blob: e79601170b207b43faecc829e879032268854740 [file] [log] [blame]
/*
* Copyright 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <keymaster/soft_keymaster_device.h>
#include <assert.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <algorithm>
#include <vector>
#include <type_traits>
#include <openssl/x509.h>
#include <hardware/keymaster1.h>
#define LOG_TAG "SoftKeymasterDevice"
#include <cutils/log.h>
#include <keymaster/android_keymaster.h>
#include <keymaster/android_keymaster_messages.h>
#include <keymaster/android_keymaster_utils.h>
#include <keymaster/authorization_set.h>
#include <keymaster/soft_keymaster_context.h>
#include <keymaster/soft_keymaster_logger.h>
#include "openssl_utils.h"
struct keystore_module soft_keymaster1_device_module = {
.common =
{
.tag = HARDWARE_MODULE_TAG,
.module_api_version = KEYMASTER_MODULE_API_VERSION_1_0,
.hal_api_version = HARDWARE_HAL_API_VERSION,
.id = KEYSTORE_HARDWARE_MODULE_ID,
.name = "OpenSSL-based SoftKeymaster HAL",
.author = "The Android Open Source Project",
.methods = nullptr,
.dso = 0,
.reserved = {},
},
};
struct keystore_module soft_keymaster2_device_module = {
.common =
{
.tag = HARDWARE_MODULE_TAG,
.module_api_version = KEYMASTER_MODULE_API_VERSION_2_0,
.hal_api_version = HARDWARE_HAL_API_VERSION,
.id = KEYSTORE_HARDWARE_MODULE_ID,
.name = "OpenSSL-based SoftKeymaster HAL",
.author = "The Android Open Source Project",
.methods = nullptr,
.dso = 0,
.reserved = {},
},
};
namespace keymaster {
const size_t kMaximumAttestationChallengeLength = 128;
const size_t kOperationTableSize = 16;
template <typename T> std::vector<T> make_vector(const T* array, size_t len) {
return std::vector<T>(array, array + len);
}
// This helper class implements just enough of the C++ standard collection interface to be able to
// accept push_back calls, and it does nothing but count them. It's useful when you want to count
// insertions but not actually store anything. It's used in digest_set_is_full below to count the
// size of a set intersection.
struct PushbackCounter {
struct value_type {
template <typename T> value_type(const T&) {}
};
void push_back(const value_type&) { ++count; }
size_t count = 0;
};
static std::vector<keymaster_digest_t> full_digest_list = {
KM_DIGEST_MD5, KM_DIGEST_SHA1, KM_DIGEST_SHA_2_224,
KM_DIGEST_SHA_2_256, KM_DIGEST_SHA_2_384, KM_DIGEST_SHA_2_512};
template <typename Iter> static bool digest_set_is_full(Iter begin, Iter end) {
PushbackCounter counter;
std::set_intersection(begin, end, full_digest_list.begin(), full_digest_list.end(),
std::back_inserter(counter));
return counter.count == full_digest_list.size();
}
static keymaster_error_t add_digests(keymaster1_device_t* dev, keymaster_algorithm_t algorithm,
keymaster_purpose_t purpose,
SoftKeymasterDevice::DigestMap* map, bool* supports_all) {
auto key = std::make_pair(algorithm, purpose);
keymaster_digest_t* digests;
size_t digests_length;
keymaster_error_t error =
dev->get_supported_digests(dev, algorithm, purpose, &digests, &digests_length);
if (error != KM_ERROR_OK) {
LOG_E("Error %d getting supported digests from keymaster1 device", error);
return error;
}
std::unique_ptr<keymaster_digest_t, Malloc_Delete> digests_deleter(digests);
auto digest_vec = make_vector(digests, digests_length);
*supports_all = digest_set_is_full(digest_vec.begin(), digest_vec.end());
(*map)[key] = std::move(digest_vec);
return error;
}
static keymaster_error_t map_digests(keymaster1_device_t* dev, SoftKeymasterDevice::DigestMap* map,
bool* supports_all) {
map->clear();
*supports_all = true;
keymaster_algorithm_t sig_algorithms[] = {KM_ALGORITHM_RSA, KM_ALGORITHM_EC, KM_ALGORITHM_HMAC};
keymaster_purpose_t sig_purposes[] = {KM_PURPOSE_SIGN, KM_PURPOSE_VERIFY};
for (auto algorithm : sig_algorithms)
for (auto purpose : sig_purposes) {
bool alg_purpose_supports_all;
keymaster_error_t error =
add_digests(dev, algorithm, purpose, map, &alg_purpose_supports_all);
if (error != KM_ERROR_OK)
return error;
*supports_all &= alg_purpose_supports_all;
}
keymaster_algorithm_t crypt_algorithms[] = {KM_ALGORITHM_RSA};
keymaster_purpose_t crypt_purposes[] = {KM_PURPOSE_ENCRYPT, KM_PURPOSE_DECRYPT};
for (auto algorithm : crypt_algorithms)
for (auto purpose : crypt_purposes) {
bool alg_purpose_supports_all;
keymaster_error_t error =
add_digests(dev, algorithm, purpose, map, &alg_purpose_supports_all);
if (error != KM_ERROR_OK)
return error;
*supports_all &= alg_purpose_supports_all;
}
return KM_ERROR_OK;
}
SoftKeymasterDevice::SoftKeymasterDevice()
: wrapped_km0_device_(nullptr), wrapped_km1_device_(nullptr),
context_(new SoftKeymasterContext),
impl_(new AndroidKeymaster(context_, kOperationTableSize)), configured_(false) {
LOG_I("Creating device", 0);
LOG_D("Device address: %p", this);
initialize_device_struct(KEYMASTER_SOFTWARE_ONLY | KEYMASTER_BLOBS_ARE_STANDALONE |
KEYMASTER_SUPPORTS_EC);
}
SoftKeymasterDevice::SoftKeymasterDevice(SoftKeymasterContext* context)
: wrapped_km0_device_(nullptr), wrapped_km1_device_(nullptr), context_(context),
impl_(new AndroidKeymaster(context_, kOperationTableSize)), configured_(false) {
LOG_I("Creating test device", 0);
LOG_D("Device address: %p", this);
initialize_device_struct(KEYMASTER_SOFTWARE_ONLY | KEYMASTER_BLOBS_ARE_STANDALONE |
KEYMASTER_SUPPORTS_EC);
}
keymaster_error_t SoftKeymasterDevice::SetHardwareDevice(keymaster0_device_t* keymaster0_device) {
assert(keymaster0_device);
LOG_D("Reinitializing SoftKeymasterDevice to use HW keymaster0", 0);
if (!context_)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
supports_all_digests_ = false;
keymaster_error_t error = context_->SetHardwareDevice(keymaster0_device);
if (error != KM_ERROR_OK)
return error;
initialize_device_struct(keymaster0_device->flags);
module_name_ = km1_device_.common.module->name;
module_name_.append("(Wrapping ");
module_name_.append(keymaster0_device->common.module->name);
module_name_.append(")");
updated_module_ = *km1_device_.common.module;
updated_module_.name = module_name_.c_str();
km1_device_.common.module = &updated_module_;
wrapped_km0_device_ = keymaster0_device;
wrapped_km1_device_ = nullptr;
return KM_ERROR_OK;
}
keymaster_error_t SoftKeymasterDevice::SetHardwareDevice(keymaster1_device_t* keymaster1_device) {
assert(keymaster1_device);
LOG_D("Reinitializing SoftKeymasterDevice to use HW keymaster1", 0);
if (!context_)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
keymaster_error_t error =
map_digests(keymaster1_device, &km1_device_digests_, &supports_all_digests_);
if (error != KM_ERROR_OK)
return error;
error = context_->SetHardwareDevice(keymaster1_device);
if (error != KM_ERROR_OK)
return error;
initialize_device_struct(keymaster1_device->flags);
module_name_ = km1_device_.common.module->name;
module_name_.append(" (Wrapping ");
module_name_.append(keymaster1_device->common.module->name);
module_name_.append(")");
updated_module_ = *km1_device_.common.module;
updated_module_.name = module_name_.c_str();
km1_device_.common.module = &updated_module_;
wrapped_km0_device_ = nullptr;
wrapped_km1_device_ = keymaster1_device;
return KM_ERROR_OK;
}
bool SoftKeymasterDevice::Keymaster1DeviceIsGood() {
std::vector<keymaster_digest_t> expected_rsa_digests = {
