blob: 253dcdbcb3427754a85a398d202b1f1abdb9d6ee [file] [log] [blame]
/*
* Copyright (C) 2023 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "BranchListFile.h"
#include "ETMDecoder.h"
#include "system/extras/simpleperf/branch_list.pb.h"
namespace simpleperf {
static constexpr const char* ETM_BRANCH_LIST_PROTO_MAGIC = "simpleperf:EtmBranchList";
std::string ETMBranchToProtoString(const std::vector<bool>& branch) {
size_t bytes = (branch.size() + 7) / 8;
std::string res(bytes, '\0');
for (size_t i = 0; i < branch.size(); i++) {
if (branch[i]) {
res[i >> 3] |= 1 << (i & 7);
}
}
return res;
}
std::vector<bool> ProtoStringToETMBranch(const std::string& s, size_t bit_size) {
std::vector<bool> branch(bit_size, false);
for (size_t i = 0; i < bit_size; i++) {
if (s[i >> 3] & (1 << (i & 7))) {
branch[i] = true;
}
}
return branch;
}
static std::optional<proto::ETMBinary::BinaryType> ToProtoBinaryType(DsoType dso_type) {
switch (dso_type) {
case DSO_ELF_FILE:
return proto::ETMBinary::ELF_FILE;
case DSO_KERNEL:
return proto::ETMBinary::KERNEL;
case DSO_KERNEL_MODULE:
return proto::ETMBinary::KERNEL_MODULE;
default:
LOG(ERROR) << "unexpected dso type " << dso_type;
return std::nullopt;
}
}
bool ETMBinaryMapToString(const ETMBinaryMap& binary_map, std::string& s) {
proto::BranchList branch_list_proto;
branch_list_proto.set_magic(ETM_BRANCH_LIST_PROTO_MAGIC);
std::vector<char> branch_buf;
for (const auto& p : binary_map) {
const BinaryKey& key = p.first;
const ETMBinary& binary = p.second;
auto binary_proto = branch_list_proto.add_etm_data();
binary_proto->set_path(key.path);
if (!key.build_id.IsEmpty()) {
binary_proto->set_build_id(key.build_id.ToString().substr(2));
}
auto opt_binary_type = ToProtoBinaryType(binary.dso_type);
if (!opt_binary_type.has_value()) {
return false;
}
binary_proto->set_type(opt_binary_type.value());
for (const auto& addr_p : binary.branch_map) {
auto addr_proto = binary_proto->add_addrs();
addr_proto->set_addr(addr_p.first);
for (const auto& branch_p : addr_p.second) {
const std::vector<bool>& branch = branch_p.first;
auto branch_proto = addr_proto->add_branches();
branch_proto->set_branch(ETMBranchToProtoString(branch));
branch_proto->set_branch_size(branch.size());
branch_proto->set_count(branch_p.second);
}
}
if (binary.dso_type == DSO_KERNEL) {
binary_proto->mutable_kernel_info()->set_kernel_start_addr(key.kernel_start_addr);
}
}
if (!branch_list_proto.SerializeToString(&s)) {
LOG(ERROR) << "failed to serialize branch list binary map";
return false;
}
return true;
}
static std::optional<DsoType> ToDsoType(proto::ETMBinary::BinaryType binary_type) {
switch (binary_type) {
case proto::ETMBinary::ELF_FILE:
return DSO_ELF_FILE;
case proto::ETMBinary::KERNEL:
return DSO_KERNEL;
case proto::ETMBinary::KERNEL_MODULE:
return DSO_KERNEL_MODULE;
default:
LOG(ERROR) << "unexpected binary type " << binary_type;
return std::nullopt;
}
}
static UnorderedETMBranchMap BuildUnorderedETMBranchMap(const proto::ETMBinary& binary_proto) {
UnorderedETMBranchMap branch_map;
for (size_t i = 0; i < binary_proto.addrs_size(); i++) {
const auto& addr_proto = binary_proto.addrs(i);
auto& b_map = branch_map[addr_proto.addr()];
for (size_t j = 0; j < addr_proto.branches_size(); j++) {
