blob: b2cd3037b409f31dd02e2ae0f8b7a40cb17cbcd0 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "android-base/result.h"
#include <utils/ErrorsMacros.h>
#include "android-base/errors.h"
#include "errno.h"
#include <istream>
#include <memory>
#include <string>
#include <type_traits>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "android-base/result-gmock.h"
using namespace std::string_literals;
using ::testing::Eq;
using ::testing::ExplainMatchResult;
using ::testing::HasSubstr;
using ::testing::Not;
using ::testing::StartsWith;
namespace android {
namespace base {
TEST(result, result_accessors) {
Result<std::string> result = "success";
ASSERT_RESULT_OK(result);
ASSERT_TRUE(result.has_value());
EXPECT_EQ("success", *result);
EXPECT_EQ("success", result.value());
EXPECT_EQ('s', result->data()[0]);
}
TEST(result, result_accessors_rvalue) {
ASSERT_TRUE(Result<std::string>("success").ok());
ASSERT_TRUE(Result<std::string>("success").has_value());
EXPECT_EQ("success", *Result<std::string>("success"));
EXPECT_EQ("success", Result<std::string>("success").value());
EXPECT_EQ('s', Result<std::string>("success")->data()[0]);
}
TEST(result, result_void) {
Result<void> ok = {};
EXPECT_RESULT_OK(ok);
ok.value(); // should not crash
ASSERT_DEATH(ok.error(), "");
Result<void> fail = Error() << "failure" << 1;
EXPECT_FALSE(fail.ok());
EXPECT_EQ("failure1", fail.error().message());
EXPECT_EQ(0, fail.error().code());
EXPECT_TRUE(ok != fail);
ASSERT_DEATH(fail.value(), "");
auto test = [](bool ok) -> Result<void> {
if (ok) return {};
else return Error() << "failure" << 1;
};
EXPECT_TRUE(test(true).ok());
EXPECT_FALSE(test(false).ok());
test(true).value(); // should not crash
ASSERT_DEATH(test(true).error(), "");
ASSERT_DEATH(test(false).value(), "");
EXPECT_EQ("failure1", test(false).error().message());
}
TEST(result, result_error) {
Result<void> result = Error() << "failure" << 1;
ASSERT_FALSE(result.ok());
ASSERT_FALSE(result.has_value());
EXPECT_EQ(0, result.error().code());
EXPECT_EQ("failure1", result.error().message());
}
TEST(result, result_error_empty) {
Result<void> result = Error();
ASSERT_FALSE(result.ok());
ASSERT_FALSE(result.has_value());
EXPECT_EQ(0, result.error().code());
EXPECT_EQ("", result.error().message());
}
TEST(result, result_error_rvalue) {
// Error() and ErrnoError() aren't actually used to create a Result<T> object.
// Under the hood, they are an intermediate class that can be implicitly constructed into a
// Result<T>. This is needed both to create the ostream and because Error() itself, by
// definition will not know what the type, T, of the underlying Result<T> object that it would
// create is.