KM_DIGEST_NONE, KM_DIGEST_MD5, KM_DIGEST_SHA1, KM_DIGEST_SHA_2_224,
KM_DIGEST_SHA_2_256, KM_DIGEST_SHA_2_384, KM_DIGEST_SHA_2_512};
std::vector<keymaster_digest_t> expected_ec_digests = {
KM_DIGEST_NONE, KM_DIGEST_SHA1, KM_DIGEST_SHA_2_224,
KM_DIGEST_SHA_2_256, KM_DIGEST_SHA_2_384, KM_DIGEST_SHA_2_512};
for (auto& entry : km1_device_digests_) {
if (entry.first.first == KM_ALGORITHM_RSA)
if (!std::is_permutation(entry.second.begin(), entry.second.end(),
expected_rsa_digests.begin()))
return false;
if (entry.first.first == KM_ALGORITHM_EC)
if (!std::is_permutation(entry.second.begin(), entry.second.end(),
expected_ec_digests.begin()))
return false;
}
return true;
}
void SoftKeymasterDevice::initialize_device_struct(uint32_t flags) {
memset(&km1_device_, 0, sizeof(km1_device_));
km1_device_.common.tag = HARDWARE_DEVICE_TAG;
km1_device_.common.version = 1;
km1_device_.common.module = reinterpret_cast<hw_module_t*>(&soft_keymaster1_device_module);
km1_device_.common.close = &close_device;
km1_device_.flags = flags;
km1_device_.context = this;
// keymaster0 APIs
km1_device_.generate_keypair = nullptr;
km1_device_.import_keypair = nullptr;
km1_device_.get_keypair_public = nullptr;
km1_device_.delete_keypair = nullptr;
km1_device_.delete_all = nullptr;
km1_device_.sign_data = nullptr;
km1_device_.verify_data = nullptr;
// keymaster1 APIs
km1_device_.get_supported_algorithms = get_supported_algorithms;
km1_device_.get_supported_block_modes = get_supported_block_modes;
km1_device_.get_supported_padding_modes = get_supported_padding_modes;
km1_device_.get_supported_digests = get_supported_digests;
km1_device_.get_supported_import_formats = get_supported_import_formats;
km1_device_.get_supported_export_formats = get_supported_export_formats;
km1_device_.add_rng_entropy = add_rng_entropy;
km1_device_.generate_key = generate_key;
km1_device_.get_key_characteristics = get_key_characteristics;
km1_device_.import_key = import_key;
km1_device_.export_key = export_key;
km1_device_.delete_key = delete_key;
km1_device_.delete_all_keys = delete_all_keys;
km1_device_.begin = begin;
km1_device_.update = update;
km1_device_.finish = finish;
km1_device_.abort = abort;
// keymaster2 APIs
memset(&km2_device_, 0, sizeof(km2_device_));
km2_device_.flags = flags;
km2_device_.context = this;
km2_device_.common.tag = HARDWARE_DEVICE_TAG;
km2_device_.common.version = 1;
km2_device_.common.module = reinterpret_cast<hw_module_t*>(&soft_keymaster2_device_module);
km2_device_.common.close = &close_device;
km2_device_.configure = configure;
km2_device_.add_rng_entropy = add_rng_entropy;
km2_device_.generate_key = generate_key;
km2_device_.get_key_characteristics = get_key_characteristics;
km2_device_.import_key = import_key;
km2_device_.export_key = export_key;
km2_device_.attest_key = attest_key;
km2_device_.upgrade_key = upgrade_key;
km2_device_.delete_key = delete_key;
km2_device_.delete_all_keys = delete_all_keys;
km2_device_.begin = begin;
km2_device_.update = update;
km2_device_.finish = finish;
km2_device_.abort = abort;
}
hw_device_t* SoftKeymasterDevice::hw_device() {
return &km1_device_.common;
}
keymaster1_device_t* SoftKeymasterDevice::keymaster_device() {
return &km1_device_;
}
keymaster2_device_t* SoftKeymasterDevice::keymaster2_device() {
return &km2_device_;
}
namespace {
keymaster_key_characteristics_t* BuildCharacteristics(const AuthorizationSet& hw_enforced,
const AuthorizationSet& sw_enforced) {
keymaster_key_characteristics_t* characteristics =
reinterpret_cast<keymaster_key_characteristics_t*>(
malloc(sizeof(keymaster_key_characteristics_t)));
if (characteristics) {
hw_enforced.CopyToParamSet(&characteristics->hw_enforced);
sw_enforced.CopyToParamSet(&characteristics->sw_enforced);
}
return characteristics;
}
template <typename RequestType>
void AddClientAndAppData(const keymaster_blob_t* client_id, const keymaster_blob_t* app_data,
RequestType* request) {
request->additional_params.Clear();
if (client_id)
request->additional_params.push_back(TAG_APPLICATION_ID, *client_id);
if (app_data)
request->additional_params.push_back(TAG_APPLICATION_DATA, *app_data);
}
template <typename T> SoftKeymasterDevice* convert_device(const T* dev) {
static_assert((std::is_same<T, keymaster0_device_t>::value ||
std::is_same<T, keymaster1_device_t>::value ||
std::is_same<T, keymaster2_device_t>::value),
"convert_device should only be applied to keymaster devices");
return reinterpret_cast<SoftKeymasterDevice*>(dev->context);
}
template <keymaster_tag_t Tag, keymaster_tag_type_t Type, typename KeymasterEnum>
bool FindTagValue(const keymaster_key_param_set_t& params,
TypedEnumTag<Type, Tag, KeymasterEnum> tag, KeymasterEnum* value) {
for (size_t i = 0; i < params.length; ++i)
if (params.params[i].tag == tag) {
*value = static_cast<KeymasterEnum>(params.params[i].enumerated);
return true;
}
return false;
}
} // unnamed namespaced
/* static */
int SoftKeymasterDevice::close_device(hw_device_t* dev) {
switch (dev->module->module_api_version) {
case KEYMASTER_MODULE_API_VERSION_2_0: {
delete convert_device(reinterpret_cast<keymaster2_device_t*>(dev));
break;
}
case KEYMASTER_MODULE_API_VERSION_1_0: {
delete convert_device(reinterpret_cast<keymaster1_device_t*>(dev));
break;
}
default:
return -1;
}
return 0;
}
/* static */
keymaster_error_t SoftKeymasterDevice::get_supported_algorithms(const keymaster1_device_t* dev,
keymaster_algorithm_t** algorithms,
size_t* algorithms_length) {
if (!dev)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
if (!algorithms || !algorithms_length)
return KM_ERROR_OUTPUT_PARAMETER_NULL;
const keymaster1_device_t* km1_dev = convert_device(dev)->wrapped_km1_device_;
if (km1_dev)
return km1_dev->get_supported_algorithms(km1_dev, algorithms, algorithms_length);
SupportedAlgorithmsRequest request;
SupportedAlgorithmsResponse response;
convert_device(dev)->impl_->SupportedAlgorithms(request, &response);
if (response.error != KM_ERROR_OK) {
LOG_E("get_supported_algorithms failed with %d", response.error);
return response.error;
}
*algorithms_length = response.results_length;
*algorithms =
reinterpret_cast<keymaster_algorithm_t*>(malloc(*algorithms_length * sizeof(**algorithms)));
if (!*algorithms)
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
std::copy(response.results, response.results + response.results_length, *algorithms);
return KM_ERROR_OK;
}
/* static */
keymaster_error_t SoftKeymasterDevice::get_supported_block_modes(const keymaster1_device_t* dev,
keymaster_algorithm_t algorithm,
keymaster_purpose_t purpose,
keymaster_block_mode_t** modes,
size_t* modes_length) {
if (!dev)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
if (!modes || !modes_length)
return KM_ERROR_OUTPUT_PARAMETER_NULL;
const keymaster1_device_t* km1_dev = convert_device(dev)->wrapped_km1_device_;
if (km1_dev)
return km1_dev->get_supported_block_modes(km1_dev, algorithm, purpose, modes, modes_length);
SupportedBlockModesRequest request;
request.algorithm = algorithm;
request.purpose = purpose;
SupportedBlockModesResponse response;
convert_device(dev)->impl_->SupportedBlockModes(request, &response);
if (response.error != KM_ERROR_OK) {
LOG_E("get_supported_block_modes failed with %d", response.error);
return response.error;
}
*modes_length = response.results_length;