const auto& branch_proto = addr_proto.branches(j);
std::vector<bool> branch =
ProtoStringToETMBranch(branch_proto.branch(), branch_proto.branch_size());
b_map[branch] = branch_proto.count();
}
}
return branch_map;
}
bool StringToETMBinaryMap(const std::string& s, ETMBinaryMap& binary_map) {
LBRData lbr_data;
return ParseBranchListData(s, binary_map, lbr_data);
}
class ETMThreadTreeWhenRecording : public ETMThreadTree {
public:
ETMThreadTreeWhenRecording(bool dump_maps_from_proc)
: dump_maps_from_proc_(dump_maps_from_proc) {}
ThreadTree& GetThreadTree() { return thread_tree_; }
void ExcludePid(pid_t pid) { exclude_pid_ = pid; }
const ThreadEntry* FindThread(int tid) override {
const ThreadEntry* thread = thread_tree_.FindThread(tid);
if (thread == nullptr) {
if (dump_maps_from_proc_) {
thread = FindThreadFromProc(tid);
}
if (thread == nullptr) {
return nullptr;
}
}
if (exclude_pid_ && exclude_pid_ == thread->pid) {
return nullptr;
}
if (dump_maps_from_proc_) {
DumpMapsFromProc(thread->pid);
}
return thread;
}
void DisableThreadExitRecords() override { thread_tree_.DisableThreadExitRecords(); }
const MapSet& GetKernelMaps() override { return thread_tree_.GetKernelMaps(); }
private:
const ThreadEntry* FindThreadFromProc(int tid) {
std::string comm;
pid_t pid;
if (ReadThreadNameAndPid(tid, &comm, &pid)) {
thread_tree_.SetThreadName(pid, tid, comm);
return thread_tree_.FindThread(tid);
}
return nullptr;
}
void DumpMapsFromProc(int pid) {
if (dumped_processes_.count(pid) == 0) {
dumped_processes_.insert(pid);
std::vector<ThreadMmap> maps;
if (GetThreadMmapsInProcess(pid, &maps)) {
for (const auto& map : maps) {
thread_tree_.AddThreadMap(pid, pid, map.start_addr, map.len, map.pgoff, map.name);
}
}
}
}
ThreadTree thread_tree_;
bool dump_maps_from_proc_;
std::unordered_set<int> dumped_processes_;
std::optional<pid_t> exclude_pid_;
};
class ETMBranchListGeneratorImpl : public ETMBranchListGenerator {
public:
ETMBranchListGeneratorImpl(bool dump_maps_from_proc)
: thread_tree_(dump_maps_from_proc), binary_filter_(nullptr) {}
void SetExcludePid(pid_t pid) override { thread_tree_.ExcludePid(pid); }
void SetBinaryFilter(const RegEx* binary_name_regex) override {
binary_filter_.SetRegex(binary_name_regex);
}
bool ProcessRecord(const Record& r, bool& consumed) override;
ETMBinaryMap GetETMBinaryMap() override;
private:
struct AuxRecordData {
uint64_t start;
uint64_t end;
bool formatted;
AuxRecordData(uint64_t start, uint64_t end, bool formatted)
: start(start), end(end), formatted(formatted) {}
};
struct PerCpuData {
std::vector<uint8_t> aux_data;
uint64_t data_offset = 0;
std::queue<AuxRecordData> aux_records;
};
bool ProcessAuxRecord(const AuxRecord& r);
bool ProcessAuxTraceRecord(const AuxTraceRecord& r);
void ProcessBranchList(const ETMBranchList& branch_list);
ETMThreadTreeWhenRecording thread_tree_;
uint64_t kernel_map_start_addr_ = 0;
BinaryFilter binary_filter_;
std::map<uint32_t, PerCpuData> cpu_map_;
std::unique_ptr<ETMDecoder> etm_decoder_;
std::unordered_map<Dso*, ETMBinary> branch_list_binary_map_;
};
bool ETMBranchListGeneratorImpl::ProcessRecord(const Record& r, bool& consumed) {
consumed = true; // No need to store any records.
