blob: c6cc9fd5b235fbaf3c576bf72f2cc1821b0006d0 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Result<T, E> is the type that is used to pass a success value of type T or an error code of type
// E, optionally together with an error message. T and E can be any type. If E is omitted it
// defaults to int, which is useful when errno(3) is used as the error code.
//
// Passing a success value or an error value:
//
// Result<std::string> readFile() {
// std::string content;
// if (base::ReadFileToString("path", &content)) {
// return content; // ok case
// } else {
// return ErrnoError() << "failed to read"; // error case
// }
// }
//
// Checking the result and then unwrapping the value or propagating the error:
//
// Result<bool> hasAWord() {
// auto content = readFile();
// if (!content.ok()) {
// return Error() << "failed to process: " << content.error();
// }
// return (*content.find("happy") != std::string::npos);
// }
//
// Using custom error code type:
//
// enum class MyError { A, B }; // assume that this is the error code you already have
//
// // To use the error code with Result, define a wrapper class that provides the following
// operations and use the wrapper class as the second type parameter (E) when instantiating
// Result<T, E>
//
// 1. default constructor
// 2. copy constructor / and move constructor if copying is expensive
// 3. conversion operator to the error code type
// 4. value() function that return the error code value
// 5. print() function that gives a string representation of the error ode value
//
// struct MyErrorWrapper {
// MyError val_;
// MyErrorWrapper() : val_(/* reasonable default value */) {}
// MyErrorWrapper(MyError&& e) : val_(std:forward<MyError>(e)) {}
// operator const MyError&() const { return val_; }
// MyError value() const { return val_; }
// std::string print() const {
// switch(val_) {
// MyError::A: return "A";
// MyError::B: return "B";
// }
// }
// };
//
// #define NewMyError(e) Error<MyErrorWrapper>(MyError::e)
//
// Result<T, MyError> val = NewMyError(A) << "some message";
//
// Formatting the error message using fmtlib:
//
// Errorf("{} errors", num); // equivalent to Error() << num << " errors";
// ErrnoErrorf("{} errors", num); // equivalent to ErrnoError() << num << " errors";
//
// Returning success or failure, but not the value:
//
// Result<void> doSomething() {
// if (success) return {};
// else return Error() << "error occurred";
// }
//
// Extracting error code:
//
// Result<T> val = Error(3) << "some error occurred";
// assert(3 == val.error().code());
//
#pragma once
#include <assert.h>
#include <errno.h>
#include <string.h>
#include <sstream>
#include <string>
#include <type_traits>
#include "android-base/errors.h"
#include "android-base/expected.h"
#include "android-base/format.h"
namespace android {
namespace base {
// Errno is a wrapper class for errno(3). Use this type instead of `int` when instantiating
// `Result<T, E>` and `Error<E>` template classes. This is required to distinguish errno from other
// integer-based error code types like `status_t`.
struct Errno {
Errno() : val_(0) {}
Errno(int e) : val_(e) {}
int value() const { return val_; }
operator int() const { return value(); }
const char* print() const { return strerror(value()); }
int val_;
// TODO(b/209929099): remove this conversion operator. This currently is needed to not break
// existing places where error().code() is used to construct enum values.