*modes = reinterpret_cast<keymaster_block_mode_t*>(malloc(*modes_length * sizeof(**modes)));
if (!*modes)
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
std::copy(response.results, response.results + response.results_length, *modes);
return KM_ERROR_OK;
}
/* static */
keymaster_error_t SoftKeymasterDevice::get_supported_padding_modes(const keymaster1_device_t* dev,
keymaster_algorithm_t algorithm,
keymaster_purpose_t purpose,
keymaster_padding_t** modes,
size_t* modes_length) {
if (!dev)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
if (!modes || !modes_length)
return KM_ERROR_OUTPUT_PARAMETER_NULL;
const keymaster1_device_t* km1_dev = convert_device(dev)->wrapped_km1_device_;
if (km1_dev)
return km1_dev->get_supported_padding_modes(km1_dev, algorithm, purpose, modes,
modes_length);
SupportedPaddingModesRequest request;
request.algorithm = algorithm;
request.purpose = purpose;
SupportedPaddingModesResponse response;
convert_device(dev)->impl_->SupportedPaddingModes(request, &response);
if (response.error != KM_ERROR_OK) {
LOG_E("get_supported_padding_modes failed with %d", response.error);
return response.error;
}
*modes_length = response.results_length;
*modes = reinterpret_cast<keymaster_padding_t*>(malloc(*modes_length * sizeof(**modes)));
if (!*modes)
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
std::copy(response.results, response.results + response.results_length, *modes);
return KM_ERROR_OK;
}
/* static */
keymaster_error_t SoftKeymasterDevice::get_supported_digests(const keymaster1_device_t* dev,
keymaster_algorithm_t algorithm,
keymaster_purpose_t purpose,
keymaster_digest_t** digests,
size_t* digests_length) {
if (!dev)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
if (!digests || !digests_length)
return KM_ERROR_OUTPUT_PARAMETER_NULL;
const keymaster1_device_t* km1_dev = convert_device(dev)->wrapped_km1_device_;
if (km1_dev)
return km1_dev->get_supported_digests(km1_dev, algorithm, purpose, digests, digests_length);
SupportedDigestsRequest request;
request.algorithm = algorithm;
request.purpose = purpose;
SupportedDigestsResponse response;
convert_device(dev)->impl_->SupportedDigests(request, &response);
if (response.error != KM_ERROR_OK) {
LOG_E("get_supported_digests failed with %d", response.error);
return response.error;
}
*digests_length = response.results_length;
*digests = reinterpret_cast<keymaster_digest_t*>(malloc(*digests_length * sizeof(**digests)));
if (!*digests)
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
std::copy(response.results, response.results + response.results_length, *digests);
return KM_ERROR_OK;
}
/* static */
keymaster_error_t SoftKeymasterDevice::get_supported_import_formats(
const keymaster1_device_t* dev, keymaster_algorithm_t algorithm,
keymaster_key_format_t** formats, size_t* formats_length) {
if (!dev)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
if (!formats || !formats_length)
return KM_ERROR_OUTPUT_PARAMETER_NULL;
const keymaster1_device_t* km1_dev = convert_device(dev)->wrapped_km1_device_;
if (km1_dev)
return km1_dev->get_supported_import_formats(km1_dev, algorithm, formats, formats_length);
SupportedImportFormatsRequest request;
request.algorithm = algorithm;
SupportedImportFormatsResponse response;
convert_device(dev)->impl_->SupportedImportFormats(request, &response);
if (response.error != KM_ERROR_OK) {
LOG_E("get_supported_import_formats failed with %d", response.error);
return response.error;
}
*formats_length = response.results_length;
*formats =
reinterpret_cast<keymaster_key_format_t*>(malloc(*formats_length * sizeof(**formats)));
if (!*formats)
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
std::copy(response.results, response.results + response.results_length, *formats);
return KM_ERROR_OK;
}
/* static */
keymaster_error_t SoftKeymasterDevice::get_supported_export_formats(
const keymaster1_device_t* dev, keymaster_algorithm_t algorithm,
keymaster_key_format_t** formats, size_t* formats_length) {
if (!dev)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
if (!formats || !formats_length)
return KM_ERROR_OUTPUT_PARAMETER_NULL;
const keymaster1_device_t* km1_dev = convert_device(dev)->wrapped_km1_device_;
if (km1_dev)
return km1_dev->get_supported_export_formats(km1_dev, algorithm, formats, formats_length);
SupportedExportFormatsRequest request;
request.algorithm = algorithm;
SupportedExportFormatsResponse response;
convert_device(dev)->impl_->SupportedExportFormats(request, &response);
if (response.error != KM_ERROR_OK) {
LOG_E("get_supported_export_formats failed with %d", response.error);
return response.error;
}
*formats_length = response.results_length;
*formats =
reinterpret_cast<keymaster_key_format_t*>(malloc(*formats_length * sizeof(**formats)));
if (!*formats)
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
std::copy(response.results, response.results + *formats_length, *formats);
return KM_ERROR_OK;
}
/* static */
keymaster_error_t SoftKeymasterDevice::configure(const keymaster2_device_t* dev,
const keymaster_key_param_set_t* params) {
AuthorizationSet params_copy(*params);
ConfigureRequest request;
if (!params_copy.GetTagValue(TAG_OS_VERSION, &request.os_version) ||
!params_copy.GetTagValue(TAG_OS_PATCHLEVEL, &request.os_patchlevel)) {
LOG_E("Configuration parameters must contain OS version and patch level", 0);
return KM_ERROR_INVALID_ARGUMENT;
}
ConfigureResponse response;
convert_device(dev)->impl_->Configure(request, &response);
if (response.error == KM_ERROR_OK)
convert_device(dev)->configured_ = true;
return response.error;
}
/* static */
keymaster_error_t SoftKeymasterDevice::add_rng_entropy(const keymaster1_device_t* dev,
const uint8_t* data, size_t data_length) {
if (!dev)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
const keymaster1_device_t* km1_dev = convert_device(dev)->wrapped_km1_device_;
if (km1_dev)
return km1_dev->add_rng_entropy(km1_dev, data, data_length);
AddEntropyRequest request;
request.random_data.Reinitialize(data, data_length);
AddEntropyResponse response;
convert_device(dev)->impl_->AddRngEntropy(request, &response);
if (response.error != KM_ERROR_OK)
LOG_E("add_rng_entropy failed with %d", response.error);
return response.error;
}
/* static */
keymaster_error_t SoftKeymasterDevice::add_rng_entropy(const keymaster2_device_t* dev,
const uint8_t* data, size_t data_length) {
if (!dev)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
if (!convert_device(dev)->configured())
return KM_ERROR_KEYMASTER_NOT_CONFIGURED;
SoftKeymasterDevice* sk_dev = convert_device(dev);
return add_rng_entropy(&sk_dev->km1_device_, data, data_length);
}
template <typename Collection, typename Value> bool contains(const Collection& c, const Value& v) {
return std::find(c.begin(), c.end(), v) != c.end();
}
bool SoftKeymasterDevice::FindUnsupportedDigest(keymaster_algorithm_t algorithm,
keymaster_purpose_t purpose,
const AuthorizationSet& params,
keymaster_digest_t* unsupported) const {
assert(wrapped_km1_device_);
auto supported_digests = km1_device_digests_.find(std::make_pair(algorithm, purpose));
if (supported_digests == km1_device_digests_.end())
// Invalid algorith/purpose pair (e.g. EC encrypt). Let the error be handled by HW module.