auto MakeRvalueErrorResult = []() -> Result<void> { return Error() << "failure" << 1; };
ASSERT_FALSE(MakeRvalueErrorResult().ok());
ASSERT_FALSE(MakeRvalueErrorResult().has_value());
EXPECT_EQ(0, MakeRvalueErrorResult().error().code());
EXPECT_EQ("failure1", MakeRvalueErrorResult().error().message());
}
TEST(result, result_errno_error) {
constexpr int test_errno = 6;
errno = test_errno;
Result<void> result = ErrnoError() << "failure" << 1;
ASSERT_FALSE(result.ok());
ASSERT_FALSE(result.has_value());
EXPECT_EQ(test_errno, result.error().code());
EXPECT_EQ("failure1: "s + strerror(test_errno), result.error().message());
}
TEST(result, result_errno_error_no_text) {
constexpr int test_errno = 6;
errno = test_errno;
Result<void> result = ErrnoError();
ASSERT_FALSE(result.ok());
ASSERT_FALSE(result.has_value());
EXPECT_EQ(test_errno, result.error().code());
EXPECT_EQ(strerror(test_errno), result.error().message());
}
TEST(result, result_error_from_other_result) {
auto error_text = "test error"s;
Result<void> result = Error() << error_text;
ASSERT_FALSE(result.ok());
ASSERT_FALSE(result.has_value());
Result<std::string> result2 = result.error();
ASSERT_FALSE(result2.ok());
ASSERT_FALSE(result2.has_value());
EXPECT_EQ(0, result2.error().code());
EXPECT_EQ(error_text, result2.error().message());
}
TEST(result, result_error_through_ostream) {
auto error_text = "test error"s;
Result<void> result = Error() << error_text;
ASSERT_FALSE(result.ok());
ASSERT_FALSE(result.has_value());
Result<std::string> result2 = Error() << result.error();
ASSERT_FALSE(result2.ok());
ASSERT_FALSE(result2.has_value());
EXPECT_EQ(0, result2.error().code());
EXPECT_EQ(error_text, result2.error().message());
}
TEST(result, result_errno_error_through_ostream) {
auto error_text = "test error"s;
constexpr int test_errno = 6;
errno = 6;
Result<void> result = ErrnoError() << error_text;
errno = 0;
ASSERT_FALSE(result.ok());
ASSERT_FALSE(result.has_value());
Result<std::string> result2 = Error() << result.error();
ASSERT_FALSE(result2.ok());
ASSERT_FALSE(result2.has_value());
EXPECT_EQ(test_errno, result2.error().code());
EXPECT_EQ(error_text + ": " + strerror(test_errno), result2.error().message());
}
enum class CustomError { A, B };
struct CustomErrorWrapper {
CustomErrorWrapper() : val_(CustomError::A) {}
CustomErrorWrapper(const CustomError& e) : val_(e) {}
CustomError value() const { return val_; }
operator CustomError() const { return value(); }
std::string print() const {
switch (val_) {
case CustomError::A:
return "A";
case CustomError::B:
return "B";
}
}
CustomError val_;
};
#define NewCustomError(e) Error<CustomErrorWrapper>(CustomError::e)
TEST(result, result_with_custom_errorcode) {
Result<void, CustomError> ok = {};
EXPECT_RESULT_OK(ok);
ok.value(); // should not crash
EXPECT_DEATH(ok.error(), "");
auto error_text = "test error"s;
Result<void, CustomError> err = NewCustomError(A) << error_text;
EXPECT_FALSE(err.ok());
EXPECT_FALSE(err.has_value());
EXPECT_EQ(CustomError::A, err.error().code());
EXPECT_EQ(error_text + ": A", err.error().message());
}
Result<std::string, CustomError> success_or_fail(bool success) {
if (success)
return "success";
else
return NewCustomError(A) << "fail";
}
TEST(result, constructor_forwarding) {
auto result = Result<std::string>(std::in_place, 5, 'a');
ASSERT_RESULT_OK(result);
ASSERT_TRUE(result.has_value());
EXPECT_EQ("aaaaa", *result);
}
TEST(result, unwrap_or_return) {
auto f = [](bool success) -> Result<size_t, CustomError> {
return OR_RETURN(success_or_fail(success)).size();
};
auto r = f(true);
EXPECT_TRUE(r.ok());
EXPECT_EQ(strlen("success"), *r);
auto s = f(false);
EXPECT_FALSE(s.ok());
EXPECT_EQ(CustomError::A, s.error().code());
EXPECT_EQ("fail: A", s.error().message());
}
TEST(result, unwrap_or_return_errorcode) {
auto f = [](bool success) -> CustomError {
// Note that we use the same OR_RETURN macro for different return types: Result<U, CustomError>
// and CustomError.