template <typename E, typename = std::enable_if_t<std::is_enum_v<E>>>
operator E() const {
return E(val_);
}
};
static_assert(std::is_trivially_copyable_v<Errno> == true);
template <typename E = Errno, bool include_message = true>
struct ResultError {
template <typename T, typename P, typename = std::enable_if_t<std::is_convertible_v<P, E>>>
ResultError(T&& message, P&& code)
: message_(std::forward<T>(message)), code_(E(std::forward<P>(code))) {}
ResultError(const ResultError& other) = default;
ResultError(ResultError&& other) = default;
ResultError& operator=(const ResultError& other) = default;
ResultError& operator=(ResultError&& other) = default;
template <typename T>
// NOLINTNEXTLINE(google-explicit-constructor)
operator android::base::expected<T, ResultError<E>>() && {
return android::base::unexpected(std::move(*this));
}
template <typename T>
// NOLINTNEXTLINE(google-explicit-constructor)
operator android::base::expected<T, ResultError<E>>() const& {
return android::base::unexpected(*this);
}
const std::string& message() const { return message_; }
const E& code() const { return code_; }
private:
std::string message_;
E code_;
};
template <typename E>
auto format_as(ResultError<E, true> error) {
return error.message();
}
template <typename E>
struct ResultError<E, /* include_message */ false> {
template <typename P, typename = std::enable_if_t<std::is_convertible_v<P, E>>>
ResultError(P&& code) : code_(E(std::forward<P>(code))) {}
template <typename T>
operator android::base::expected<T, ResultError<E, false>>() const {
return android::base::unexpected(ResultError<E, false>(code_));
}
const E& code() const { return code_; }
private:
E code_;
};
template <typename E>
inline bool operator==(const ResultError<E>& lhs, const ResultError<E>& rhs) {
return lhs.message() == rhs.message() && lhs.code() == rhs.code();
}
template <typename E>
inline bool operator!=(const ResultError<E>& lhs, const ResultError<E>& rhs) {
return !(lhs == rhs);
}
template <typename E>
inline std::ostream& operator<<(std::ostream& os, const ResultError<E>& t) {
os << t.message();
return os;
}
namespace internal {
// Stream class that does nothing and is has zero (actually 1) size. It is used instead of
// std::stringstream when include_message is false so that we use less on stack.
// sizeof(std::stringstream) is 280 on arm64.
struct DoNothingStream {
template <typename T>
DoNothingStream& operator<<(T&&) {
return *this;
}
std::string str() const { return ""; }
};
} // namespace internal
template <typename E = Errno, bool include_message = true,
typename = std::enable_if_t<!std::is_same_v<E, int>>>
class Error {
public:
Error() : code_(0), has_code_(false) {}
template <typename P, typename = std::enable_if_t<std::is_convertible_v<P, E>>>
// NOLINTNEXTLINE(google-explicit-constructor)
Error(P&& code) : code_(std::forward<P>(code)), has_code_(true) {}
template <typename T, typename P, typename = std::enable_if_t<std::is_convertible_v<E, P>>>
// NOLINTNEXTLINE(google-explicit-constructor)
operator android::base::expected<T, ResultError<P>>() const {
return android::base::unexpected(ResultError<P>(str(), static_cast<P>(code_)));
}
template <typename T, typename P, typename = std::enable_if_t<std::is_convertible_v<E, P>>>
// NOLINTNEXTLINE(google-explicit-constructor)
operator android::base::expected<T, ResultError<P, false>>() const {
return android::base::unexpected(ResultError<P, false>(static_cast<P>(code_)));
}
template <typename T>
Error& operator<<(T&& t) {
static_assert(include_message, "<< not supported when include_message = false");
// NOLINTNEXTLINE(bugprone-suspicious-semicolon)
if constexpr (std::is_same_v<std::remove_cv_t<std::remove_reference_t<T>>, ResultError<E>>) {
if (!has_code_) {
code_ = t.code();
}
return (*this) << t.message();
}
int saved = errno;
ss_ << t;
errno = saved;
return *this;
}
const std::string str() const {
static_assert(include_message, "str() not supported when include_message = false");
std::string str = ss_.str();
if (has_code_) {
if (str.empty()) {
return code_.print();
}
return std::move(str) + ": " + code_.print();
}
return str;
}
Error(const Error&) = delete;
Error(Error&&) = delete;
Error& operator=(const Error&) = delete;
Error& operator=(Error&&) = delete;
template <typename... Args>
friend Error ErrorfImpl(fmt::format_string<Args...> fmt, const Args&... args);
template <typename... Args>
friend Error ErrnoErrorfImpl(fmt::format_string<Args...> fmt, const Args&... args);
private:
Error(bool has_code, E code, const std::string& message) : code_(code), has_code_(has_code) {
(*this) << message;
}
std::conditional_t<include_message, std::stringstream, internal::DoNothingStream> ss_;
E code_;
const bool has_code_;
};
inline Error<Errno> ErrnoError() {
return Error<Errno>(Errno{errno});
}
template <typename E>
inline E ErrorCode(E code) {
return code;
}
// Return the error code of the last ResultError object, if any.
