blob: 1a7cdef8ecc78da6d22db910ad181b69772dfa1a [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "event_selection_set.h"
#include <algorithm>
#include <atomic>
#include <thread>
#include <unordered_map>
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include "ETMRecorder.h"
#include "IOEventLoop.h"
#include "RecordReadThread.h"
#include "environment.h"
#include "event_attr.h"
#include "event_type.h"
#include "perf_regs.h"
#include "tracing.h"
#include "utils.h"
namespace simpleperf {
using android::base::StringPrintf;
bool IsBranchSamplingSupported() {
const EventType* type = FindEventTypeByName("cpu-cycles");
if (type == nullptr) {
return false;
}
perf_event_attr attr = CreateDefaultPerfEventAttr(*type);
attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
attr.branch_sample_type = PERF_SAMPLE_BRANCH_ANY;
return IsEventAttrSupported(attr, type->name);
}
bool IsDwarfCallChainSamplingSupported() {
if (auto version = GetKernelVersion(); version && version.value() >= std::make_pair(3, 18)) {
// Skip test on kernel >= 3.18, which has all patches needed to support dwarf callchain.
return true;
}
const EventType* type = FindEventTypeByName("cpu-clock");
if (type == nullptr) {
return false;
}
perf_event_attr attr = CreateDefaultPerfEventAttr(*type);
attr.sample_type |= PERF_SAMPLE_CALLCHAIN | PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER;
attr.exclude_callchain_user = 1;
attr.sample_regs_user = GetSupportedRegMask(GetTargetArch());
attr.sample_stack_user = 8192;
return IsEventAttrSupported(attr, type->name);
}
bool IsDumpingRegsForTracepointEventsSupported() {
if (auto version = GetKernelVersion(); version && version.value() >= std::make_pair(4, 2)) {
// Kernel >= 4.2 has patch "5b09a094f2 arm64: perf: Fix callchain parse error with kernel
// tracepoint events". So no need to test.
return true;
}
const EventType* event_type = FindEventTypeByName("sched:sched_switch", false);
if (event_type == nullptr) {
return false;
}
std::atomic<bool> done(false);
std::atomic<pid_t> thread_id(0);
std::thread thread([&]() {
thread_id = gettid();
while (!done) {
usleep(1);
}
usleep(1); // Make a sched out to generate one sample.
});
while (thread_id == 0) {
usleep(1);
}
perf_event_attr attr = CreateDefaultPerfEventAttr(*event_type);
attr.freq = 0;
attr.sample_period = 1;
std::unique_ptr<EventFd> event_fd =
EventFd::OpenEventFile(attr, thread_id, -1, nullptr, event_type->name);
if (event_fd == nullptr || !event_fd->CreateMappedBuffer(4, true)) {
done = true;
thread.join();
return false;
}
done = true;
thread.join();
// There are small chances that we don't see samples immediately after joining the thread on
// cuttlefish, probably due to data synchronization between cpus. To avoid flaky tests, use a
// loop to wait for samples.
for (int timeout = 0; timeout < 1000; timeout++) {
std::vector<char> buffer = event_fd->GetAvailableMmapData();
std::vector<std::unique_ptr<Record>> records =
ReadRecordsFromBuffer(attr, buffer.data(), buffer.size());
for (auto& r : records) {
if (r->type() == PERF_RECORD_SAMPLE) {
auto& record = *static_cast<SampleRecord*>(r.get());
return record.ip_data.ip != 0;
}
}
usleep(1);
}
return false;
}
bool IsSettingClockIdSupported() {
// Do the real check only once and keep the result in a static variable.
static int is_supported = -1;
if (is_supported == -1) {
is_supported = 0;
if (auto version = GetKernelVersion(); version && version.value() >= std::make_pair(4, 1)) {
// Kernel >= 4.1 has patch "34f43927 perf: Add per event clockid support". So no need to test.
is_supported = 1;
} else if (const EventType* type = FindEventTypeByName("cpu-clock"); type != nullptr) {
// Check if the kernel supports setting clockid, which was added in kernel 4.0. Just check
// with one clockid is enough. Because all needed clockids were supported before kernel 4.0.