std::string val = OR_RETURN(success_or_fail(success));
EXPECT_EQ("success", val);
return CustomError::B;
};
auto r = f(true);
EXPECT_EQ(CustomError::B, r);
auto s = f(false);
EXPECT_EQ(CustomError::A, s);
}
TEST(result, unwrap_or_fatal) {
auto r = OR_FATAL(success_or_fail(true));
EXPECT_EQ("success", r);
EXPECT_DEATH(OR_FATAL(success_or_fail(false)), "fail: A");
}
TEST(result, unwrap_ambiguous_int) {
const std::string firstSuccess{"a"};
constexpr int secondSuccess = 5;
auto enum_success_or_fail = [&](bool success) -> Result<std::string, StatusT> {
if (success) return firstSuccess;
return ResultError<StatusT>("Fail", 10);
};
auto f = [&](bool success) -> Result<int, StatusT> {
auto val = OR_RETURN(enum_success_or_fail(success));
EXPECT_EQ(firstSuccess, val);
return secondSuccess;
};
auto r = f(true);
ASSERT_TRUE(r.ok());
EXPECT_EQ(r.value(), secondSuccess);
auto s = f(false);
ASSERT_TRUE(!s.ok());
EXPECT_EQ(s.error().code(), 10);
}
TEST(result, unwrap_ambiguous_uint_conv) {
const std::string firstSuccess{"a"};
constexpr size_t secondSuccess = 5ull;
auto enum_success_or_fail = [&](bool success) -> Result<std::string, StatusT> {
if (success) return firstSuccess;
return ResultError<StatusT>("Fail", 10);
};
auto f = [&](bool success) -> Result<size_t, StatusT> {
auto val = OR_RETURN(enum_success_or_fail(success));
EXPECT_EQ(firstSuccess, val);
return secondSuccess;
};
auto r = f(true);
ASSERT_TRUE(r.ok());
EXPECT_EQ(r.value(), secondSuccess);
auto s = f(false);
ASSERT_TRUE(!s.ok());
EXPECT_EQ(s.error().code(), 10);
}
struct IntConst {
int val_;
template <typename T, typename = std::enable_if_t<std::is_convertible_v<T, int>>>
IntConst(T&& val) : val_(val) {}
operator status_t() {return val_;}
};
TEST(result, unwrap_ambiguous_constructible) {
constexpr int firstSuccess = 5;
constexpr int secondSuccess = 7;
struct A {
A (int val) : val_(val) {}
operator status_t() { return 0; }
int val_;
};
// If this returns Result<A, ...> instead of Result<IntConst, ...>,
// compilation fails unless we compile with c++20
auto enum_success_or_fail = [&](bool success) -> Result<IntConst, StatusT, false> {
if (success) return firstSuccess;
return ResultError<StatusT, false>(10);
};
auto f = [&](bool success) -> Result<IntConst, StatusT, false> {
auto val = OR_RETURN(enum_success_or_fail(success));
EXPECT_EQ(firstSuccess, val.val_);
return secondSuccess;
};
auto r = f(true);
EXPECT_EQ(r.value().val_, secondSuccess);
auto s = f(false);
EXPECT_EQ(s.error().code(), 10);
}
struct Dangerous {};
struct ImplicitFromDangerous {
ImplicitFromDangerous(Dangerous);
};
template <typename U>
struct Templated {
U val_;
template <typename T, typename=std::enable_if_t<std::is_convertible_v<T, U>>>
Templated(T val) : val_(val) {}
};
TEST(result, dangerous_result_conversion) {
ResultError<Dangerous, false> error {Dangerous{}};
Result<Templated<Dangerous>, Dangerous, false> surprise {error};
EXPECT_TRUE(!surprise.ok());
Result<Templated<ImplicitFromDangerous>, Dangerous, false> surprise2 {error};
EXPECT_TRUE(!surprise2.ok());
}
TEST(result, generic_convertible) {
const std::string firstSuccess{"a"};
struct A {};
struct B {
operator A() {return A{};}
};
auto enum_success_or_fail = [&](bool success) -> Result<std::string, B> {
if (success) return firstSuccess;
return ResultError<B>("Fail", B{});
};
auto f = [&](bool success) -> Result<A, B> {
auto val = OR_RETURN(enum_success_or_fail(success));
EXPECT_EQ(firstSuccess, val);
return A{};
};
auto r = f(true);
EXPECT_TRUE(r.ok());
auto s = f(false);
EXPECT_TRUE(!s.ok());
}
TEST(result, generic_exact) {
const std::string firstSuccess{"a"};
struct A {};
auto enum_success_or_fail = [&](bool success) -> Result<std::string, A> {
if (success) return firstSuccess;
return ResultError<A>("Fail", A{});
};
auto f = [&](bool success) -> Result<A, A> {