// Otherwise, return `code` as it is.
template <typename T, typename E, typename... Args>
inline E ErrorCode(E code, T&& t, const Args&... args) {
if constexpr (std::is_same_v<std::remove_cv_t<std::remove_reference_t<T>>, ResultError<E>>) {
return ErrorCode(t.code(), args...);
}
return ErrorCode(code, args...);
}
__attribute__((noinline)) ResultError<Errno> MakeResultErrorWithCode(std::string&& message,
Errno code);
template <typename... Args>
inline ResultError<Errno> ErrorfImpl(fmt::format_string<Args...> fmt, const Args&... args) {
return ResultError(fmt::vformat(fmt.get(), fmt::make_format_args(args...)),
ErrorCode(Errno{}, args...));
}
template <typename... Args>
inline ResultError<Errno> ErrnoErrorfImpl(fmt::format_string<Args...> fmt, const Args&... args) {
Errno code{errno};
return MakeResultErrorWithCode(fmt::vformat(fmt.get(), fmt::make_format_args(args...)), code);
}
#define Errorf(fmt, ...) android::base::ErrorfImpl(FMT_STRING(fmt), ##__VA_ARGS__)
#define ErrnoErrorf(fmt, ...) android::base::ErrnoErrorfImpl(FMT_STRING(fmt), ##__VA_ARGS__)
template <typename T, typename E = Errno, bool include_message = true>
using Result = android::base::expected<T, ResultError<E, include_message>>;
// Specialization of android::base::OkOrFail<V> for V = Result<T, E>. See android-base/errors.h
// for the contract.
namespace impl {
template <typename U>
using Code = std::decay_t<decltype(std::declval<U>().error().code())>;
template <typename U>
using ErrorType = std::decay_t<decltype(std::declval<U>().error())>;
template <typename U>
constexpr bool IsNumeric = std::is_integral_v<U> || std::is_floating_point_v<U> ||
(std::is_enum_v<U> && std::is_convertible_v<U, size_t>);
// This base class exists to take advantage of shadowing
// We include the conversion in this base class so that if the conversion in NumericConversions
// overlaps, we (arbitrarily) choose the implementation in NumericConversions due to shadowing.
template <typename T>
struct ConversionBase {
ErrorType<T> error_;
// T is a expected<U, ErrorType<T>>.
operator T() const& { return unexpected(error_); }
operator T() && { return unexpected(std::move(error_)); }
operator Code<T>() const { return error_.code(); }
};
// User defined conversions can be followed by numeric conversions
// Although we template specialize for the exact code type, we need
// specializations for conversions to all numeric types to avoid an
// ambiguous conversion sequence.
template <typename T, typename = void>
struct NumericConversions : public ConversionBase<T> {};
template <typename T>
struct NumericConversions<T,
std::enable_if_t<impl::IsNumeric<impl::Code<T>>>
> : public ConversionBase<T>
{
#pragma push_macro("SPECIALIZED_CONVERSION")
#define SPECIALIZED_CONVERSION(type) \
operator expected<type, ErrorType<T>>() const& { return unexpected(this->error_); } \
operator expected<type, ErrorType<T>>()&& { return unexpected(std::move(this->error_)); }
SPECIALIZED_CONVERSION(int)
SPECIALIZED_CONVERSION(short int)
SPECIALIZED_CONVERSION(unsigned short int)
SPECIALIZED_CONVERSION(unsigned int)
SPECIALIZED_CONVERSION(long int)
SPECIALIZED_CONVERSION(unsigned long int)
SPECIALIZED_CONVERSION(long long int)
SPECIALIZED_CONVERSION(unsigned long long int)
SPECIALIZED_CONVERSION(bool)
SPECIALIZED_CONVERSION(char)
SPECIALIZED_CONVERSION(unsigned char)
SPECIALIZED_CONVERSION(signed char)
SPECIALIZED_CONVERSION(wchar_t)
SPECIALIZED_CONVERSION(char16_t)
SPECIALIZED_CONVERSION(char32_t)
SPECIALIZED_CONVERSION(float)
SPECIALIZED_CONVERSION(double)
SPECIALIZED_CONVERSION(long double)
#undef SPECIALIZED_CONVERSION
#pragma pop_macro("SPECIALIZED_CONVERSION")
// For debugging purposes
using IsNumericT = std::true_type;
};
#ifdef __cpp_concepts
template <class U>
// Define a concept which **any** type matches to
concept Universal = std::is_same_v<U, U>;
#endif
// A type that is never used.
