blob: ac7517e0ceb45366a8547f8dcf02aaa3460762e0 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "utils.h"
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <stdarg.h>
#include <stdio.h>
#include <sys/stat.h>
#include <unistd.h>
#include <algorithm>
#include <map>
#include <string>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/parseint.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <build/version.h>
#include <7zCrc.h>
#include <Xz.h>
#include <XzCrc64.h>
#include "RegEx.h"
#include "environment.h"
namespace simpleperf {
using android::base::ParseInt;
using android::base::Split;
using android::base::StringPrintf;
void OneTimeFreeAllocator::Clear() {
for (auto& p : v_) {
delete[] p;
}
v_.clear();
cur_ = nullptr;
end_ = nullptr;
}
const char* OneTimeFreeAllocator::AllocateString(std::string_view s) {
size_t size = s.size() + 1;
if (cur_ + size > end_) {
size_t alloc_size = std::max(size, unit_size_);
char* p = new char[alloc_size];
v_.push_back(p);
cur_ = p;
end_ = p + alloc_size;
}
memcpy(cur_, s.data(), s.size());
cur_[s.size()] = '\0';
const char* result = cur_;
cur_ += size;
return result;
}
android::base::unique_fd FileHelper::OpenReadOnly(const std::string& filename) {
int fd = TEMP_FAILURE_RETRY(open(filename.c_str(), O_RDONLY | O_BINARY));
return android::base::unique_fd(fd);
}
android::base::unique_fd FileHelper::OpenWriteOnly(const std::string& filename) {
int fd = TEMP_FAILURE_RETRY(open(filename.c_str(), O_WRONLY | O_BINARY | O_CREAT, 0644));
return android::base::unique_fd(fd);
}
std::unique_ptr<ArchiveHelper> ArchiveHelper::CreateInstance(const std::string& filename) {
android::base::unique_fd fd = FileHelper::OpenReadOnly(filename);
if (fd == -1) {
return nullptr;
}
// Simpleperf relies on ArchiveHelper to check if a file is zip file. We expect much more elf
// files than zip files in a process map. In order to detect invalid zip files fast, we add a
// check of magic number here. Note that OpenArchiveFd() detects invalid zip files in a thorough
// way, but it usually needs reading at least 64K file data.
static const char zip_preamble[] = {0x50, 0x4b, 0x03, 0x04};
char buf[4];
if (!android::base::ReadFully(fd, buf, 4) || memcmp(buf, zip_preamble, 4) != 0) {
return nullptr;
}
if (lseek(fd, 0, SEEK_SET) == -1) {
return nullptr;
}
ZipArchiveHandle handle;
int result = OpenArchiveFd(fd.release(), filename.c_str(), &handle);
if (result != 0) {
LOG(ERROR) << "Failed to open archive " << filename << ": " << ErrorCodeString(result);
return nullptr;
}
return std::unique_ptr<ArchiveHelper>(new ArchiveHelper(handle, filename));
}
ArchiveHelper::~ArchiveHelper() {
CloseArchive(handle_);
}
bool ArchiveHelper::IterateEntries(
const std::function<bool(ZipEntry&, const std::string&)>& callback) {
void* iteration_cookie;
if (StartIteration(handle_, &iteration_cookie) < 0) {
LOG(ERROR) << "Failed to iterate " << filename_;
return false;
}
ZipEntry zentry;
std::string zname;
int result;
while ((result = Next(iteration_cookie, &zentry, &zname)) == 0) {
if (!callback(zentry, zname)) {
break;
}
}
EndIteration(iteration_cookie);
if (result == -2) {
LOG(ERROR) << "Failed to iterate " << filename_;
return false;
}
return true;
}
bool ArchiveHelper::FindEntry(const std::string& name, ZipEntry* entry) {
int result = ::FindEntry(handle_, name, entry);
if (result != 0) {
LOG(ERROR) << "Failed to find " << name << " in " << filename_;
return false;
}
return true;
}
bool ArchiveHelper::GetEntryData(ZipEntry& entry, std::vector<uint8_t>* data) {
data->resize(entry.uncompressed_length);
if (ExtractToMemory(handle_, &entry, data->data(), data->size()) != 0) {
LOG(ERROR) << "Failed to extract entry at " << entry.offset << " in " << filename_;
return false;
}
return true;
}
int ArchiveHelper::GetFd() {
return GetFileDescriptor(handle_);
}
void PrintIndented(size_t indent, const char* fmt, ...) {
va_list ap;
va_start(ap, fmt);
printf("%*s", static_cast<int>(indent * 2), "");
vprintf(fmt, ap);
va_end(ap);
}
void FprintIndented(FILE* fp, size_t indent, const char* fmt, ...) {