auto val = OR_RETURN(enum_success_or_fail(success));
EXPECT_EQ(firstSuccess, val);
return A{};
};
auto r = f(true);
EXPECT_TRUE(r.ok());
auto s = f(false);
EXPECT_TRUE(!s.ok());
}
struct MyData {
const int data;
static int copy_constructed;
static int move_constructed;
explicit MyData(int d) : data(d) {}
MyData(const MyData& other) : data(other.data) { copy_constructed++; }
MyData(MyData&& other) : data(other.data) { move_constructed++; }
MyData& operator=(const MyData&) = delete;
MyData& operator=(MyData&&) = delete;
};
int MyData::copy_constructed = 0;
int MyData::move_constructed = 0;
TEST(result, unwrap_does_not_incur_additional_copying) {
MyData::copy_constructed = 0;
MyData::move_constructed = 0;
auto f = []() -> Result<MyData> { return MyData{10}; };
[&]() -> Result<void> {
int data = OR_RETURN(f()).data;
EXPECT_EQ(10, data);
EXPECT_EQ(0, MyData::copy_constructed);
// Moved once when MyData{10} is returned as Result<MyData> in the lambda f.
// Moved once again when the variable d is constructed from OR_RETURN.
EXPECT_EQ(2, MyData::move_constructed);
return {};
}();
}
TEST(result, supports_move_only_type) {
auto f = [](bool success) -> Result<std::unique_ptr<std::string>> {
if (success) return std::make_unique<std::string>("hello");
return Error() << "error";
};
auto g = [&](bool success) -> Result<std::unique_ptr<std::string>> {
auto r = OR_RETURN(f(success));
EXPECT_EQ("hello", *(r.get()));
return std::make_unique<std::string>("world");
};
auto s = g(true);
EXPECT_RESULT_OK(s);
EXPECT_EQ("world", *(s->get()));
auto t = g(false);
EXPECT_FALSE(t.ok());
EXPECT_EQ("error", t.error().message());
}
TEST(result, unique_ptr) {
using testing::Ok;
auto return_unique_ptr = [](bool success) -> Result<std::unique_ptr<int>> {
auto result = OR_RETURN(Result<std::unique_ptr<int>>(std::make_unique<int>(3)));
if (!success) {
return Error() << __func__ << " failed.";
}
return result;
};
Result<std::unique_ptr<int>> result1 = return_unique_ptr(false);
ASSERT_THAT(result1, Not(Ok()));
Result<std::unique_ptr<int>> result2 = return_unique_ptr(true);
ASSERT_THAT(result2, Ok());
EXPECT_EQ(**result2, 3);
}
TEST(result, void) {
using testing::Ok;
auto return_void = []() -> Result<void> {
OR_RETURN(Result<void>());
return {};
};
ASSERT_THAT(return_void(), Ok());
}
struct ConstructorTracker {
static size_t constructor_called;
static size_t copy_constructor_called;
static size_t move_constructor_called;
static size_t copy_assignment_called;
static size_t move_assignment_called;
template <typename T>
ConstructorTracker(T&& string) : string(string) {
++constructor_called;
}
ConstructorTracker(const ConstructorTracker& ct) {
++copy_constructor_called;
string = ct.string;
}
ConstructorTracker(ConstructorTracker&& ct) noexcept {
++move_constructor_called;
string = std::move(ct.string);
}
ConstructorTracker& operator=(const ConstructorTracker& ct) {
++copy_assignment_called;
string = ct.string;
return *this;
}
ConstructorTracker& operator=(ConstructorTracker&& ct) noexcept {
++move_assignment_called;
string = std::move(ct.string);
return *this;
}
std::string string;
};
size_t ConstructorTracker::constructor_called = 0;
size_t ConstructorTracker::copy_constructor_called = 0;
size_t ConstructorTracker::move_constructor_called = 0;
size_t ConstructorTracker::copy_assignment_called = 0;
size_t ConstructorTracker::move_assignment_called = 0;
Result<ConstructorTracker> ReturnConstructorTracker(const std::string& in) {
if (in.empty()) {
return "literal string";
}
if (in == "test2") {
return ConstructorTracker(in + in + "2");
}
ConstructorTracker result(in + " " + in);
return result;
};
TEST(result, no_copy_on_return) {
// If returning parameters that may be used to implicitly construct the type T of Result<T>,
// then those parameters are forwarded to the construction of Result<T>.