perf_event_attr attr = CreateDefaultPerfEventAttr(*type);
attr.use_clockid = 1;
attr.clockid = CLOCK_MONOTONIC;
is_supported = IsEventAttrSupported(attr, type->name) ? 1 : 0;
}
}
return is_supported;
}
bool IsMmap2Supported() {
if (auto version = GetKernelVersion(); version && version.value() >= std::make_pair(3, 12)) {
// Kernel >= 3.12 has patch "13d7a2410 perf: Add attr->mmap2 attribute to an event". So no need
// to test.
return true;
}
const EventType* type = FindEventTypeByName("cpu-clock");
if (type == nullptr) {
return false;
}
perf_event_attr attr = CreateDefaultPerfEventAttr(*type);
attr.mmap2 = 1;
return IsEventAttrSupported(attr, type->name);
}
bool IsHardwareEventSupported() {
const EventType* type = FindEventTypeByName("cpu-cycles");
if (type == nullptr) {
return false;
}
perf_event_attr attr = CreateDefaultPerfEventAttr(*type);
return IsEventAttrSupported(attr, type->name);
}
bool IsSwitchRecordSupported() {
// Kernel >= 4.3 has patch "45ac1403f perf: Add PERF_RECORD_SWITCH to indicate context switches".
auto version = GetKernelVersion();
return version && version.value() >= std::make_pair(4, 3);
}
std::string AddrFilter::ToString() const {
switch (type) {
case FILE_RANGE:
return StringPrintf("filter 0x%" PRIx64 "/0x%" PRIx64 "@%s", addr, size, file_path.c_str());
case AddrFilter::FILE_START:
return StringPrintf("start 0x%" PRIx64 "@%s", addr, file_path.c_str());
case AddrFilter::FILE_STOP:
return StringPrintf("stop 0x%" PRIx64 "@%s", addr, file_path.c_str());
case AddrFilter::KERNEL_RANGE:
return StringPrintf("filter 0x%" PRIx64 "/0x%" PRIx64, addr, size);
case AddrFilter::KERNEL_START:
return StringPrintf("start 0x%" PRIx64, addr);
case AddrFilter::KERNEL_STOP:
return StringPrintf("stop 0x%" PRIx64, addr);
}
}
EventSelectionSet::EventSelectionSet(bool for_stat_cmd)
: for_stat_cmd_(for_stat_cmd), loop_(new IOEventLoop) {}
EventSelectionSet::~EventSelectionSet() {}
bool EventSelectionSet::BuildAndCheckEventSelection(const std::string& event_name, bool first_event,
EventSelection* selection) {
std::unique_ptr<EventTypeAndModifier> event_type = ParseEventType(event_name);
if (event_type == nullptr) {
return false;
}
if (for_stat_cmd_) {
if (event_type->event_type.name == "cpu-clock" || event_type->event_type.name == "task-clock") {
if (event_type->exclude_user || event_type->exclude_kernel) {
LOG(ERROR) << "Modifier u and modifier k used in event type " << event_type->event_type.name
<< " are not supported by the kernel.";
return false;
}
}
}
selection->event_type_modifier = *event_type;
selection->event_attr = CreateDefaultPerfEventAttr(event_type->event_type);
selection->event_attr.exclude_user = event_type->exclude_user;
selection->event_attr.exclude_kernel = event_type->exclude_kernel;
selection->event_attr.exclude_hv = event_type->exclude_hv;
selection->event_attr.exclude_host = event_type->exclude_host;
selection->event_attr.exclude_guest = event_type->exclude_guest;
selection->event_attr.precise_ip = event_type->precise_ip;
if (IsEtmEventType(event_type->event_type.type)) {
auto& etm_recorder = ETMRecorder::GetInstance();
if (auto result = etm_recorder.CheckEtmSupport(); !result.ok()) {
LOG(ERROR) << result.error();
return false;
}
ETMRecorder::GetInstance().SetEtmPerfEventAttr(&selection->event_attr);
}
bool set_default_sample_freq = false;
if (!for_stat_cmd_) {
if (event_type->event_type.type == PERF_TYPE_TRACEPOINT) {
selection->event_attr.freq = 0;
selection->event_attr.sample_period = DEFAULT_SAMPLE_PERIOD_FOR_TRACEPOINT_EVENT;
} else if (IsEtmEventType(event_type->event_type.type)) {
// ETM recording has no sample frequency to adjust. Using sample frequency only wastes time
// enabling/disabling etm devices. So don't adjust frequency by default.