uint32_t type = r.type();
if (type == PERF_RECORD_AUXTRACE_INFO) {
etm_decoder_ = ETMDecoder::Create(*static_cast<const AuxTraceInfoRecord*>(&r), thread_tree_);
if (!etm_decoder_) {
return false;
}
etm_decoder_->RegisterCallback(
[this](const ETMBranchList& branch) { ProcessBranchList(branch); });
return true;
}
if (type == PERF_RECORD_AUX) {
return ProcessAuxRecord(*static_cast<const AuxRecord*>(&r));
}
if (type == PERF_RECORD_AUXTRACE) {
return ProcessAuxTraceRecord(*static_cast<const AuxTraceRecord*>(&r));
}
if (type == PERF_RECORD_MMAP && r.InKernel()) {
auto& mmap_r = *static_cast<const MmapRecord*>(&r);
if (android::base::StartsWith(mmap_r.filename, DEFAULT_KERNEL_MMAP_NAME)) {
kernel_map_start_addr_ = mmap_r.data->addr;
}
}
thread_tree_.GetThreadTree().Update(r);
return true;
}
bool ETMBranchListGeneratorImpl::ProcessAuxRecord(const AuxRecord& r) {
OverflowResult result = SafeAdd(r.data->aux_offset, r.data->aux_size);
if (result.overflow || r.data->aux_size > SIZE_MAX) {
LOG(ERROR) << "invalid aux record";
return false;
}
size_t size = r.data->aux_size;
uint64_t start = r.data->aux_offset;
uint64_t end = result.value;
PerCpuData& data = cpu_map_[r.Cpu()];
if (start >= data.data_offset && end <= data.data_offset + data.aux_data.size()) {
// The ETM data is available. Process it now.
uint8_t* p = data.aux_data.data() + (start - data.data_offset);
if (!etm_decoder_) {
LOG(ERROR) << "ETMDecoder isn't created";
return false;
}
return etm_decoder_->ProcessData(p, size, !r.Unformatted(), r.Cpu());
}
// The ETM data isn't available. Put the aux record into queue.
data.aux_records.emplace(start, end, !r.Unformatted());
return true;
}
bool ETMBranchListGeneratorImpl::ProcessAuxTraceRecord(const AuxTraceRecord& r) {
OverflowResult result = SafeAdd(r.data->offset, r.data->aux_size);
if (result.overflow || r.data->aux_size > SIZE_MAX) {
LOG(ERROR) << "invalid auxtrace record";
return false;
}
size_t size = r.data->aux_size;
uint64_t start = r.data->offset;
uint64_t end = result.value;
PerCpuData& data = cpu_map_[r.Cpu()];
data.data_offset = start;
CHECK(r.location.addr != nullptr);
data.aux_data.resize(size);
memcpy(data.aux_data.data(), r.location.addr, size);
// Process cached aux records.
while (!data.aux_records.empty() && data.aux_records.front().start < end) {
const AuxRecordData& aux = data.aux_records.front();
if (aux.start >= start && aux.end <= end) {
uint8_t* p = data.aux_data.data() + (aux.start - start);
if (!etm_decoder_) {
LOG(ERROR) << "ETMDecoder isn't created";
return false;
}
if (!etm_decoder_->ProcessData(p, aux.end - aux.start, aux.formatted, r.Cpu())) {
return false;
}
}
data.aux_records.pop();
}
return true;
}
void ETMBranchListGeneratorImpl::ProcessBranchList(const ETMBranchList& branch_list) {
if (!binary_filter_.Filter(branch_list.dso)) {
return;
}
auto& branch_map = branch_list_binary_map_[branch_list.dso].branch_map;
++branch_map[branch_list.addr][branch_list.branch];
}
ETMBinaryMap ETMBranchListGeneratorImpl::GetETMBinaryMap() {
ETMBinaryMap binary_map;
for (auto& p : branch_list_binary_map_) {
Dso* dso = p.first;
ETMBinary& binary = p.second;
binary.dso_type = dso->type();
BuildId build_id;
GetBuildId(*dso, build_id);
BinaryKey key(dso->Path(), build_id);
if (binary.dso_type == DSO_KERNEL) {
if (kernel_map_start_addr_ == 0) {
LOG(WARNING) << "Can't convert kernel ip addresses without kernel start addr. So remove "
"branches for the kernel.";
continue;
}
key.kernel_start_addr = kernel_map_start_addr_;