// If returning an prvalue or xvalue, it will be move constructed during the construction of
// Result<T>.
// This check ensures that that is the case, and particularly that no copy constructors
// are called.
auto result1 = ReturnConstructorTracker("");
ASSERT_RESULT_OK(result1);
EXPECT_EQ("literal string", result1->string);
EXPECT_EQ(1U, ConstructorTracker::constructor_called);
EXPECT_EQ(0U, ConstructorTracker::copy_constructor_called);
EXPECT_EQ(0U, ConstructorTracker::move_constructor_called);
EXPECT_EQ(0U, ConstructorTracker::copy_assignment_called);
EXPECT_EQ(0U, ConstructorTracker::move_assignment_called);
auto result2 = ReturnConstructorTracker("test2");
ASSERT_RESULT_OK(result2);
EXPECT_EQ("test2test22", result2->string);
EXPECT_EQ(2U, ConstructorTracker::constructor_called);
EXPECT_EQ(0U, ConstructorTracker::copy_constructor_called);
EXPECT_EQ(1U, ConstructorTracker::move_constructor_called);
EXPECT_EQ(0U, ConstructorTracker::copy_assignment_called);
EXPECT_EQ(0U, ConstructorTracker::move_assignment_called);
auto result3 = ReturnConstructorTracker("test3");
ASSERT_RESULT_OK(result3);
EXPECT_EQ("test3 test3", result3->string);
EXPECT_EQ(3U, ConstructorTracker::constructor_called);
EXPECT_EQ(0U, ConstructorTracker::copy_constructor_called);
EXPECT_EQ(2U, ConstructorTracker::move_constructor_called);
EXPECT_EQ(0U, ConstructorTracker::copy_assignment_called);
EXPECT_EQ(0U, ConstructorTracker::move_assignment_called);
}
// Below two tests require that we do not hide the move constructor with our forwarding reference
// constructor. This is done with by disabling the forwarding reference constructor if its first
// and only type is Result<T>.
TEST(result, result_result_with_success) {
auto return_result_result_with_success = []() -> Result<Result<void>> { return Result<void>(); };
auto result = return_result_result_with_success();
ASSERT_RESULT_OK(result);
ASSERT_RESULT_OK(*result);
auto inner_result = result.value();
ASSERT_RESULT_OK(inner_result);
}
TEST(result, result_result_with_failure) {
auto return_result_result_with_error = []() -> Result<Result<void>> {
return Result<void>(ResultError("failure string", 6));
};
auto result = return_result_result_with_error();
ASSERT_RESULT_OK(result);
ASSERT_FALSE(result->ok());
EXPECT_EQ("failure string", (*result).error().message());
EXPECT_EQ(6, (*result).error().code());
}
// This test requires that we disable the forwarding reference constructor if Result<T> is the
// *only* type that we are forwarding. In otherwords, if we are forwarding Result<T>, int to
// construct a Result<T>, then we still need the constructor.