return false;
for (auto& entry : params)
if (entry.tag == TAG_DIGEST)
if (!contains(supported_digests->second, entry.enumerated)) {
LOG_I("Digest %d requested but not supported by module %s", entry.enumerated,
wrapped_km1_device_->common.module->name);
*unsupported = static_cast<keymaster_digest_t>(entry.enumerated);
return true;
}
return false;
}
bool SoftKeymasterDevice::RequiresSoftwareDigesting(keymaster_algorithm_t algorithm,
keymaster_purpose_t purpose,
const AuthorizationSet& params) const {
assert(wrapped_km1_device_);
if (!wrapped_km1_device_)
return true;
switch (algorithm) {
case KM_ALGORITHM_AES:
LOG_D("Not performing software digesting for AES keys", algorithm);
return false;
case KM_ALGORITHM_HMAC:
case KM_ALGORITHM_RSA:
case KM_ALGORITHM_EC:
break;
}
keymaster_digest_t unsupported;
if (!FindUnsupportedDigest(algorithm, purpose, params, &unsupported)) {
LOG_D("Requested digest(s) supported for algorithm %d and purpose %d", algorithm, purpose);
return false;
}
return true;
}
bool SoftKeymasterDevice::KeyRequiresSoftwareDigesting(
const AuthorizationSet& key_description) const {
assert(wrapped_km1_device_);
if (!wrapped_km1_device_)
return true;
keymaster_algorithm_t algorithm;
if (!key_description.GetTagValue(TAG_ALGORITHM, &algorithm)) {
// The hardware module will return an error during keygen.
return false;
}
for (auto& entry : key_description)
if (entry.tag == TAG_PURPOSE) {
keymaster_purpose_t purpose = static_cast<keymaster_purpose_t>(entry.enumerated);
if (RequiresSoftwareDigesting(algorithm, purpose, key_description))
return true;
}
return false;
}
/* static */
keymaster_error_t SoftKeymasterDevice::generate_key(
const keymaster1_device_t* dev, const keymaster_key_param_set_t* params,
keymaster_key_blob_t* key_blob, keymaster_key_characteristics_t** characteristics) {
if (!dev || !params)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
if (!key_blob)
return KM_ERROR_OUTPUT_PARAMETER_NULL;
SoftKeymasterDevice* sk_dev = convert_device(dev);
GenerateKeyRequest request;
request.key_description.Reinitialize(*params);
keymaster1_device_t* km1_dev = sk_dev->wrapped_km1_device_;
if (km1_dev && !sk_dev->KeyRequiresSoftwareDigesting(request.key_description))
return km1_dev->generate_key(km1_dev, params, key_blob, characteristics);
GenerateKeyResponse response;
sk_dev->impl_->GenerateKey(request, &response);
if (response.error != KM_ERROR_OK)
return response.error;
key_blob->key_material_size = response.key_blob.key_material_size;
uint8_t* tmp = reinterpret_cast<uint8_t*>(malloc(key_blob->key_material_size));
if (!tmp)
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
memcpy(tmp, response.key_blob.key_material, response.key_blob.key_material_size);
key_blob->key_material = tmp;
if (characteristics) {
// This is a keymaster1 method, and keymaster1 doesn't include version info, so remove it.
response.enforced.erase(response.enforced.find(TAG_OS_VERSION));
response.enforced.erase(response.enforced.find(TAG_OS_PATCHLEVEL));
response.unenforced.erase(response.unenforced.find(TAG_OS_VERSION));
response.unenforced.erase(response.unenforced.find(TAG_OS_PATCHLEVEL));
*characteristics = BuildCharacteristics(response.enforced, response.unenforced);
if (!*characteristics)
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
}
return KM_ERROR_OK;
}
keymaster_error_t
SoftKeymasterDevice::generate_key(const keymaster2_device_t* dev, //
const keymaster_key_param_set_t* params,
keymaster_key_blob_t* key_blob,
keymaster_key_characteristics_t* characteristics) {
if (!dev)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
if (!convert_device(dev)->configured())
return KM_ERROR_KEYMASTER_NOT_CONFIGURED;
if (!key_blob)
return KM_ERROR_OUTPUT_PARAMETER_NULL;
SoftKeymasterDevice* sk_dev = convert_device(dev);
GenerateKeyRequest request;
request.key_description.Reinitialize(*params);
keymaster1_device_t* km1_dev = sk_dev->wrapped_km1_device_;
if (km1_dev && !sk_dev->KeyRequiresSoftwareDigesting(request.key_description)) {
keymaster_ec_curve_t curve;
if (request.key_description.Contains(TAG_ALGORITHM, KM_ALGORITHM_EC) &&
request.key_description.GetTagValue(TAG_EC_CURVE, &curve)) {
// Keymaster1 doesn't know about EC curves. We need to translate to key size.