struct Never {};
} // namespace impl
template <typename T, typename E, bool include_message>
struct OkOrFail<Result<T, E, include_message>>
: public impl::NumericConversions<Result<T, E, include_message>> {
using V = Result<T, E, include_message>;
using Err = impl::ErrorType<V>;
using C = impl::Code<V>;
private:
OkOrFail(Err&& v): impl::NumericConversions<V>{std::move(v)} {}
OkOrFail(const OkOrFail& other) = delete;
OkOrFail(const OkOrFail&& other) = delete;
public:
// Checks if V is ok or fail
static bool IsOk(const V& val) { return val.ok(); }
// Turns V into a success value
static T Unwrap(V&& val) {
if constexpr (std::is_same_v<T, void>) {
assert(IsOk(val));
return;
} else {
return std::move(val.value());
}
}
// Consumes V when it's a fail value
static OkOrFail<V> Fail(V&& v) {
assert(!IsOk(v));
return OkOrFail<V>{std::move(v.error())};
}
// We specialize as much as possible to avoid ambiguous conversion with templated expected ctor.
// We don't need this specialization if `C` is numeric because that case is already covered by
// `NumericConversions`.
operator Result<std::conditional_t<impl::IsNumeric<C>, impl::Never, C>, E, include_message>()
const& {
return unexpected(this->error_);
}
operator Result<std::conditional_t<impl::IsNumeric<C>, impl::Never, C>, E, include_message>() && {
return unexpected(std::move(this->error_));
}
#ifdef __cpp_concepts
// The idea here is to match this template method to any type (not simply trivial types).
// The reason for including a constraint is to take advantage of the fact that a constrained
// method always has strictly lower precedence than a non-constrained method in template
// specialization rules (thus avoiding ambiguity). So we use a universally matching constraint to
// mark this function as less preferable (but still accepting of all types).
template <impl::Universal U>
operator Result<U, E, include_message>() const& {
return unexpected(this->error_);
}
template <impl::Universal U>
operator Result<U, E, include_message>() && {
return unexpected(std::move(this->error_));
}
#else
template <typename U>
operator Result<U, E, include_message>() const& {
return unexpected(this->error_);
}
template <typename U>
operator Result<U, E, include_message>() && {
return unexpected(std::move(this->error_));
}
#endif
static const std::string& ErrorMessage(const V& val) { return val.error().message(); }
};
// Macros for testing the results of functions that return android::base::Result.
// These also work with base::android::expected.
// For advanced matchers and customized error messages, see result-gtest.h.
#define ASSERT_RESULT_OK(stmt) \
if (const auto& tmp = (stmt); !tmp.ok()) \
FAIL() << "Value of: " << #stmt << "\n" \
<< " Actual: " << tmp.error().message() << "\n" \
<< "Expected: is ok\n"
#define EXPECT_RESULT_OK(stmt) \
if (const auto& tmp = (stmt); !tmp.ok()) \
ADD_FAILURE() << "Value of: " << #stmt << "\n" \
<< " Actual: " << tmp.error().message() << "\n" \
<< "Expected: is ok\n"
} // namespace base
} // namespace android