blob: e04c54b2071eadd02df5f4807006bcc08e1ac979 [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <memory>
#include <queue>
#include <string>
#include <unordered_map>
#include <vector>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
#include "SampleDisplayer.h"
#include "command.h"
#include "event_selection_set.h"
#include "record.h"
#include "record_file.h"
#include "tracing.h"
#include "utils.h"
namespace simpleperf {
namespace {
using android::base::StringPrintf;
struct SampleInfo {
uint64_t timestamp; // the time when the kernel generates the sample
uint64_t runtime_in_ns; // the runtime of the thread in the sample
SampleInfo(uint64_t timestamp = 0, uint64_t runtime_in_ns = 0)
: timestamp(timestamp), runtime_in_ns(runtime_in_ns) {}
};
struct SpinInfo {
uint64_t spinloop_count = 0;
double max_rate = 0;
uint64_t max_rate_start_timestamp = 0;
uint64_t max_rate_end_timestamp = 0;
std::queue<SampleInfo> samples_in_check_period;
uint64_t runtime_in_check_period = 0;
};
struct ThreadInfo {
pid_t process_id = 0;
pid_t thread_id = 0;
std::string name;
uint64_t total_runtime_in_ns = 0;
SpinInfo spin_info;
};
struct ProcessInfo {
pid_t process_id = 0;
std::string name;
uint64_t total_runtime_in_ns = 0;
std::vector<const ThreadInfo*> threads;
};
class TraceSchedCommand : public Command {
public:
TraceSchedCommand()
: Command("trace-sched", "Trace system-wide process runtime events.",
// clang-format off
"Records system-wide sched:sched_stat_runtime events, reports runtime taken\n"
"by each process during recording, and optionally warns about processes which\n"
"may have spinloops.\n"
"Usage: simpleperf trace-sched [options]\n"
"--duration time_in_sec Monitor for time_in_sec seconds. Here time_in_sec may\n"
" be any positive floating point number. Default is 10.\n"
"--check-spinloop check_period_in_sec\n"
" Give warning for threads which may be spinning. A thread is\n"
" thought of spinning on the CPU, when it takes more than\n"
" [spin-rate] * [check_period] cpu time in any [check_period].\n"
" [spin-rate] can be set by --spin-rate. Default check_period is 1 sec.\n"
"--spin-rate spin-rate Default is 0.8. Vaild range is (0, 1].\n"
"--show-threads Show runtime of each thread.\n"
"--record-file file_path Read records from file_path.\n"
// clang-format on
),
duration_in_sec_(10.0),
spinloop_check_period_in_sec_(1.0),
spinloop_check_rate_(0.8),
show_threads_(false) {}
bool Run(const std::vector<std::string>& args);
private:
bool ParseOptions(const std::vector<std::string>& args);
bool RecordSchedEvents(const std::string& record_file_path);
bool ParseSchedEvents(const std::string& record_file_path);
bool ProcessRecord(Record& record);
void ProcessSampleRecord(const SampleRecord& record);
std::vector<ProcessInfo> BuildProcessInfo();
void ReportProcessInfo(const std::vector<ProcessInfo>& processes);
double duration_in_sec_;
double spinloop_check_period_in_sec_;
double spinloop_check_rate_;
bool show_threads_;
std::string record_file_;
StringTracingFieldPlace tracing_field_comm_;
TracingFieldPlace tracing_field_runtime_;
std::unordered_map<pid_t, ThreadInfo> thread_map_;
};
bool TraceSchedCommand::Run(const std::vector<std::string>& args) {
if (!ParseOptions(args)) {
return false;
}
TemporaryFile tmp_file;
if (record_file_.empty()) {
if (!RecordSchedEvents(tmp_file.path)) {
return false;
}
record_file_ = tmp_file.path;
}
if (!ParseSchedEvents(record_file_)) {
return false;
}
std::vector<ProcessInfo> processes = BuildProcessInfo();
ReportProcessInfo(processes);
return true;
}
bool TraceSchedCommand::ParseOptions(const std::vector<std::string>& args) {
size_t i;
for (i = 0; i < args.size(); ++i) {
if (args[i] == "--duration") {
if (!GetDoubleOption(args, &i, &duration_in_sec_, 1e-9)) {
return false;
}
} else if (args[i] == "--check-spinloop") {
if (!GetDoubleOption(args, &i, &spinloop_check_period_in_sec_, 1e-9)) {
return false;
}
} else if (args[i] == "--spin-rate") {
if (!GetDoubleOption(args, &i, &spinloop_check_rate_, 1e-9, 1.0)) {
return false;
}
} else if (args[i] == "--show-threads") {
show_threads_ = true;
} else if (args[i] == "--record-file") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
record_file_ = args[i];
} else {
ReportUnknownOption(args, i);
return false;
}
}
return true;
}
bool TraceSchedCommand::RecordSchedEvents(const std::string& record_file_path) {
if (!IsRoot()) {
LOG(ERROR) << "Need root privilege to trace system wide events.\n";
return false;
