blob: 6d5de1ba60e0de02f45716c267119df9d0e81599 [file] [log] [blame]
/*
* Copyright 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
namespace keymaster {
using std::forward;
using std::move;
/*
* Array Manipulation functions. This set of templated inline functions provides some nice tools
* for operating on c-style arrays. C-style arrays actually do have a defined size associated with
* them, as long as they are not allowed to decay to a pointer. These template methods exploit this
* to allow size-based array operations without explicitly specifying the size. If passed a pointer
* rather than an array, they'll fail to compile.
*/
/**
* Return the size in bytes of the array \p a.
*/
template <typename T, size_t N> inline size_t array_size(const T (&a)[N]) {
return sizeof(a);
}
/**
* Return the number of elements in array \p a.
*/
template <typename T, size_t N> inline size_t array_length(const T (&)[N]) {
return N;
}
/**
* Duplicate the array \p a. The memory for the new array is allocated and the caller takes
* responsibility.
*/
template <typename T> inline T* dup_array(const T* a, size_t n) {
T* dup = new (std::nothrow) T[n];
if (dup)
for (size_t i = 0; i < n; ++i)
dup[i] = a[i];
return dup;
}
/**
* Duplicate the array \p a. The memory for the new array is allocated and the caller takes
* responsibility. Note that the dup is necessarily returned as a pointer, so size is lost. Call
* array_length() on the original array to discover the size.
*/
template <typename T, size_t N> inline T* dup_array(const T (&a)[N]) {
return dup_array(a, N);
}
/**
* Duplicate the buffer \p buf. The memory for the new buffer is allocated and the caller takes
* responsibility.
*/
uint8_t* dup_buffer(const void* buf, size_t size);
/**
* Copy the contents of array \p arr to \p dest.
*/
template <typename T, size_t N> inline void copy_array(const T (&arr)[N], T* dest) {
for (size_t i = 0; i < N; ++i)
dest[i] = arr[i];
}
/**
* Search array \p a for value \p val, returning true if found. Note that this function is
* early-exit, meaning that it should not be used in contexts where timing analysis attacks could be
* a concern.
*/
template <typename T, size_t N> inline bool array_contains(const T (&a)[N], T val) {
for (size_t i = 0; i < N; ++i) {
if (a[i] == val) {
return true;
}
}
return false;
}
/**
* Variant of memset() that uses GCC-specific pragmas to disable optimizations, so effect is not
* optimized away. This is important because we often need to wipe blocks of sensitive data from
* memory. As an additional convenience, this implementation avoids writing to NULL pointers.
*/
#ifdef __clang__
#define OPTNONE __attribute__((optnone))
#else // not __clang__
#define OPTNONE __attribute__((optimize("O0")))
#endif // not __clang__
inline OPTNONE void* memset_s(void* s, int c, size_t n) {
if (!s) return s;
return memset(s, c, n);
}
#undef OPTNONE
/**
* Variant of memcmp that has the same runtime regardless of whether the data matches (i.e. doesn't
* short-circuit). Not an exact equivalent to memcmp because it doesn't return <0 if p1 < p2, just
* 0 for match and non-zero for non-match.
*/
int memcmp_s(const void* p1, const void* p2, size_t length);
/**
* Eraser clears buffers. Construct it with a buffer or object and the destructor will ensure that
* it is zeroed.
*/
class Eraser {
public:
/* Not implemented. If this gets used, we want a link error. */
template <typename T> explicit Eraser(T* t);
template <typename T>
explicit Eraser(T& t) : buf_(reinterpret_cast<uint8_t*>(&t)), size_(sizeof(t)) {}
template <size_t N> explicit Eraser(uint8_t (&arr)[N]) : buf_(arr), size_(N) {}
Eraser(void* buf, size_t size) : buf_(static_cast<uint8_t*>(buf)), size_(size) {}
~Eraser() { memset_s(buf_, 0, size_); }
private:
Eraser(const Eraser&);
void operator=(const Eraser&);
uint8_t* buf_;
size_t size_;
};
/**
* ArrayWrapper is a trivial wrapper around a C-style array that provides begin() and end()
* methods. This is primarily to facilitate range-based iteration on arrays. It does not copy, nor
* does it take ownership; it just holds pointers.
*/
template <typename T> class ArrayWrapper {
public:
ArrayWrapper(T* array, size_t size) : begin_(array), end_(array + size) {}
T* begin() { return begin_; }
T* end() { return end_; }
private:
T* begin_;
T* end_;
};
template <typename T> ArrayWrapper<T> array_range(T* begin, size_t length) {
return ArrayWrapper<T>(begin, length);
}
template <typename T, size_t n> ArrayWrapper<T> array_range(T (&a)[n]) {
return ArrayWrapper<T>(a, n);
}
struct Malloc_Delete {
void operator()(void* p) { free(p); }
};
} // namespace keymaster