selection->event_attr.freq = 0;
selection->event_attr.sample_period = 1;
// An ETM event can't be enabled without mmap aux buffer. So disable it by default.
selection->event_attr.disabled = 1;
} else {
selection->event_attr.freq = 1;
// Set default sample freq here may print msg "Adjust sample freq to max allowed sample
// freq". But this is misleading. Because default sample freq may not be the final sample
// freq we use. So use minimum sample freq (1) here.
selection->event_attr.sample_freq = 1;
set_default_sample_freq = true;
}
// We only need to dump mmap and comm records for the first event type. Because all event types
// are monitoring the same processes.
if (first_event) {
selection->event_attr.mmap = 1;
selection->event_attr.comm = 1;
if (IsMmap2Supported()) {
selection->event_attr.mmap2 = 1;
}
}
}
// PMU events are provided by kernel, so they should be supported
if (!event_type->event_type.IsPmuEvent() &&
!IsEventAttrSupported(selection->event_attr, selection->event_type_modifier.name)) {
LOG(ERROR) << "Event type '" << event_type->name << "' is not supported on the device";
return false;
}
if (set_default_sample_freq) {
selection->event_attr.sample_freq = DEFAULT_SAMPLE_FREQ_FOR_NONTRACEPOINT_EVENT;
}
selection->event_fds.clear();
for (const auto& group : groups_) {
for (const auto& sel : group.selections) {
if (sel.event_type_modifier.name == selection->event_type_modifier.name) {
LOG(ERROR) << "Event type '" << sel.event_type_modifier.name << "' appears more than once";
return false;
}
}
}
return true;
}
bool EventSelectionSet::AddEventType(const std::string& event_name) {
return AddEventGroup(std::vector<std::string>(1, event_name));
}
bool EventSelectionSet::AddEventType(const std::string& event_name, const SampleRate& sample_rate) {
if (!AddEventGroup(std::vector<std::string>(1, event_name))) {
return false;
}
SetSampleRateForGroup(groups_.back(), sample_rate);
return true;
}
bool EventSelectionSet::AddEventGroup(const std::vector<std::string>& event_names) {
EventSelectionGroup group;
bool first_event = groups_.empty();
bool first_in_group = true;
for (const auto& event_name : event_names) {
EventSelection selection;
if (!BuildAndCheckEventSelection(event_name, first_event, &selection)) {
return false;
}
if (IsEtmEventType(selection.event_attr.type)) {
has_aux_trace_ = true;
}
if (first_in_group) {
auto& event_type = selection.event_type_modifier.event_type;
if (event_type.IsPmuEvent()) {
selection.allowed_cpus = event_type.GetPmuCpumask();
}
}
first_event = false;
first_in_group = false;
group.selections.emplace_back(std::move(selection));
}
if (sample_rate_) {
SetSampleRateForGroup(group, sample_rate_.value());
}
if (cpus_) {
group.cpus = cpus_.value();
}
groups_.emplace_back(std::move(group));
UnionSampleType();
return true;
}
bool EventSelectionSet::AddCounters(const std::vector<std::string>& event_names) {
CHECK(!groups_.empty());
if (groups_.size() > 1) {
LOG(ERROR) << "Failed to add counters. Only one event group is allowed.";
return false;
}
for (const auto& event_name : event_names) {
EventSelection selection;
if (!BuildAndCheckEventSelection(event_name, false, &selection)) {
return false;
}
// Use a big sample_period to avoid getting samples for added counters.
selection.event_attr.freq = 0;
selection.event_attr.sample_period = INFINITE_SAMPLE_PERIOD;
selection.event_attr.inherit = 0;
groups_[0].selections.emplace_back(std::move(selection));
}
// Add counters in each sample.