va_list ap;
va_start(ap, fmt);
fprintf(fp, "%*s", static_cast<int>(indent * 2), "");
vfprintf(fp, fmt, ap);
va_end(ap);
}
bool IsPowerOfTwo(uint64_t value) {
return (value != 0 && ((value & (value - 1)) == 0));
}
std::vector<std::string> GetEntriesInDir(const std::string& dirpath) {
std::vector<std::string> result;
DIR* dir = opendir(dirpath.c_str());
if (dir == nullptr) {
PLOG(DEBUG) << "can't open dir " << dirpath;
return result;
}
dirent* entry;
while ((entry = readdir(dir)) != nullptr) {
if (strcmp(entry->d_name, ".") == 0 || strcmp(entry->d_name, "..") == 0) {
continue;
}
result.push_back(entry->d_name);
}
closedir(dir);
return result;
}
std::vector<std::string> GetSubDirs(const std::string& dirpath) {
std::vector<std::string> entries = GetEntriesInDir(dirpath);
std::vector<std::string> result;
for (size_t i = 0; i < entries.size(); ++i) {
if (IsDir(dirpath + OS_PATH_SEPARATOR + entries[i])) {
result.push_back(std::move(entries[i]));
}
}
return result;
}
bool IsDir(const std::string& dirpath) {
struct stat st;
if (stat(dirpath.c_str(), &st) == 0) {
if (S_ISDIR(st.st_mode)) {
return true;
}
}
return false;
}
bool IsRegularFile(const std::string& filename) {
struct stat st;
if (stat(filename.c_str(), &st) == 0) {
if (S_ISREG(st.st_mode)) {
return true;
}
}
return false;
}
uint64_t GetFileSize(const std::string& filename) {
struct stat st;
if (stat(filename.c_str(), &st) == 0) {
return static_cast<uint64_t>(st.st_size);
}
return 0;
}
bool MkdirWithParents(const std::string& path) {
size_t prev_end = 0;
while (prev_end < path.size()) {
size_t next_end = path.find('/', prev_end + 1);
if (next_end == std::string::npos) {
break;
}
std::string dir_path = path.substr(0, next_end);
if (!IsDir(dir_path)) {
#if defined(_WIN32)
int ret = mkdir(dir_path.c_str());
#else
int ret = mkdir(dir_path.c_str(), 0755);
#endif
if (ret != 0) {
PLOG(ERROR) << "failed to create dir " << dir_path;
return false;
}
}
prev_end = next_end;
}
return true;
}
static void* xz_alloc(ISzAllocPtr, size_t size) {
return malloc(size);
}
static void xz_free(ISzAllocPtr, void* address) {
free(address);
}
bool XzDecompress(const std::string& compressed_data, std::string* decompressed_data) {
ISzAlloc alloc;
CXzUnpacker state;
alloc.Alloc = xz_alloc;
alloc.Free = xz_free;
XzUnpacker_Construct(&state, &alloc);
CrcGenerateTable();
Crc64GenerateTable();
size_t src_offset = 0;
size_t dst_offset = 0;
std::string dst(compressed_data.size(), ' ');
ECoderStatus status = CODER_STATUS_NOT_FINISHED;
while (status == CODER_STATUS_NOT_FINISHED) {
dst.resize(dst.size() * 2);
size_t src_remaining = compressed_data.size() - src_offset;
size_t dst_remaining = dst.size() - dst_offset;
int res = XzUnpacker_Code(&state, reinterpret_cast<Byte*>(&dst[dst_offset]), &dst_remaining,
reinterpret_cast<const Byte*>(&compressed_data[src_offset]),
&src_remaining, true, CODER_FINISH_ANY, &status);
if (res != SZ_OK) {
LOG(ERROR) << "LZMA decompression failed with error " << res;
XzUnpacker_Free(&state);
return false;
}
src_offset += src_remaining;
dst_offset += dst_remaining;
}
XzUnpacker_Free(&state);
if (!XzUnpacker_IsStreamWasFinished(&state)) {
LOG(ERROR) << "LZMA decompresstion failed due to incomplete stream";
return false;
}
dst.resize(dst_offset);
*decompressed_data = std::move(dst);
return true;
}
static std::map<std::string, android::base::LogSeverity> log_severity_map = {
{"verbose", android::base::VERBOSE}, {"debug", android::base::DEBUG},
{"info", android::base::INFO}, {"warning", android::base::WARNING},
{"error", android::base::ERROR}, {"fatal", android::base::FATAL},
};
bool GetLogSeverity(const std::string& name, android::base::LogSeverity* severity) {
auto it = log_severity_map.find(name);
if (it != log_severity_map.end()) {
*severity = it->second;
return true;
}
return false;
}
std::string GetLogSeverityName() {
android::base::LogSeverity severity = android::base::GetMinimumLogSeverity();
for (auto& pair : log_severity_map) {
if (severity == pair.second) {
return pair.first;
}
}
return "info";