TEST(result, result_two_parameter_constructor_same_type) {
struct TestStruct {
TestStruct(int value) : value_(value) {}
TestStruct(Result<TestStruct> result, int value) : value_(result->value_ * value) {}
int value_;
};
auto return_test_struct = []() -> Result<TestStruct> {
return Result<TestStruct>(std::in_place, Result<TestStruct>(std::in_place, 6), 6);
};
auto result = return_test_struct();
ASSERT_RESULT_OK(result);
EXPECT_EQ(36, result->value_);
}
TEST(result, die_on_access_failed_result) {
Result<std::string> result = Error();
ASSERT_DEATH(*result, "");
}
TEST(result, die_on_get_error_succesful_result) {
Result<std::string> result = "success";
ASSERT_DEATH(result.error(), "");
}
template <class CharT>
std::basic_ostream<CharT>& SetErrnoToTwo(std::basic_ostream<CharT>& ss) {
errno = 2;
return ss;
}
TEST(result, preserve_errno) {
errno = 1;
int old_errno = errno;
Result<int> result = Error() << "Failed" << SetErrnoToTwo<char>;
ASSERT_FALSE(result.ok());
EXPECT_EQ(old_errno, errno);
errno = 1;
old_errno = errno;
Result<int> result2 = ErrnoError() << "Failed" << SetErrnoToTwo<char>;
ASSERT_FALSE(result2.ok());
EXPECT_EQ(old_errno, errno);
EXPECT_EQ(old_errno, result2.error().code());
}
TEST(result, error_with_fmt) {
Result<int> result = Errorf("{} {}!", "hello", "world");
EXPECT_EQ("hello world!", result.error().message());
result = Errorf("{} {}!", std::string("hello"), std::string("world"));
EXPECT_EQ("hello world!", result.error().message());
result = Errorf("{1} {0}!", "world", "hello");
EXPECT_EQ("hello world!", result.error().message());
result = Errorf("hello world!");
EXPECT_EQ("hello world!", result.error().message());
Result<int> result2 = Errorf("error occurred with {}", result.error());
EXPECT_EQ("error occurred with hello world!", result2.error().message());
constexpr int test_errno = 6;
errno = test_errno;
result = ErrnoErrorf("{} {}!", "hello", "world");
EXPECT_EQ(test_errno, result.error().code());
EXPECT_EQ("hello world!: "s + strerror(test_errno), result.error().message());
}
TEST(result, error_with_fmt_carries_errno) {
constexpr int inner_errno = 6;
errno = inner_errno;
Result<int> inner_result = ErrnoErrorf("inner failure");
errno = 0;
EXPECT_EQ(inner_errno, inner_result.error().code());
// outer_result is created with Errorf, but its error code is got from inner_result.
Result<int> outer_result = Errorf("outer failure caused by {}", inner_result.error());
EXPECT_EQ(inner_errno, outer_result.error().code());
EXPECT_EQ("outer failure caused by inner failure: "s + strerror(inner_errno),
outer_result.error().message());
// now both result objects are created with ErrnoErrorf. errno from the inner_result
// is not passed to outer_result.
constexpr int outer_errno = 10;
errno = outer_errno;
outer_result = ErrnoErrorf("outer failure caused by {}", inner_result.error());
EXPECT_EQ(outer_errno, outer_result.error().code());
EXPECT_EQ("outer failure caused by inner failure: "s + strerror(inner_errno) + ": "s +
strerror(outer_errno),
outer_result.error().message());
}
TEST(result, errno_chaining_multiple) {
constexpr int errno1 = 6;
errno = errno1;
Result<int> inner1 = ErrnoErrorf("error1");
constexpr int errno2 = 10;
errno = errno2;
Result<int> inner2 = ErrnoErrorf("error2");
// takes the error code of inner2 since its the last one.