for (auto& selection : groups_[0].selections) {
selection.event_attr.sample_type |= PERF_SAMPLE_READ;
selection.event_attr.read_format |= PERF_FORMAT_GROUP;
}
return true;
}
std::vector<const EventType*> EventSelectionSet::GetEvents() const {
std::vector<const EventType*> result;
for (const auto& group : groups_) {
for (const auto& selection : group.selections) {
result.push_back(&selection.event_type_modifier.event_type);
}
}
return result;
}
std::vector<const EventType*> EventSelectionSet::GetTracepointEvents() const {
std::vector<const EventType*> result;
for (const auto& group : groups_) {
for (const auto& selection : group.selections) {
if (selection.event_type_modifier.event_type.type == PERF_TYPE_TRACEPOINT) {
result.push_back(&selection.event_type_modifier.event_type);
}
}
}
return result;
}
bool EventSelectionSet::ExcludeKernel() const {
for (const auto& group : groups_) {
for (const auto& selection : group.selections) {
if (!selection.event_type_modifier.exclude_kernel) {
return false;
}
}
}
return true;
}
EventAttrIds EventSelectionSet::GetEventAttrWithId() const {
EventAttrIds result;
for (const auto& group : groups_) {
for (const auto& selection : group.selections) {
std::vector<uint64_t> ids;
for (const auto& fd : selection.event_fds) {
ids.push_back(fd->Id());
}
result.resize(result.size() + 1);
result.back().attr = selection.event_attr;
result.back().ids = std::move(ids);
}
}
return result;
}
std::unordered_map<uint64_t, std::string> EventSelectionSet::GetEventNamesById() const {
std::unordered_map<uint64_t, std::string> result;
for (const auto& group : groups_) {
for (const auto& selection : group.selections) {
for (const auto& fd : selection.event_fds) {
result[fd->Id()] = selection.event_type_modifier.name;
}
}
}
return result;
}
std::unordered_map<uint64_t, int> EventSelectionSet::GetCpusById() const {
std::unordered_map<uint64_t, int> result;
for (const auto& group : groups_) {
for (const auto& selection : group.selections) {
for (const auto& fd : selection.event_fds) {
result[fd->Id()] = fd->Cpu();
}
}
}
return result;
}
std::map<int, size_t> EventSelectionSet::GetHardwareCountersForCpus() const {
std::map<int, size_t> cpu_map;
std::vector<int> online_cpus = GetOnlineCpus();
for (const auto& group : groups_) {
size_t hardware_events = 0;
for (const auto& selection : group.selections) {
if (selection.event_type_modifier.event_type.IsHardwareEvent()) {
hardware_events++;
}
}
const std::vector<int>* pcpus = group.cpus.empty() ? &online_cpus : &group.cpus;
for (int cpu : *pcpus) {
cpu_map[cpu] += hardware_events;
}
}
return cpu_map;
}
// Union the sample type of different event attrs can make reading sample
// records in perf.data easier.
void EventSelectionSet::UnionSampleType() {
uint64_t sample_type = 0;
for (const auto& group : groups_) {
for (const auto& selection : group.selections) {
sample_type |= selection.event_attr.sample_type;
}
}
for (auto& group : groups_) {
for (auto& selection : group.selections) {
selection.event_attr.sample_type = sample_type;
}
}
}
void EventSelectionSet::SetEnableCondition(bool enable_on_open, bool enable_on_exec) {
for (auto& group : groups_) {
for (auto& selection : group.selections) {
selection.event_attr.disabled = !enable_on_open;
selection.event_attr.enable_on_exec = enable_on_exec;
}
}
}
bool EventSelectionSet::IsEnabledOnExec() const {
for (const auto& group : groups_) {
for (const auto& selection : group.selections) {
if (!selection.event_attr.enable_on_exec) {
return false;
}
}
}
return true;
}
void EventSelectionSet::SampleIdAll() {
for (auto& group : groups_) {
for (auto& selection : group.selections) {
selection.event_attr.sample_id_all = 1;