}
bool IsRoot() {
static int is_root = -1;
if (is_root == -1) {
#if defined(__linux__)
is_root = (getuid() == 0) ? 1 : 0;
#else
is_root = 0;
#endif
}
return is_root == 1;
}
size_t GetPageSize() {
#if defined(__linux__)
return sysconf(_SC_PAGE_SIZE);
#else
return 4096;
#endif
}
uint64_t ConvertBytesToValue(const char* bytes, uint32_t size) {
if (size > 8) {
LOG(FATAL) << "unexpected size " << size << " in ConvertBytesToValue";
}
uint64_t result = 0;
int shift = 0;
for (uint32_t i = 0; i < size; ++i) {
uint64_t tmp = static_cast<unsigned char>(bytes[i]);
result |= tmp << shift;
shift += 8;
}
return result;
}
timeval SecondToTimeval(double time_in_sec) {
timeval tv;
tv.tv_sec = static_cast<time_t>(time_in_sec);
tv.tv_usec = static_cast<int>((time_in_sec - tv.tv_sec) * 1000000);
return tv;
}
constexpr int SIMPLEPERF_VERSION = 1;
std::string GetSimpleperfVersion() {
return StringPrintf("%d.build.%s", SIMPLEPERF_VERSION, android::build::GetBuildNumber().c_str());
}
// Parse a line like: 0,1-3, 5, 7-8
std::optional<std::set<int>> GetCpusFromString(const std::string& s) {
std::string str;
for (char c : s) {
if (!isspace(c)) {
str += c;
}
}
std::set<int> cpus;
int cpu1;
int cpu2;
for (const std::string& p : Split(str, ",")) {
size_t split_pos = p.find('-');
if (split_pos == std::string::npos) {
if (!ParseInt(p, &cpu1, 0)) {
LOG(ERROR) << "failed to parse cpu: " << p;
return std::nullopt;
}
cpus.insert(cpu1);
} else {
if (!ParseInt(p.substr(0, split_pos), &cpu1, 0) ||
!ParseInt(p.substr(split_pos + 1), &cpu2, 0) || cpu1 > cpu2) {
LOG(ERROR) << "failed to parse cpu: " << p;
return std::nullopt;
}
while (cpu1 <= cpu2) {
cpus.insert(cpu1++);
}
}
}
return cpus;
}
std::optional<std::set<pid_t>> GetTidsFromString(const std::string& s, bool check_if_exists) {
std::set<pid_t> tids;
for (const auto& p : Split(s, ",")) {
int tid;
if (!ParseInt(p.c_str(), &tid, 0)) {
LOG(ERROR) << "Invalid tid '" << p << "'";
return std::nullopt;
}
if (check_if_exists && !IsDir(StringPrintf("/proc/%d", tid))) {
LOG(ERROR) << "Non existing thread '" << tid << "'";
return std::nullopt;
}
tids.insert(tid);
}
return tids;
}
std::optional<std::set<pid_t>> GetPidsFromStrings(const std::vector<std::string>& strs,
bool check_if_exists,
bool support_progress_name_regex) {
std::set<pid_t> pids;
std::vector<std::unique_ptr<RegEx>> regs;
for (const auto& s : strs) {
for (const auto& p : Split(s, ",")) {
int pid;
if (ParseInt(p.c_str(), &pid, 0)) {
if (check_if_exists && !IsDir(StringPrintf("/proc/%d", pid))) {
LOG(ERROR) << "no process with pid " << pid;
return std::nullopt;
}
pids.insert(pid);
} else if (support_progress_name_regex) {
auto reg = RegEx::Create(p);
if (!reg) {
return std::nullopt;
}
regs.emplace_back(std::move(reg));
} else {
LOG(ERROR) << "invalid pid: " << p;
return std::nullopt;
}
}
}
if (!regs.empty()) {
#if defined(__linux__)
for (pid_t pid : GetAllProcesses()) {
std::string process_name = GetCompleteProcessName(pid);
if (process_name.empty()) {
continue;
}
for (const auto& reg : regs) {
if (reg->Search(process_name)) {
pids.insert(pid);
break;
}
}
}
#else // defined(__linux__)
LOG(ERROR) << "progress name regex isn't supported";
return std::nullopt;
#endif // defined(__linux__)
}
return pids;
}
size_t SafeStrlen(const char* s, const char* end) {
const char* p = s;
while (p < end && *p != '\0') {
p++;
}
return p - s;
}
OverflowResult SafeAdd(uint64_t a, uint64_t b) {
OverflowResult result;
if (__builtin_add_overflow(a, b, &result.value)) {
result.overflow = true;
}
return result;
}
void OverflowSafeAdd(uint64_t& dest, uint64_t add) {
if (__builtin_add_overflow(dest, add, &dest)) {
LOG(WARNING) << "Branch count overflow happened.";
dest = UINT64_MAX;
}
}
// Convert big numbers to human friendly mode. For example,
// 1000000 will be converted to 1,000,000.
std::string ReadableCount(uint64_t count) {
std::string s = std::to_string(count);
for (size_t i = s.size() - 1, j = 1; i > 0; --i, ++j) {
if (j == 3) {
s.insert(s.begin() + i, ',');
j = 0;
}
}
return s;
}
} // namespace simpleperf