uint32_t key_size_from_curve;
keymaster_error_t error = EcCurveToKeySize(curve, &key_size_from_curve);
if (error != KM_ERROR_OK) {
return error;
}
uint32_t key_size_from_desc;
if (request.key_description.GetTagValue(TAG_KEY_SIZE, &key_size_from_desc)) {
if (key_size_from_desc != key_size_from_curve) {
return KM_ERROR_INVALID_ARGUMENT;
}
} else {
request.key_description.push_back(TAG_KEY_SIZE, key_size_from_curve);
}
}
keymaster_key_characteristics_t* chars_ptr;
keymaster_error_t error = km1_dev->generate_key(km1_dev, &request.key_description, key_blob,
characteristics ? &chars_ptr : nullptr);
if (error != KM_ERROR_OK)
return error;
if (characteristics) {
*characteristics = *chars_ptr;
free(chars_ptr);
}
return KM_ERROR_OK;
}
GenerateKeyResponse response;
sk_dev->impl_->GenerateKey(request, &response);
if (response.error != KM_ERROR_OK)
return response.error;
key_blob->key_material_size = response.key_blob.key_material_size;
uint8_t* tmp = reinterpret_cast<uint8_t*>(malloc(key_blob->key_material_size));
if (!tmp)
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
memcpy(tmp, response.key_blob.key_material, response.key_blob.key_material_size);
key_blob->key_material = tmp;
if (characteristics) {
response.enforced.CopyToParamSet(&characteristics->hw_enforced);
response.unenforced.CopyToParamSet(&characteristics->sw_enforced);
}
return KM_ERROR_OK;
}
/* static */
keymaster_error_t SoftKeymasterDevice::get_key_characteristics(
const keymaster1_device_t* dev, const keymaster_key_blob_t* key_blob,
const keymaster_blob_t* client_id, const keymaster_blob_t* app_data,
keymaster_key_characteristics_t** characteristics) {
if (!dev || !key_blob || !key_blob->key_material)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
if (!characteristics)
return KM_ERROR_OUTPUT_PARAMETER_NULL;
const keymaster1_device_t* km1_dev = convert_device(dev)->wrapped_km1_device_;
if (km1_dev) {
keymaster_error_t error = km1_dev->get_key_characteristics(km1_dev, key_blob, client_id,
app_data, characteristics);
if (error != KM_ERROR_INVALID_KEY_BLOB) {
return error;
}
// If we got "invalid blob", continue to try with the software device. This might be a
// software key blob.
}
GetKeyCharacteristicsRequest request;
request.SetKeyMaterial(*key_blob);
AddClientAndAppData(client_id, app_data, &request);
GetKeyCharacteristicsResponse response;
convert_device(dev)->impl_->GetKeyCharacteristics(request, &response);
if (response.error != KM_ERROR_OK)
return response.error;
// This is a keymaster1 method, and keymaster1 doesn't include version info, so remove it.
response.enforced.erase(response.enforced.find(TAG_OS_VERSION));
response.enforced.erase(response.enforced.find(TAG_OS_PATCHLEVEL));
response.unenforced.erase(response.unenforced.find(TAG_OS_VERSION));
response.unenforced.erase(response.unenforced.find(TAG_OS_PATCHLEVEL));
*characteristics = BuildCharacteristics(response.enforced, response.unenforced);
if (!*characteristics)
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
return KM_ERROR_OK;
}
/* static */
keymaster_error_t SoftKeymasterDevice::get_key_characteristics(
const keymaster2_device_t* dev, const keymaster_key_blob_t* key_blob,
const keymaster_blob_t* client_id, const keymaster_blob_t* app_data,
keymaster_key_characteristics_t* characteristics) {
if (!dev)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
if (!convert_device(dev)->configured())
return KM_ERROR_KEYMASTER_NOT_CONFIGURED;
if (!characteristics)
return KM_ERROR_OUTPUT_PARAMETER_NULL;
SoftKeymasterDevice* sk_dev = convert_device(dev);
GetKeyCharacteristicsRequest request;
request.SetKeyMaterial(*key_blob);
AddClientAndAppData(client_id, app_data, &request);
GetKeyCharacteristicsResponse response;
sk_dev->impl_->GetKeyCharacteristics(request, &response);
if (response.error != KM_ERROR_OK)
return response.error;
response.enforced.CopyToParamSet(&characteristics->hw_enforced);
response.unenforced.CopyToParamSet(&characteristics->sw_enforced);
return KM_ERROR_OK;
}
/* static */
keymaster_error_t SoftKeymasterDevice::import_key(
const keymaster1_device_t* dev, const keymaster_key_param_set_t* params,
keymaster_key_format_t key_format, const keymaster_blob_t* key_data,
keymaster_key_blob_t* key_blob, keymaster_key_characteristics_t** characteristics) {
if (!params || !key_data)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
if (!key_blob)
return KM_ERROR_OUTPUT_PARAMETER_NULL;
SoftKeymasterDevice* sk_dev = convert_device(dev);
ImportKeyRequest request;
request.key_description.Reinitialize(*params);
keymaster1_device_t* km1_dev = sk_dev->wrapped_km1_device_;
if (km1_dev && !sk_dev->KeyRequiresSoftwareDigesting(request.key_description))
return km1_dev->import_key(km1_dev, params, key_format, key_data, key_blob,
characteristics);
if (characteristics)
*characteristics = nullptr;
request.key_format = key_format;
request.SetKeyMaterial(key_data->data, key_data->data_length);
ImportKeyResponse response;
convert_device(dev)->impl_->ImportKey(request, &response);
if (response.error != KM_ERROR_OK)
return response.error;
key_blob->key_material_size = response.key_blob.key_material_size;
key_blob->key_material = reinterpret_cast<uint8_t*>(malloc(key_blob->key_material_size));
if (!key_blob->key_material)
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
memcpy(const_cast<uint8_t*>(key_blob->key_material), response.key_blob.key_material,
response.key_blob.key_material_size);
if (characteristics) {
*characteristics = BuildCharacteristics(response.enforced, response.unenforced);
if (!*characteristics)
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
}
return KM_ERROR_OK;
}
/* static */
keymaster_error_t SoftKeymasterDevice::import_key(
const keymaster2_device_t* dev, const keymaster_key_param_set_t* params,
keymaster_key_format_t key_format, const keymaster_blob_t* key_data,
keymaster_key_blob_t* key_blob, keymaster_key_characteristics_t* characteristics) {
if (!dev)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
if (!convert_device(dev)->configured())
return KM_ERROR_KEYMASTER_NOT_CONFIGURED;
SoftKeymasterDevice* sk_dev = convert_device(dev);
keymaster_error_t error;
if (characteristics) {
keymaster_key_characteristics_t* characteristics_ptr;
error = import_key(&sk_dev->km1_device_, params, key_format, key_data, key_blob,
&characteristics_ptr);
if (error == KM_ERROR_OK) {
*characteristics = *characteristics_ptr;
free(characteristics_ptr);
}
} else {
error = import_key(&sk_dev->km1_device_, params, key_format, key_data, key_blob, nullptr);
}
return error;
}
/* static */
keymaster_error_t SoftKeymasterDevice::export_key(const keymaster1_device_t* dev,
keymaster_key_format_t export_format,
const keymaster_key_blob_t* key_to_export,
const keymaster_blob_t* client_id,
const keymaster_blob_t* app_data,
keymaster_blob_t* export_data) {
if (!key_to_export || !key_to_export->key_material)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
if (!export_data)
return KM_ERROR_OUTPUT_PARAMETER_NULL;
const keymaster1_device_t* km1_dev = convert_device(dev)->wrapped_km1_device_;
if (km1_dev)
return km1_dev->export_key(km1_dev, export_format, key_to_export, client_id, app_data,
export_data);
export_data->data = nullptr;
export_data->data_length = 0;
ExportKeyRequest request;
request.key_format = export_format;
request.SetKeyMaterial(*key_to_export);
AddClientAndAppData(client_id, app_data, &request);
ExportKeyResponse response;
convert_device(dev)->impl_->ExportKey(request, &response);
if (response.error != KM_ERROR_OK)
return response.error;
export_data->data_length = response.key_data_length;
uint8_t* tmp = reinterpret_cast<uint8_t*>(malloc(export_data->data_length));
if (!tmp)
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
memcpy(tmp, response.key_data, export_data->data_length);
export_data->data = tmp;
return KM_ERROR_OK;
}
/* static */
keymaster_error_t SoftKeymasterDevice::export_key(const keymaster2_device_t* dev,
keymaster_key_format_t export_format,
const keymaster_key_blob_t* key_to_export,
const keymaster_blob_t* client_id,
const keymaster_blob_t* app_data,
keymaster_blob_t* export_data) {
if (!dev)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
if (!convert_device(dev)->configured())
return KM_ERROR_KEYMASTER_NOT_CONFIGURED;
SoftKeymasterDevice* sk_dev = convert_device(dev);
return export_key(&sk_dev->km1_device_, export_format, key_to_export, client_id, app_data,
export_data);
}
/* static */
keymaster_error_t SoftKeymasterDevice::attest_key(const keymaster2_device_t* dev,
const keymaster_key_blob_t* key_to_attest,
const keymaster_key_param_set_t* attest_params,
keymaster_cert_chain_t* cert_chain) {
if (!dev || !key_to_attest || !attest_params || !cert_chain)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
if (!convert_device(dev)->configured())
return KM_ERROR_KEYMASTER_NOT_CONFIGURED;
*cert_chain = {};
AttestKeyRequest request;
request.SetKeyMaterial(*key_to_attest);
request.attest_params.Reinitialize(*attest_params);
keymaster_blob_t attestation_challenge = {};
request.attest_params.GetTagValue(TAG_ATTESTATION_CHALLENGE, &attestation_challenge);
if (attestation_challenge.data_length > kMaximumAttestationChallengeLength) {
LOG_E("%d-byte attestation challenge; only %d bytes allowed",
attestation_challenge.data_length, kMaximumAttestationChallengeLength);
return KM_ERROR_INVALID_INPUT_LENGTH;
}
AttestKeyResponse response;
convert_device(dev)->impl_->AttestKey(request, &response);
if (response.error != KM_ERROR_OK)
return response.error;
// Allocate and clear storage for cert_chain.