}
}
}
void EventSelectionSet::SetSampleRateForNewEvents(const SampleRate& rate) {
sample_rate_ = rate;
for (auto& group : groups_) {
if (!group.set_sample_rate) {
SetSampleRateForGroup(group, rate);
}
}
}
void EventSelectionSet::SetCpusForNewEvents(const std::vector<int>& cpus) {
cpus_ = cpus;
for (auto& group : groups_) {
if (group.cpus.empty()) {
group.cpus = cpus_.value();
}
}
}
void EventSelectionSet::SetSampleRateForGroup(EventSelectionSet::EventSelectionGroup& group,
const SampleRate& rate) {
group.set_sample_rate = true;
for (auto& selection : group.selections) {
if (rate.UseFreq()) {
selection.event_attr.freq = 1;
selection.event_attr.sample_freq = rate.sample_freq;
} else {
selection.event_attr.freq = 0;
selection.event_attr.sample_period = rate.sample_period;
}
}
}
bool EventSelectionSet::SetBranchSampling(uint64_t branch_sample_type) {
if (branch_sample_type != 0 &&
(branch_sample_type & (PERF_SAMPLE_BRANCH_ANY | PERF_SAMPLE_BRANCH_ANY_CALL |
PERF_SAMPLE_BRANCH_ANY_RETURN | PERF_SAMPLE_BRANCH_IND_CALL)) == 0) {
LOG(ERROR) << "Invalid branch_sample_type: 0x" << std::hex << branch_sample_type;
return false;
}
if (branch_sample_type != 0 && !IsBranchSamplingSupported()) {
LOG(ERROR) << "branch stack sampling is not supported on this device.";
return false;
}
for (auto& group : groups_) {
for (auto& selection : group.selections) {
perf_event_attr& attr = selection.event_attr;
if (branch_sample_type != 0) {
attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
} else {
attr.sample_type &= ~PERF_SAMPLE_BRANCH_STACK;
}
attr.branch_sample_type = branch_sample_type;
}
}
return true;
}
void EventSelectionSet::EnableFpCallChainSampling() {
for (auto& group : groups_) {
for (auto& selection : group.selections) {
selection.event_attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
}
}
}
bool EventSelectionSet::EnableDwarfCallChainSampling(uint32_t dump_stack_size) {
if (!IsDwarfCallChainSamplingSupported()) {
LOG(ERROR) << "dwarf callchain sampling is not supported on this device.";
return false;
}
for (auto& group : groups_) {
for (auto& selection : group.selections) {
selection.event_attr.sample_type |=
PERF_SAMPLE_CALLCHAIN | PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER;
selection.event_attr.exclude_callchain_user = 1;
selection.event_attr.sample_regs_user = GetSupportedRegMask(GetMachineArch());
selection.event_attr.sample_stack_user = dump_stack_size;
}
}
return true;
}
void EventSelectionSet::SetInherit(bool enable) {
for (auto& group : groups_) {
for (auto& selection : group.selections) {
selection.event_attr.inherit = (enable ? 1 : 0);
}
}
}
void EventSelectionSet::SetClockId(int clock_id) {
for (auto& group : groups_) {
for (auto& selection : group.selections) {
selection.event_attr.use_clockid = 1;
selection.event_attr.clockid = clock_id;
}
}
}
bool EventSelectionSet::NeedKernelSymbol() const {
return !ExcludeKernel();
}
void EventSelectionSet::SetRecordNotExecutableMaps(bool record) {
// We only need to dump non-executable mmap records for the first event type.
groups_[0].selections[0].event_attr.mmap_data = record ? 1 : 0;
}
bool EventSelectionSet::RecordNotExecutableMaps() const {
return groups_[0].selections[0].event_attr.mmap_data == 1;
}
void EventSelectionSet::EnableSwitchRecord() {
groups_[0].selections[0].event_attr.context_switch = 1;
}
void EventSelectionSet::WakeupPerSample() {
for (auto& group : groups_) {
for (auto& selection : group.selections) {
selection.event_attr.watermark = 0;
selection.event_attr.wakeup_events = 1;
}
}
}
bool EventSelectionSet::SetTracepointFilter(const std::string& filter) {
// 1. Find the tracepoint event to set filter.