}
std::unique_ptr<Command> record_cmd = CreateCommandInstance("record");
CHECK(record_cmd);
std::vector<std::string> record_args = {"-e",
"sched:sched_stat_runtime",
"-a",
"--duration",
std::to_string(duration_in_sec_),
"-o",
record_file_path};
if (IsSettingClockIdSupported()) {
record_args.push_back("--clockid");
record_args.push_back("monotonic");
}
return record_cmd->Run(record_args);
}
bool TraceSchedCommand::ParseSchedEvents(const std::string& record_file_path) {
std::unique_ptr<RecordFileReader> reader = RecordFileReader::CreateInstance(record_file_path);
if (!reader) {
return false;
}
const EventType* event = FindEventTypeByName("sched:sched_stat_runtime");
const EventAttrIds& attrs = reader->AttrSection();
if (attrs.size() != 1u || attrs[0].attr.type != event->type ||
attrs[0].attr.config != event->config) {
LOG(ERROR) << "sched:sched_stat_runtime isn't recorded in " << record_file_path;
return false;
}
auto callback = [this](std::unique_ptr<Record> record) { return ProcessRecord(*record); };
return reader->ReadDataSection(callback);
}
bool TraceSchedCommand::ProcessRecord(Record& record) {
switch (record.type()) {
case PERF_RECORD_SAMPLE: {
ProcessSampleRecord(*static_cast<SampleRecord*>(&record));
break;
}
case PERF_RECORD_COMM: {
const CommRecord& r = *static_cast<const CommRecord*>(&record);
auto& thread = thread_map_[r.data->tid];
thread.process_id = r.data->pid;
thread.thread_id = r.data->tid;
thread.name = r.comm;
break;
}
case PERF_RECORD_FORK: {
const ForkRecord& r = *static_cast<const ForkRecord*>(&record);
auto& parent_thread = thread_map_[r.data->ptid];
auto& child_thread = thread_map_[r.data->tid];
parent_thread.process_id = r.data->ppid;
parent_thread.thread_id = r.data->ptid;
child_thread.process_id = r.data->pid;
child_thread.thread_id = r.data->tid;
child_thread.name = parent_thread.name;
break;
}
case PERF_RECORD_TRACING_DATA:
case SIMPLE_PERF_RECORD_TRACING_DATA: {
const TracingDataRecord& r = *static_cast<const TracingDataRecord*>(&record);
auto tracing = Tracing::Create(std::vector<char>(r.data, r.data + r.data_size));
if (!tracing) {
return false;
}
const EventType* event = FindEventTypeByName("sched:sched_stat_runtime");
CHECK(event != nullptr);
std::optional<TracingFormat> format = tracing->GetTracingFormatHavingId(event->config);
if (!format.has_value()) {
return false;
}
format.value().GetField("comm", tracing_field_comm_);
format.value().GetField("runtime", tracing_field_runtime_);
break;
}
}
return true;
}
void TraceSchedCommand::ProcessSampleRecord(const SampleRecord& record) {
std::string thread_name = tracing_field_comm_.ReadFromData(record.raw_data.data);
uint64_t runtime = tracing_field_runtime_.ReadFromData(record.raw_data.data);
ThreadInfo& thread = thread_map_[record.tid_data.tid];
thread.process_id = record.tid_data.pid;
thread.thread_id = record.tid_data.tid;
thread.name = thread_name;
thread.total_runtime_in_ns += runtime;
SpinInfo& spin_info = thread.spin_info;
spin_info.runtime_in_check_period += runtime;
spin_info.samples_in_check_period.push(SampleInfo(record.Timestamp(), runtime));
// Check spin loop.
if (thread.spin_info.samples_in_check_period.size() == 1u) {
return;
}
uint64_t start_timestamp = spin_info.samples_in_check_period.front().timestamp;
uint64_t time_period_in_ns = record.Timestamp() - start_timestamp;
if (time_period_in_ns < spinloop_check_period_in_sec_ * 1e9) {
return;
}
if (thread.spin_info.runtime_in_check_period > time_period_in_ns * spinloop_check_rate_) {
// Detect a spin loop.
thread.spin_info.spinloop_count++;
double rate = std::min(
1.0, static_cast<double>(thread.spin_info.runtime_in_check_period) / time_period_in_ns);
if (rate > thread.spin_info.max_rate) {
thread.spin_info.max_rate = rate;
thread.spin_info.max_rate_start_timestamp = start_timestamp;
thread.spin_info.max_rate_end_timestamp = record.Timestamp();
// Clear samples to avoid overlapped spin loop periods.
std::queue<SampleInfo> empty_q;
std::swap(thread.spin_info.samples_in_check_period, empty_q);
thread.spin_info.runtime_in_check_period = 0;
} else {
thread.spin_info.runtime_in_check_period -=
spin_info.samples_in_check_period.front().runtime_in_ns;
thread.spin_info.samples_in_check_period.pop();
}
}
}
std::vector<ProcessInfo> TraceSchedCommand::BuildProcessInfo() {
std::unordered_map<pid_t, ProcessInfo> process_map;
for (auto& pair : thread_map_) {
const ThreadInfo& thread = pair.second;
// No need to report simpleperf.