keymaster_cert_chain_t& rsp_chain = response.certificate_chain;
cert_chain->entries = reinterpret_cast<keymaster_blob_t*>(
malloc(rsp_chain.entry_count * sizeof(*cert_chain->entries)));
if (!cert_chain->entries)
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
cert_chain->entry_count = rsp_chain.entry_count;
for (keymaster_blob_t& entry : array_range(cert_chain->entries, cert_chain->entry_count))
entry = {};
// Copy cert_chain contents
size_t i = 0;
for (keymaster_blob_t& entry : array_range(rsp_chain.entries, rsp_chain.entry_count)) {
cert_chain->entries[i].data = reinterpret_cast<uint8_t*>(malloc(entry.data_length));
if (!cert_chain->entries[i].data) {
keymaster_free_cert_chain(cert_chain);
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
}
cert_chain->entries[i].data_length = entry.data_length;
memcpy(const_cast<uint8_t*>(cert_chain->entries[i].data), entry.data, entry.data_length);
++i;
}
return KM_ERROR_OK;
}
/* static */
keymaster_error_t SoftKeymasterDevice::upgrade_key(const keymaster2_device_t* dev,
const keymaster_key_blob_t* key_to_upgrade,
const keymaster_key_param_set_t* upgrade_params,
keymaster_key_blob_t* upgraded_key) {
if (!dev || !key_to_upgrade || !upgrade_params)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
if (!upgraded_key)
return KM_ERROR_OUTPUT_PARAMETER_NULL;
if (!convert_device(dev)->configured())
return KM_ERROR_KEYMASTER_NOT_CONFIGURED;
UpgradeKeyRequest request;
request.SetKeyMaterial(*key_to_upgrade);
request.upgrade_params.Reinitialize(*upgrade_params);
UpgradeKeyResponse response;
convert_device(dev)->impl_->UpgradeKey(request, &response);
if (response.error != KM_ERROR_OK)
return response.error;
upgraded_key->key_material_size = response.upgraded_key.key_material_size;
uint8_t* tmp = reinterpret_cast<uint8_t*>(malloc(upgraded_key->key_material_size));
if (!tmp)
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
memcpy(tmp, response.upgraded_key.key_material, response.upgraded_key.key_material_size);
upgraded_key->key_material = tmp;
return KM_ERROR_OK;
}
/* static */
keymaster_error_t SoftKeymasterDevice::delete_key(const keymaster1_device_t* dev,
const keymaster_key_blob_t* key) {
if (!dev || !key || !key->key_material)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
KeymasterKeyBlob blob(*key);
return convert_device(dev)->context_->DeleteKey(blob);
}
/* static */
keymaster_error_t SoftKeymasterDevice::delete_key(const keymaster2_device_t* dev,
const keymaster_key_blob_t* key) {
if (!dev || !key || !key->key_material)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
if (!convert_device(dev)->configured())
return KM_ERROR_KEYMASTER_NOT_CONFIGURED;
KeymasterKeyBlob blob(*key);
return convert_device(dev)->context_->DeleteKey(blob);
}
/* static */
keymaster_error_t SoftKeymasterDevice::delete_all_keys(const keymaster1_device_t* dev) {
if (!dev)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
return convert_device(dev)->context_->DeleteAllKeys();
}
/* static */
keymaster_error_t SoftKeymasterDevice::delete_all_keys(const keymaster2_device_t* dev) {
if (!dev)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
if (!convert_device(dev)->configured())
return KM_ERROR_KEYMASTER_NOT_CONFIGURED;
return convert_device(dev)->context_->DeleteAllKeys();
}
/* static */
keymaster_error_t SoftKeymasterDevice::begin(const keymaster1_device_t* dev,
keymaster_purpose_t purpose,
const keymaster_key_blob_t* key,
const keymaster_key_param_set_t* in_params,
keymaster_key_param_set_t* out_params,
keymaster_operation_handle_t* operation_handle) {
if (!dev || !key || !key->key_material)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
if (!operation_handle)
return KM_ERROR_OUTPUT_PARAMETER_NULL;
SoftKeymasterDevice* skdev = convert_device(dev);
const keymaster1_device_t* km1_dev = skdev->wrapped_km1_device_;
if (km1_dev) {
AuthorizationSet in_params_set(*in_params);
KeymasterKeyBlob key_material;
AuthorizationSet hw_enforced;
AuthorizationSet sw_enforced;
skdev->context_->ParseKeyBlob(KeymasterKeyBlob(*key), in_params_set, &key_material,
&hw_enforced, &sw_enforced);
keymaster_algorithm_t algorithm = KM_ALGORITHM_AES;
if (!hw_enforced.GetTagValue(TAG_ALGORITHM, &algorithm) &&
!sw_enforced.GetTagValue(TAG_ALGORITHM, &algorithm)) {
return KM_ERROR_INVALID_KEY_BLOB;
}
if (algorithm == KM_ALGORITHM_HMAC) {
// Because HMAC keys can have only one digest, in_params_set doesn't contain it. We
// need to get the digest from the key and add it to in_params_set.