EventSelection* selection = nullptr;
if (!groups_.empty()) {
auto& group = groups_.back();
if (group.selections.size() == 1) {
if (group.selections[0].event_attr.type == PERF_TYPE_TRACEPOINT) {
selection = &group.selections[0];
}
}
}
if (selection == nullptr) {
LOG(ERROR) << "No tracepoint event before filter: " << filter;
return false;
}
// 2. Check the format of the filter.
bool use_quote = false;
// Quotes are needed for string operands in kernel >= 4.19, probably after patch "tracing: Rewrite
// filter logic to be simpler and faster".
if (auto version = GetKernelVersion(); version && version.value() >= std::make_pair(4, 19)) {
use_quote = true;
}
FieldNameSet used_fields;
auto adjusted_filter = AdjustTracepointFilter(filter, use_quote, &used_fields);
if (!adjusted_filter) {
return false;
}
// 3. Check if used fields are available in the tracepoint event.
auto& event_type = selection->event_type_modifier.event_type;
if (auto opt_fields = GetFieldNamesForTracepointEvent(event_type); opt_fields) {
FieldNameSet& fields = opt_fields.value();
for (const auto& field : used_fields) {
if (fields.find(field) == fields.end()) {
LOG(ERROR) << "field name " << field << " used in \"" << filter << "\" doesn't exist in "
<< event_type.name << ". Available fields are "
<< android::base::Join(fields, ",");
return false;
}
}
}
// 4. Connect the filter to the event.
selection->tracepoint_filter = adjusted_filter.value();
return true;
}
bool EventSelectionSet::OpenEventFilesOnGroup(EventSelectionGroup& group, pid_t tid, int cpu,
std::string* failed_event_type) {
std::vector<std::unique_ptr<EventFd>> event_fds;
// Given a tid and cpu, events on the same group should be all opened
// successfully or all failed to open.
EventFd* group_fd = nullptr;
for (auto& selection : group.selections) {
std::unique_ptr<EventFd> event_fd = EventFd::OpenEventFile(
selection.event_attr, tid, cpu, group_fd, selection.event_type_modifier.name, false);
if (!event_fd) {
*failed_event_type = selection.event_type_modifier.name;
return false;
}
LOG(VERBOSE) << "OpenEventFile for " << event_fd->Name();
event_fds.emplace_back(std::move(event_fd));
if (group_fd == nullptr) {
group_fd = event_fds.back().get();
}
}
for (size_t i = 0; i < group.selections.size(); ++i) {
group.selections[i].event_fds.emplace_back(std::move(event_fds[i]));
}
return true;
}
static std::set<pid_t> PrepareThreads(const std::set<pid_t>& processes,
const std::set<pid_t>& threads) {
std::set<pid_t> result = threads;
for (auto& pid : processes) {
std::vector<pid_t> tids = GetThreadsInProcess(pid);
result.insert(tids.begin(), tids.end());
}
return result;
}
bool EventSelectionSet::OpenEventFiles() {
std::vector<int> online_cpus = GetOnlineCpus();
auto check_if_cpus_online = [&](const std::vector<int>& cpus) {
if (cpus.size() == 1 && cpus[0] == -1) {
return true;
}
for (int cpu : cpus) {
if (std::find(online_cpus.begin(), online_cpus.end(), cpu) == online_cpus.end()) {
LOG(ERROR) << "cpu " << cpu << " is not online.";
return false;
}
}
return true;
};
std::set<pid_t> threads = PrepareThreads(processes_, threads_);
for (auto& group : groups_) {
const std::vector<int>* pcpus = &group.cpus;
if (!group.selections[0].allowed_cpus.empty()) {
// override cpu list if event's PMU has a cpumask as those PMUs are
// agnostic to cpu and it's meaningless to specify cpus for them.
pcpus = &group.selections[0].allowed_cpus;
}
if (pcpus->empty()) {
pcpus = &online_cpus;
} else if (!check_if_cpus_online(*pcpus)) {
return false;
}
size_t success_count = 0;
std::string failed_event_type;
for (const auto tid : threads) {
for (const auto& cpu : *pcpus) {
if (OpenEventFilesOnGroup(group, tid, cpu, &failed_event_type)) {
success_count++;
}
}
}
// We can't guarantee to open perf event file successfully for each thread on each cpu.