Result<int> outer = Errorf("two errors: {}, {}", inner1.error(), inner2.error());
EXPECT_EQ(errno2, outer.error().code());
EXPECT_EQ("two errors: error1: "s + strerror(errno1) + ", error2: "s + strerror(errno2),
outer.error().message());
}
TEST(result, error_without_message) {
constexpr bool include_message = false;
Result<void, Errno, include_message> res = Error<Errno, include_message>(10);
EXPECT_FALSE(res.ok());
EXPECT_EQ(10, res.error().code());
EXPECT_EQ(sizeof(int), sizeof(res.error()));
}
namespace testing {
class Listener : public ::testing::MatchResultListener {
public:
Listener() : MatchResultListener(&ss_) {}
~Listener() = default;
std::string message() const { return ss_.str(); }
private:
std::stringstream ss_;
};
class ResultMatchers : public ::testing::Test {
public:
Result<int> result = 1;
Result<int> error = Error(EBADF) << "error message";
Listener listener;
};
TEST_F(ResultMatchers, ok_result) {
EXPECT_TRUE(ExplainMatchResult(Ok(), result, &listener));
EXPECT_THAT(listener.message(), Eq("result is OK"));
}
TEST_F(ResultMatchers, ok_error) {
EXPECT_FALSE(ExplainMatchResult(Ok(), error, &listener));
EXPECT_THAT(listener.message(), StartsWith("error is"));
EXPECT_THAT(listener.message(), HasSubstr(error.error().message()));
EXPECT_THAT(listener.message(), HasSubstr(strerror(error.error().code())));
}
TEST_F(ResultMatchers, not_ok_result) {
EXPECT_FALSE(ExplainMatchResult(Not(Ok()), result, &listener));
EXPECT_THAT(listener.message(), Eq("result is OK"));
}
TEST_F(ResultMatchers, not_ok_error) {
EXPECT_TRUE(ExplainMatchResult(Not(Ok()), error, &listener));
EXPECT_THAT(listener.message(), StartsWith("error is"));
EXPECT_THAT(listener.message(), HasSubstr(error.error().message()));
EXPECT_THAT(listener.message(), HasSubstr(strerror(error.error().code())));
}
TEST_F(ResultMatchers, has_value_result) {
EXPECT_TRUE(ExplainMatchResult(HasValue(*result), result, &listener));
}
TEST_F(ResultMatchers, has_value_wrong_result) {
EXPECT_FALSE(ExplainMatchResult(HasValue(*result + 1), result, &listener));
}
TEST_F(ResultMatchers, has_value_error) {
EXPECT_FALSE(ExplainMatchResult(HasValue(*result), error, &listener));
EXPECT_THAT(listener.message(), StartsWith("error is"));
EXPECT_THAT(listener.message(), HasSubstr(error.error().message()));
EXPECT_THAT(listener.message(), HasSubstr(strerror(error.error().code())));
}
TEST_F(ResultMatchers, has_error_code_result) {
EXPECT_FALSE(ExplainMatchResult(HasError(WithCode(error.error().code())), result, &listener));
EXPECT_THAT(listener.message(), Eq("result is OK"));
}
TEST_F(ResultMatchers, has_error_code_wrong_code) {
EXPECT_FALSE(ExplainMatchResult(HasError(WithCode(error.error().code() + 1)), error, &listener));
EXPECT_THAT(listener.message(), StartsWith("actual error is"));
EXPECT_THAT(listener.message(), HasSubstr(strerror(error.error().code())));
}
TEST_F(ResultMatchers, has_error_code_correct_code) {
EXPECT_TRUE(ExplainMatchResult(HasError(WithCode(error.error().code())), error, &listener));
EXPECT_THAT(listener.message(), StartsWith("actual error is"));
EXPECT_THAT(listener.message(), HasSubstr(strerror(error.error().code())));
}
TEST_F(ResultMatchers, has_error_message_result) {
EXPECT_FALSE(
ExplainMatchResult(HasError(WithMessage(error.error().message())), result, &listener));
EXPECT_THAT(listener.message(), Eq("result is OK"));
}
TEST_F(ResultMatchers, has_error_message_wrong_message) {
EXPECT_FALSE(ExplainMatchResult(HasError(WithMessage("foo")), error, &listener));
EXPECT_THAT(listener.message(), StartsWith("actual error is"));
EXPECT_THAT(listener.message(), HasSubstr(error.error().message()));
}
TEST_F(ResultMatchers, has_error_message_correct_message) {
EXPECT_TRUE(ExplainMatchResult(HasError(WithMessage(error.error().message())), error, &listener));
EXPECT_THAT(listener.message(), StartsWith("actual error is"));
EXPECT_THAT(listener.message(), HasSubstr(error.error().message()));
}
} // namespace testing
} // namespace base
} // namespace android