keymaster_digest_t digest;
if (!hw_enforced.GetTagValue(TAG_DIGEST, &digest) &&
!sw_enforced.GetTagValue(TAG_DIGEST, &digest)) {
return KM_ERROR_INVALID_KEY_BLOB;
}
in_params_set.push_back(TAG_DIGEST, digest);
}
if (!skdev->RequiresSoftwareDigesting(algorithm, purpose, in_params_set)) {
LOG_D("Operation supported by %s, passing through to keymaster1 module",
km1_dev->common.module->name);
return km1_dev->begin(km1_dev, purpose, key, in_params, out_params, operation_handle);
}
LOG_I("Doing software digesting for keymaster1 module %s", km1_dev->common.module->name);
}
if (out_params) {
out_params->params = nullptr;
out_params->length = 0;
}
BeginOperationRequest request;
request.purpose = purpose;
request.SetKeyMaterial(*key);
request.additional_params.Reinitialize(*in_params);
BeginOperationResponse response;
skdev->impl_->BeginOperation(request, &response);
if (response.error != KM_ERROR_OK)
return response.error;
if (response.output_params.size() > 0) {
if (out_params)
response.output_params.CopyToParamSet(out_params);
else
return KM_ERROR_OUTPUT_PARAMETER_NULL;
}
*operation_handle = response.op_handle;
return KM_ERROR_OK;
}
/* static */
keymaster_error_t SoftKeymasterDevice::begin(const keymaster2_device_t* dev,
keymaster_purpose_t purpose,
const keymaster_key_blob_t* key,
const keymaster_key_param_set_t* in_params,
keymaster_key_param_set_t* out_params,
keymaster_operation_handle_t* operation_handle) {
if (!dev)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
if (!convert_device(dev)->configured())
return KM_ERROR_KEYMASTER_NOT_CONFIGURED;
SoftKeymasterDevice* sk_dev = convert_device(dev);
return begin(&sk_dev->km1_device_, purpose, key, in_params, out_params, operation_handle);
}
/* static */
keymaster_error_t SoftKeymasterDevice::update(const keymaster1_device_t* dev,
keymaster_operation_handle_t operation_handle,
const keymaster_key_param_set_t* in_params,
const keymaster_blob_t* input, size_t* input_consumed,
keymaster_key_param_set_t* out_params,
keymaster_blob_t* output) {
if (!input)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
if (!input_consumed)
return KM_ERROR_OUTPUT_PARAMETER_NULL;
const keymaster1_device_t* km1_dev = convert_device(dev)->wrapped_km1_device_;
if (km1_dev && !convert_device(dev)->impl_->has_operation(operation_handle)) {
// This operation is being handled by km1_dev (or doesn't exist). Pass it through to
// km1_dev. Otherwise, we'll use the software AndroidKeymaster, which may delegate to
// km1_dev after doing necessary digesting.
return km1_dev->update(km1_dev, operation_handle, in_params, input, input_consumed,
out_params, output);
}
if (out_params) {
out_params->params = nullptr;
out_params->length = 0;
}
if (output) {
output->data = nullptr;
output->data_length = 0;
}
UpdateOperationRequest request;
request.op_handle = operation_handle;
if (input)
request.input.Reinitialize(input->data, input->data_length);
if (in_params)
request.additional_params.Reinitialize(*in_params);
UpdateOperationResponse response;
convert_device(dev)->impl_->UpdateOperation(request, &response);
if (response.error != KM_ERROR_OK)
return response.error;
if (response.output_params.size() > 0) {
if (out_params)
response.output_params.CopyToParamSet(out_params);
else
return KM_ERROR_OUTPUT_PARAMETER_NULL;
}
*input_consumed = response.input_consumed;
if (output) {
output->data_length = response.output.available_read();
uint8_t* tmp = reinterpret_cast<uint8_t*>(malloc(output->data_length));
if (!tmp)
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
memcpy(tmp, response.output.peek_read(), output->data_length);
output->data = tmp;
} else if (response.output.available_read() > 0) {
return KM_ERROR_OUTPUT_PARAMETER_NULL;
}
return KM_ERROR_OK;
}
/* static */
keymaster_error_t SoftKeymasterDevice::update(const keymaster2_device_t* dev,
keymaster_operation_handle_t operation_handle,
const keymaster_key_param_set_t* in_params,
const keymaster_blob_t* input, size_t* input_consumed,
keymaster_key_param_set_t* out_params,
keymaster_blob_t* output) {
if (!dev)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
if (!convert_device(dev)->configured())
return KM_ERROR_KEYMASTER_NOT_CONFIGURED;
SoftKeymasterDevice* sk_dev = convert_device(dev);
return update(&sk_dev->km1_device_, operation_handle, in_params, input, input_consumed,
out_params, output);
}
/* static */
keymaster_error_t SoftKeymasterDevice::finish(const keymaster1_device_t* dev,
keymaster_operation_handle_t operation_handle,
const keymaster_key_param_set_t* params,
const keymaster_blob_t* signature,
keymaster_key_param_set_t* out_params,
keymaster_blob_t* output) {
if (!dev)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
const keymaster1_device_t* km1_dev = convert_device(dev)->wrapped_km1_device_;
if (km1_dev && !convert_device(dev)->impl_->has_operation(operation_handle)) {
// This operation is being handled by km1_dev (or doesn't exist). Pass it through to
// km1_dev. Otherwise, we'll use the software AndroidKeymaster, which may delegate to
// km1_dev after doing necessary digesting.
return km1_dev->finish(km1_dev, operation_handle, params, signature, out_params, output);
}
if (out_params) {
out_params->params = nullptr;
out_params->length = 0;
}
if (output) {
output->data = nullptr;
output->data_length = 0;
}
FinishOperationRequest request;
request.op_handle = operation_handle;
if (signature && signature->data_length > 0)
request.signature.Reinitialize(signature->data, signature->data_length);
request.additional_params.Reinitialize(*params);
FinishOperationResponse response;
convert_device(dev)->impl_->FinishOperation(request, &response);
if (response.error != KM_ERROR_OK)
return response.error;
if (response.output_params.size() > 0) {
if (out_params)
response.output_params.CopyToParamSet(out_params);
else
return KM_ERROR_OUTPUT_PARAMETER_NULL;
}
if (output) {
output->data_length = response.output.available_read();
uint8_t* tmp = reinterpret_cast<uint8_t*>(malloc(output->data_length));
if (!tmp)
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
memcpy(tmp, response.output.peek_read(), output->data_length);
output->data = tmp;
} else if (response.output.available_read() > 0) {
return KM_ERROR_OUTPUT_PARAMETER_NULL;
}
return KM_ERROR_OK;
}
struct KeyParamSetContents_Delete {
void operator()(keymaster_key_param_set_t* p) { keymaster_free_param_set(p); }
};
/* static */
keymaster_error_t SoftKeymasterDevice::finish(const keymaster2_device_t* dev,
keymaster_operation_handle_t operation_handle,
const keymaster_key_param_set_t* params,
const keymaster_blob_t* input,
const keymaster_blob_t* signature,
keymaster_key_param_set_t* out_params,
keymaster_blob_t* output) {
if (!dev)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
if (!convert_device(dev)->configured())
return KM_ERROR_KEYMASTER_NOT_CONFIGURED;
if (out_params)
*out_params = {};
if (output)
*output = {};
const keymaster1_device_t* km1_dev = convert_device(dev)->wrapped_km1_device_;
if (km1_dev && !convert_device(dev)->impl_->has_operation(operation_handle)) {
// This operation is being handled by km1_dev (or doesn't exist). Pass it through to
// km1_dev. Otherwise, we'll use the software AndroidKeymaster, which may delegate to
// km1_dev after doing necessary digesting.