// Because threads may exit between PrepareThreads() and OpenEventFilesOnGroup(), and
// cpus may be offlined between GetOnlineCpus() and OpenEventFilesOnGroup().
// So we only check that we can at least monitor one thread for each event group.
if (success_count == 0) {
int error_number = errno;
PLOG(ERROR) << "failed to open perf event file for event_type " << failed_event_type;
if (error_number == EMFILE) {
LOG(ERROR) << "Please increase hard limit of open file numbers.";
}
return false;
}
}
return ApplyFilters();
}
bool EventSelectionSet::ApplyFilters() {
return ApplyAddrFilters() && ApplyTracepointFilters();
}
bool EventSelectionSet::ApplyAddrFilters() {
if (addr_filters_.empty()) {
return true;
}
if (!has_aux_trace_) {
LOG(ERROR) << "addr filters only take effect in cs-etm instruction tracing";
return false;
}
// Check filter count limit.
size_t required_etm_filter_count = 0;
for (auto& filter : addr_filters_) {
// A range filter needs two etm filters.
required_etm_filter_count +=
(filter.type == AddrFilter::FILE_RANGE || filter.type == AddrFilter::KERNEL_RANGE) ? 2 : 1;
}
size_t etm_filter_count = ETMRecorder::GetInstance().GetAddrFilterPairs() * 2;
if (etm_filter_count < required_etm_filter_count) {
LOG(ERROR) << "needed " << required_etm_filter_count << " etm filters, but only "
<< etm_filter_count << " filters are available.";
return false;
}
std::string filter_str;
for (auto& filter : addr_filters_) {
if (!filter_str.empty()) {
filter_str += ',';
}
filter_str += filter.ToString();
}
for (auto& group : groups_) {
for (auto& selection : group.selections) {
if (IsEtmEventType(selection.event_type_modifier.event_type.type)) {
for (auto& event_fd : selection.event_fds) {
if (!event_fd->SetFilter(filter_str)) {
return false;
}
}
}
}
}
return true;
}
bool EventSelectionSet::ApplyTracepointFilters() {
for (auto& group : groups_) {
for (auto& selection : group.selections) {
if (!selection.tracepoint_filter.empty()) {
for (auto& event_fd : selection.event_fds) {
if (!event_fd->SetFilter(selection.tracepoint_filter)) {
return false;
}
}
}
}
}
return true;
}
static bool ReadCounter(EventFd* event_fd, CounterInfo* counter) {
if (!event_fd->ReadCounter(&counter->counter)) {
return false;
}
counter->tid = event_fd->ThreadId();
counter->cpu = event_fd->Cpu();
return true;
}
bool EventSelectionSet::ReadCounters(std::vector<CountersInfo>* counters) {
counters->clear();
for (size_t i = 0; i < groups_.size(); ++i) {
for (auto& selection : groups_[i].selections) {
CountersInfo counters_info;
counters_info.group_id = i;
counters_info.event_name = selection.event_type_modifier.event_type.name;
counters_info.event_modifier = selection.event_type_modifier.modifier;
counters_info.counters = selection.hotplugged_counters;
for (auto& event_fd : selection.event_fds) {
CounterInfo counter;
if (!ReadCounter(event_fd.get(), &counter)) {
return false;
}
counters_info.counters.push_back(counter);
}
counters->push_back(counters_info);
}
}
return true;
}
bool EventSelectionSet::MmapEventFiles(size_t min_mmap_pages, size_t max_mmap_pages,
size_t aux_buffer_size, size_t record_buffer_size,
bool allow_truncating_samples, bool exclude_perf) {
record_read_thread_.reset(new simpleperf::RecordReadThread(
record_buffer_size, groups_[0].selections[0].event_attr, min_mmap_pages, max_mmap_pages,
aux_buffer_size, allow_truncating_samples, exclude_perf));
return true;
}
bool EventSelectionSet::PrepareToReadMmapEventData(const std::function<bool(Record*)>& callback) {
// Prepare record callback function.
