
continue;
}
if (string(argv[i]) == "-deadline_us") {
deadline_us = atoi(argv[i + 1]);
i++;
continue;
}
if (string(argv[i]) == "-v") {
verbose = 1;
}
// The -trace argument is used like that:
//
// First start trace with atrace command as usual
// >atrace --async_start sched freq
//
// then use the -trace arguments like
// -trace -deadline_us 2500
//
// This makes the program to stop trace once it detects a transaction
// duration over the deadline. By writing '0' to
// /sys/kernel/debug/tracing and halt the process. The tracelog is
// then available on /sys/kernel/debug/trace
if (string(argv[i]) == "-trace") {
trace = 1;
}
}
if (!pass_through) {
// Create services.
for (int i = 0; i < no_pair; i++) {
string serviceName = generateServiceName(i);
service_pipes.push_back(makeServiceProces(serviceName));
}
// Wait until all services are up.
waitAll(service_pipes);
}
if (trace && !traceIsOn()) {
cout << "trace is not running" << endl;
cout << "check " << trace_path + "/tracing_on" << endl;
cout << "use atrace --async_start first" << endl;
exit(-1);
}
threadDump("main");
cout << "{" << endl;
cout << "\"cfg\":{\"pair\":" << (no_pair) << ",\"iterations\":" << iterations
<< ",\"deadline_us\":" << deadline_us << "}," << endl;
// the main process fork 2 processes for each pairs
// 1 server + 1 client
// each has a pipe to communicate with
for (int i = 0; i < no_pair; i++) {
client_pipes.push_back(makeClientProcess(i, iterations, no_pair));
}
// wait client to init
waitAll(client_pipes);
// kick off clients
signalAll(client_pipes);
// wait client to finished
waitAll(client_pipes);
if (!pass_through) {
// Kill all the services.
for (int i = 0; i < no_pair; i++) {
int status;
service_pipes[i].signal();
wait(&status);
if (status != 0) {
cout << "nonzero child status" << status << endl;
}
}
}
for (int i = 0; i < no_pair; i++) {
int status;
client_pipes[i].signal();
wait(&status);
// the exit status is number of transactions without priority inheritance
// detected in the child process
no_inherent += status;
}
cout << "\"inheritance\": " << (no_inherent == 0 ? "\"PASS\"" : "\"FAIL\"")
<< endl;
cout << "}" << endl;
return -no_inherent;
}