std::vector<uint8_t> accumulated_output;
AuthorizationSet accumulated_out_params;
AuthorizationSet mutable_params(*params);
if (input && input->data && input->data_length) {
// Keymaster1 doesn't support input to finish(). Call update() to process input.
accumulated_output.reserve(input->data_length); // Guess at output size
keymaster_blob_t mutable_input = *input;
while (mutable_input.data_length > 0) {
keymaster_key_param_set_t update_out_params = {};
keymaster_blob_t update_output = {};
size_t input_consumed = 0;
keymaster_error_t error =
km1_dev->update(km1_dev, operation_handle, &mutable_params, &mutable_input,
&input_consumed, &update_out_params, &update_output);
if (error != KM_ERROR_OK) {
return error;
}
accumulated_output.reserve(accumulated_output.size() + update_output.data_length);
std::copy(update_output.data, update_output.data + update_output.data_length,
std::back_inserter(accumulated_output));
free(const_cast<uint8_t*>(update_output.data));
accumulated_out_params.push_back(update_out_params);
keymaster_free_param_set(&update_out_params);
mutable_input.data += input_consumed;
mutable_input.data_length -= input_consumed;
// AAD should only be sent once, so remove it if present.
int aad_pos = mutable_params.find(TAG_ASSOCIATED_DATA);
if (aad_pos != -1) {
mutable_params.erase(aad_pos);
}
if (input_consumed == 0) {
// Apparently we need more input than we have to complete an operation.
km1_dev->abort(km1_dev, operation_handle);
return KM_ERROR_INVALID_INPUT_LENGTH;
}
}
}
keymaster_key_param_set_t finish_out_params = {};
keymaster_blob_t finish_output = {};
keymaster_error_t error = km1_dev->finish(km1_dev, operation_handle, &mutable_params,
signature, &finish_out_params, &finish_output);
if (error != KM_ERROR_OK) {
return error;
}
if (!accumulated_out_params.empty()) {
accumulated_out_params.push_back(finish_out_params);
keymaster_free_param_set(&finish_out_params);
accumulated_out_params.Deduplicate();
accumulated_out_params.CopyToParamSet(&finish_out_params);
}
std::unique_ptr<keymaster_key_param_set_t, KeyParamSetContents_Delete>
finish_out_params_deleter(&finish_out_params);
if (!accumulated_output.empty()) {
size_t finish_out_length = accumulated_output.size() + finish_output.data_length;
uint8_t* finish_out_buf = reinterpret_cast<uint8_t*>(malloc(finish_out_length));
std::copy(accumulated_output.begin(), accumulated_output.end(), finish_out_buf);
std::copy(finish_output.data, finish_output.data + finish_output.data_length,
finish_out_buf + accumulated_output.size());
free(const_cast<uint8_t*>(finish_output.data));
finish_output.data_length = finish_out_length;
finish_output.data = finish_out_buf;
}
std::unique_ptr<uint8_t, Malloc_Delete> finish_output_deleter(
const_cast<uint8_t*>(finish_output.data));
if ((!out_params && finish_out_params.length) || (!output && finish_output.data_length)) {
return KM_ERROR_OUTPUT_PARAMETER_NULL;
}
if (out_params) {
*out_params = finish_out_params;
}
if (output) {
*output = finish_output;
}
finish_out_params_deleter.release();
finish_output_deleter.release();
return KM_ERROR_OK;
}
FinishOperationRequest request;
request.op_handle = operation_handle;
if (signature && signature->data_length > 0)
request.signature.Reinitialize(signature->data, signature->data_length);
if (input && input->data_length > 0)
request.input.Reinitialize(input->data, input->data_length);
request.additional_params.Reinitialize(*params);
FinishOperationResponse response;
convert_device(dev)->impl_->FinishOperation(request, &response);
if (response.error != KM_ERROR_OK)
return response.error;
if (response.output_params.size() > 0) {
if (out_params)
response.output_params.CopyToParamSet(out_params);
else
return KM_ERROR_OUTPUT_PARAMETER_NULL;
}
if (output) {
output->data_length = response.output.available_read();
uint8_t* tmp = reinterpret_cast<uint8_t*>(malloc(output->data_length));
if (!tmp)
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
memcpy(tmp, response.output.peek_read(), output->data_length);
output->data = tmp;
} else if (response.output.available_read() > 0) {
return KM_ERROR_OUTPUT_PARAMETER_NULL;
}
return KM_ERROR_OK;
}
/* static */
keymaster_error_t SoftKeymasterDevice::abort(const keymaster1_device_t* dev,
keymaster_operation_handle_t operation_handle) {
const keymaster1_device_t* km1_dev = convert_device(dev)->wrapped_km1_device_;
if (km1_dev && !convert_device(dev)->impl_->has_operation(operation_handle)) {
// This operation is being handled by km1_dev (or doesn't exist). Pass it through to
// km1_dev. Otherwise, we'll use the software AndroidKeymaster, which may delegate to
// km1_dev.
return km1_dev->abort(km1_dev, operation_handle);
}
AbortOperationRequest request;
request.op_handle = operation_handle;
AbortOperationResponse response;
convert_device(dev)->impl_->AbortOperation(request, &response);
return response.error;
}
/* static */
keymaster_error_t SoftKeymasterDevice::abort(const keymaster2_device_t* dev,
keymaster_operation_handle_t operation_handle) {
if (!dev)
return KM_ERROR_UNEXPECTED_NULL_POINTER;
if (!convert_device(dev)->configured())
return KM_ERROR_KEYMASTER_NOT_CONFIGURED;
SoftKeymasterDevice* sk_dev = convert_device(dev);
return abort(&sk_dev->km1_device_, operation_handle);
}
/* static */
void SoftKeymasterDevice::StoreDefaultNewKeyParams(keymaster_algorithm_t algorithm,
AuthorizationSet* auth_set) {
auth_set->push_back(TAG_PURPOSE, KM_PURPOSE_SIGN);
auth_set->push_back(TAG_PURPOSE, KM_PURPOSE_VERIFY);
auth_set->push_back(TAG_ALL_USERS);
auth_set->push_back(TAG_NO_AUTH_REQUIRED);
// All digests.
auth_set->push_back(TAG_DIGEST, KM_DIGEST_NONE);
auth_set->push_back(TAG_DIGEST, KM_DIGEST_MD5);
auth_set->push_back(TAG_DIGEST, KM_DIGEST_SHA1);
auth_set->push_back(TAG_DIGEST, KM_DIGEST_SHA_2_224);
auth_set->push_back(TAG_DIGEST, KM_DIGEST_SHA_2_256);
auth_set->push_back(TAG_DIGEST, KM_DIGEST_SHA_2_384);
auth_set->push_back(TAG_DIGEST, KM_DIGEST_SHA_2_512);
if (algorithm == KM_ALGORITHM_RSA) {
auth_set->push_back(TAG_PURPOSE, KM_PURPOSE_ENCRYPT);
auth_set->push_back(TAG_PURPOSE, KM_PURPOSE_DECRYPT);
auth_set->push_back(TAG_PADDING, KM_PAD_NONE);
auth_set->push_back(TAG_PADDING, KM_PAD_RSA_PKCS1_1_5_SIGN);
auth_set->push_back(TAG_PADDING, KM_PAD_RSA_PKCS1_1_5_ENCRYPT);
auth_set->push_back(TAG_PADDING, KM_PAD_RSA_PSS);
auth_set->push_back(TAG_PADDING, KM_PAD_RSA_OAEP);
}
}
} // namespace keymaster