record_callback_ = callback;
if (!record_read_thread_->RegisterDataCallback(*loop_,
[this]() { return ReadMmapEventData(true); })) {
return false;
}
std::vector<EventFd*> event_fds;
for (auto& group : groups_) {
for (auto& selection : group.selections) {
for (auto& event_fd : selection.event_fds) {
event_fds.push_back(event_fd.get());
}
}
}
return record_read_thread_->AddEventFds(event_fds);
}
bool EventSelectionSet::SyncKernelBuffer() {
return record_read_thread_->SyncKernelBuffer();
}
// Read records from the RecordBuffer. If with_time_limit is false, read until the RecordBuffer is
// empty, otherwise stop after 100 ms or when the record buffer is empty.
bool EventSelectionSet::ReadMmapEventData(bool with_time_limit) {
uint64_t start_time_in_ns;
if (with_time_limit) {
start_time_in_ns = GetSystemClock();
}
std::unique_ptr<Record> r;
while ((r = record_read_thread_->GetRecord()) != nullptr) {
if (!record_callback_(r.get())) {
return false;
}
if (with_time_limit && (GetSystemClock() - start_time_in_ns) >= 1e8) {
break;
}
}
return true;
}
bool EventSelectionSet::FinishReadMmapEventData() {
return ReadMmapEventData(false);
}
void EventSelectionSet::CloseEventFiles() {
if (record_read_thread_) {
record_read_thread_->StopReadThread();
}
for (auto& group : groups_) {
for (auto& event : group.selections) {
event.event_fds.clear();
}
}
}
bool EventSelectionSet::StopWhenNoMoreTargets(double check_interval_in_sec) {
return loop_->AddPeriodicEvent(SecondToTimeval(check_interval_in_sec),
[&]() { return CheckMonitoredTargets(); });
}
bool EventSelectionSet::CheckMonitoredTargets() {
if (!HasSampler()) {
return loop_->ExitLoop();
}
for (const auto& tid : threads_) {
if (IsThreadAlive(tid)) {
return true;
}
}
for (const auto& pid : processes_) {
if (IsThreadAlive(pid)) {
return true;
}
}
return loop_->ExitLoop();
}
bool EventSelectionSet::HasSampler() {
for (auto& group : groups_) {
for (auto& sel : group.selections) {
if (!sel.event_fds.empty()) {
return true;
}
}
}
return false;
}
bool EventSelectionSet::SetEnableEvents(bool enable) {
for (auto& group : groups_) {
for (auto& sel : group.selections) {
for (auto& fd : sel.event_fds) {
if (!fd->SetEnableEvent(enable)) {
return false;
}
}
}
}
return true;
}
bool EventSelectionSet::EnableETMEvents() {
for (auto& group : groups_) {
for (auto& sel : group.selections) {
if (!sel.event_type_modifier.event_type.IsEtmEvent()) {
continue;
}
for (auto& fd : sel.event_fds) {
if (!fd->SetEnableEvent(true)) {
return false;
}
}
}
}
return true;
}
bool EventSelectionSet::DisableETMEvents() {
for (auto& group : groups_) {
for (auto& sel : group.selections) {
if (!sel.event_type_modifier.event_type.IsEtmEvent()) {
continue;
}
// When using ETR, ETM data is flushed to the aux buffer of the last cpu disabling ETM events.
// To avoid overflowing the aux buffer for one cpu, rotate the last cpu disabling ETM events.
if (etm_event_cpus_.empty()) {
for (const auto& fd : sel.event_fds) {
etm_event_cpus_.insert(fd->Cpu());
}
if (etm_event_cpus_.empty()) {
continue;
}
etm_event_cpus_it_ = etm_event_cpus_.begin();
}
int last_disabled_cpu = *etm_event_cpus_it_;
if (++etm_event_cpus_it_ == etm_event_cpus_.end()) {
etm_event_cpus_it_ = etm_event_cpus_.begin();
}
for (auto& fd : sel.event_fds) {
if (fd->Cpu() != last_disabled_cpu) {
if (!fd->SetEnableEvent(false)) {
return false;
}
}
}
for (auto& fd : sel.event_fds) {
if (fd->Cpu() == last_disabled_cpu) {
if (!fd->SetEnableEvent(false)) {
return false;
}
}
}
}
}
return true;
}
} // namespace simpleperf