}
binary_map[key] = std::move(binary);
}
return binary_map;
}
std::unique_ptr<ETMBranchListGenerator> ETMBranchListGenerator::Create(bool dump_maps_from_proc) {
return std::unique_ptr<ETMBranchListGenerator>(
new ETMBranchListGeneratorImpl(dump_maps_from_proc));
}
ETMBranchListGenerator::~ETMBranchListGenerator() {}
bool LBRDataToString(const LBRData& data, std::string& s) {
proto::BranchList branch_list_proto;
branch_list_proto.set_magic(ETM_BRANCH_LIST_PROTO_MAGIC);
auto lbr_proto = branch_list_proto.mutable_lbr_data();
for (const LBRSample& sample : data.samples) {
auto sample_proto = lbr_proto->add_samples();
sample_proto->set_binary_id(sample.binary_id);
sample_proto->set_vaddr_in_file(sample.vaddr_in_file);
for (const LBRBranch& branch : sample.branches) {
auto branch_proto = sample_proto->add_branches();
branch_proto->set_from_binary_id(branch.from_binary_id);
branch_proto->set_to_binary_id(branch.to_binary_id);
branch_proto->set_from_vaddr_in_file(branch.from_vaddr_in_file);
branch_proto->set_to_vaddr_in_file(branch.to_vaddr_in_file);
}
}
for (const BinaryKey& binary : data.binaries) {
auto binary_proto = lbr_proto->add_binaries();
binary_proto->set_path(binary.path);
binary_proto->set_build_id(binary.build_id.ToString().substr(2));
}
if (!branch_list_proto.SerializeToString(&s)) {
LOG(ERROR) << "failed to serialize lbr data";
return false;
}
return true;
}
bool ParseBranchListData(const std::string& s, ETMBinaryMap& etm_data, LBRData& lbr_data) {
proto::BranchList branch_list_proto;
if (!branch_list_proto.ParseFromString(s)) {
PLOG(ERROR) << "failed to read ETMBranchList msg";
return false;
}
if (branch_list_proto.magic() != ETM_BRANCH_LIST_PROTO_MAGIC) {
PLOG(ERROR) << "not in etm branch list format in branch_list.proto";
return false;
}
for (size_t i = 0; i < branch_list_proto.etm_data_size(); i++) {
const auto& binary_proto = branch_list_proto.etm_data(i);
BinaryKey key(binary_proto.path(), BuildId(binary_proto.build_id()));
if (binary_proto.has_kernel_info()) {
key.kernel_start_addr = binary_proto.kernel_info().kernel_start_addr();
}
ETMBinary& binary = etm_data[key];
auto dso_type = ToDsoType(binary_proto.type());
if (!dso_type) {
LOG(ERROR) << "invalid binary type " << binary_proto.type();
return false;
}
binary.dso_type = dso_type.value();
binary.branch_map = BuildUnorderedETMBranchMap(binary_proto);
}
if (branch_list_proto.has_lbr_data()) {
const auto& lbr_data_proto = branch_list_proto.lbr_data();
lbr_data.samples.resize(lbr_data_proto.samples_size());
for (size_t i = 0; i < lbr_data_proto.samples_size(); ++i) {
const auto& sample_proto = lbr_data_proto.samples(i);
LBRSample& sample = lbr_data.samples[i];
sample.binary_id = sample_proto.binary_id();
sample.vaddr_in_file = sample_proto.vaddr_in_file();
sample.branches.resize(sample_proto.branches_size());
for (size_t j = 0; j < sample_proto.branches_size(); ++j) {
const auto& branch_proto = sample_proto.branches(j);
LBRBranch& branch = sample.branches[j];
branch.from_binary_id = branch_proto.from_binary_id();
branch.to_binary_id = branch_proto.to_binary_id();
branch.from_vaddr_in_file = branch_proto.from_vaddr_in_file();
branch.to_vaddr_in_file = branch_proto.to_vaddr_in_file();
}
}
for (size_t i = 0; i < lbr_data_proto.binaries_size(); ++i) {
const auto& binary_proto = lbr_data_proto.binaries(i);
lbr_data.binaries.emplace_back(binary_proto.path(), BuildId(binary_proto.build_id()));
}
}
return true;
}
} // namespace simpleperf