if (thread.name == "simpleperf") {
continue;
}
ProcessInfo& process = process_map[thread.process_id];
process.process_id = thread.process_id;
if (thread.process_id == thread.thread_id) {
process.name = thread.name;
}
process.total_runtime_in_ns += thread.total_runtime_in_ns;
process.threads.push_back(&thread);
}
std::vector<ProcessInfo> processes;
for (auto& pair : process_map) {
processes.push_back(pair.second);
}
auto sort_process = [](const ProcessInfo& p1, const ProcessInfo& p2) {
return p1.total_runtime_in_ns > p2.total_runtime_in_ns;
};
auto sort_thread = [](const ThreadInfo* t1, const ThreadInfo* t2) {
return t1->total_runtime_in_ns > t2->total_runtime_in_ns;
};
std::sort(processes.begin(), processes.end(), sort_process);
for (auto& process : processes) {
std::sort(process.threads.begin(), process.threads.end(), sort_thread);
}
return processes;
}
void TraceSchedCommand::ReportProcessInfo(const std::vector<ProcessInfo>& processes) {
uint64_t total_runtime_in_ns = 0u;
for (auto& process : processes) {
total_runtime_in_ns += process.total_runtime_in_ns;
}
printf("Total Runtime: %.3f ms\n", total_runtime_in_ns / 1e6);
struct ReportEntry {
bool is_process = false;
uint64_t runtime_in_ns = 0;
double percentage = 0;
pid_t pid = 0;
std::string name;
};
std::vector<ReportEntry> entries;
for (auto& process : processes) {
ReportEntry entry;
entry.is_process = true;
entry.runtime_in_ns = process.total_runtime_in_ns;
entry.pid = process.process_id;
entry.name = process.name;
entry.percentage = 0.0;
if (total_runtime_in_ns != 0u) {
entry.percentage = 100.0 * process.total_runtime_in_ns / total_runtime_in_ns;
}
// Omit processes taken too small percentage.
if (entry.percentage < 0.01) {
continue;
}
entries.push_back(entry);
if (show_threads_) {
for (auto& thread : process.threads) {
ReportEntry entry;
entry.is_process = false;
entry.runtime_in_ns = thread->total_runtime_in_ns;
entry.pid = thread->thread_id;
entry.name = thread->name;
entry.percentage = 0.0;
if (total_runtime_in_ns != 0u) {
entry.percentage = 100.0 * thread->total_runtime_in_ns / total_runtime_in_ns;
}
// Omit threads taken too small percentage.
if (entry.percentage < 0.01) {
continue;
}
entries.push_back(entry);
}
}
}
SampleDisplayer<ReportEntry, uint64_t> displayer;
if (show_threads_) {
displayer.AddDisplayFunction("Type", [](const ReportEntry* entry) -> std::string {
return entry->is_process ? "Process" : "Thread";
});
}
displayer.AddDisplayFunction("Runtime", [](const ReportEntry* entry) {
return StringPrintf("%.3f ms", entry->runtime_in_ns / 1e6);
});
displayer.AddDisplayFunction("Percentage", [](const ReportEntry* entry) {
return StringPrintf("%.2f%%", entry->percentage);
});
displayer.AddDisplayFunction(
"Pid", [](const ReportEntry* entry) { return StringPrintf("%d", entry->pid); });
displayer.AddDisplayFunction("Name", [](const ReportEntry* entry) { return entry->name; });
for (auto& entry : entries) {
displayer.AdjustWidth(&entry);
}
displayer.PrintNames(stdout);
for (auto& entry : entries) {
displayer.PrintSample(stdout, &entry);
}
for (auto& process : processes) {
for (auto& thread : process.threads) {
if (thread->spin_info.spinloop_count != 0u) {
double percentage = 100.0 * thread->spin_info.max_rate;
double duration_in_ns =
thread->spin_info.max_rate_end_timestamp - thread->spin_info.max_rate_start_timestamp;
double running_time_in_ns = duration_in_ns * thread->spin_info.max_rate;
printf("Detect %" PRIu64
" spin loops in process %s (%d) thread %s (%d),\n"
"max rate at [%.6f s - %.6f s], taken %.3f ms / %.3f ms (%.2f%%).\n",
thread->spin_info.spinloop_count, process.name.c_str(), process.process_id,
thread->name.c_str(), thread->thread_id,
thread->spin_info.max_rate_start_timestamp / 1e9,
thread->spin_info.max_rate_end_timestamp / 1e9, running_time_in_ns / 1e6,
duration_in_ns / 1e6, percentage);
}
}
}
}
} // namespace
void RegisterTraceSchedCommand() {
RegisterCommand("trace-sched", [] { return std::unique_ptr<Command>(new TraceSchedCommand()); });
}
} // namespace simpleperf