blob: ed161c23f76296d150e2fe0adac0ffbdbc0d5638 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "environment.h"
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/utsname.h>
#include <limits>
#include <set>
#include <unordered_map>
#include <vector>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/parseint.h>
#include <android-base/strings.h>
#include <android-base/stringprintf.h>
#include <procinfo/process.h>
#if defined(__ANDROID__)
#include <sys/system_properties.h>
#endif
#include "read_elf.h"
#include "thread_tree.h"
#include "utils.h"
class LineReader {
public:
explicit LineReader(FILE* fp) : fp_(fp), buf_(nullptr), bufsize_(0) {
}
~LineReader() {
free(buf_);
fclose(fp_);
}
char* ReadLine() {
if (getline(&buf_, &bufsize_, fp_) != -1) {
return buf_;
}
return nullptr;
}
size_t MaxLineSize() {
return bufsize_;
}
private:
FILE* fp_;
char* buf_;
size_t bufsize_;
};
std::vector<int> GetOnlineCpus() {
std::vector<int> result;
FILE* fp = fopen("/sys/devices/system/cpu/online", "re");
if (fp == nullptr) {
PLOG(ERROR) << "can't open online cpu information";
return result;
}
LineReader reader(fp);
char* line;
if ((line = reader.ReadLine()) != nullptr) {
result = GetCpusFromString(line);
}
CHECK(!result.empty()) << "can't get online cpu information";
return result;
}
std::vector<int> GetCpusFromString(const std::string& s) {
std::set<int> cpu_set;
bool have_dash = false;
const char* p = s.c_str();
char* endp;
int last_cpu;
int cpu;
// Parse line like: 0,1-3, 5, 7-8
while ((cpu = static_cast<int>(strtol(p, &endp, 10))) != 0 || endp != p) {
if (have_dash && !cpu_set.empty()) {
for (int t = last_cpu + 1; t < cpu; ++t) {
cpu_set.insert(t);
}
}
have_dash = false;
cpu_set.insert(cpu);
last_cpu = cpu;
p = endp;
while (!isdigit(*p) && *p != '\0') {
if (*p == '-') {
have_dash = true;
}
++p;
}
}
return std::vector<int>(cpu_set.begin(), cpu_set.end());
}
static std::vector<KernelMmap> GetLoadedModules() {
std::vector<KernelMmap> result;
FILE* fp = fopen("/proc/modules", "re");
if (fp == nullptr) {
// There is no /proc/modules on Android devices, so we don't print error if failed to open it.
PLOG(DEBUG) << "failed to open file /proc/modules";
return result;
}
LineReader reader(fp);
char* line;
while ((line = reader.ReadLine()) != nullptr) {
// Parse line like: nf_defrag_ipv6 34768 1 nf_conntrack_ipv6, Live 0xffffffffa0fe5000
char name[reader.MaxLineSize()];
uint64_t addr;
if (sscanf(line, "%s%*lu%*u%*s%*s 0x%" PRIx64, name, &addr) == 2) {
KernelMmap map;
map.name = name;
map.start_addr = addr;
result.push_back(map);
}
}
bool all_zero = true;
for (const auto& map : result) {
if (map.start_addr != 0) {
all_zero = false;
}
}
if (all_zero) {
LOG(DEBUG) << "addresses in /proc/modules are all zero, so ignore kernel modules";
return std::vector<KernelMmap>();
}
return result;
}
static void GetAllModuleFiles(const std::string& path,
std::unordered_map<std::string, std::string>* module_file_map) {
for (const auto& name : GetEntriesInDir(path)) {
std::string entry_path = path + "/" + name;
if (IsRegularFile(entry_path) && android::base::EndsWith(name, ".ko")) {
std::string module_name = name.substr(0, name.size() - 3);
std::replace(module_name.begin(), module_name.end(), '-', '_');
module_file_map->insert(std::make_pair(module_name, entry_path));
} else if (IsDir(entry_path)) {
GetAllModuleFiles(entry_path, module_file_map);
}
}
}
static std::vector<KernelMmap> GetModulesInUse() {
utsname uname_buf;
if (TEMP_FAILURE_RETRY(uname(&uname_buf)) != 0) {
PLOG(ERROR) << "uname() failed";
return std::vector<KernelMmap>();
}
std::string linux_version = uname_buf.release;
std::string module_dirpath = "/lib/modules/" + linux_version + "/kernel";
std::unordered_map<std::string, std::string> module_file_map;
GetAllModuleFiles(module_dirpath, &module_file_map);
// TODO: There is no /proc/modules or /lib/modules on Android, find methods work on it.
std::vector<KernelMmap> module_mmaps = GetLoadedModules();
for (auto& module : module_mmaps) {
auto it = module_file_map.find(module.name);
if (it != module_file_map.end()) {
module.filepath = it->second;
}
}
return module_mmaps;
}
void GetKernelAndModuleMmaps(KernelMmap* kernel_mmap, std::vector<KernelMmap>* module_mmaps) {
kernel_mmap->name = DEFAULT_KERNEL_MMAP_NAME;
kernel_mmap->start_addr = 0;
kernel_mmap->filepath = kernel_mmap->name;
*module_mmaps = GetModulesInUse();
for (auto& map : *module_mmaps) {
if (map.filepath.empty()) {
map.filepath = "[" + map.name + "]";
}
}
if (module_mmaps->size() == 0) {
kernel_mmap->len = std::numeric_limits<uint64_t>::max() - kernel_mmap->start_addr;
} else {
std::sort(
module_mmaps->begin(), module_mmaps->end(),
[](const KernelMmap& m1, const KernelMmap& m2) { return m1.start_addr < m2.start_addr; });
// When not having enough privilege, all addresses are read as 0.
if (kernel_mmap->start_addr == (*module_mmaps)[0].start_addr) {
kernel_mmap->len = 0;
} else {
kernel_mmap->len = (*module_mmaps)[0].start_addr - kernel_mmap->start_addr - 1;
}
for (size_t i = 0; i + 1 < module_mmaps->size(); ++i) {
if ((*module_mmaps)[i].start_addr == (*module_mmaps)[i + 1].start_addr) {
(*module_mmaps)[i].len = 0;
} else {
(*module_mmaps)[i].len =
(*module_mmaps)[i + 1].start_addr - (*module_mmaps)[i].start_addr - 1;
}
}
module_mmaps->back().len =
std::numeric_limits<uint64_t>::max() - module_mmaps->back().start_addr;
}
}
static bool ReadThreadNameAndPid(pid_t tid, std::string* comm, pid_t* pid) {
android::procinfo::ProcessInfo procinfo;
if (!android::procinfo::GetProcessInfo(tid, &procinfo)) {
return false;
}
if (comm != nullptr) {
*comm = procinfo.name;
}
if (pid != nullptr) {
*pid = procinfo.pid;
}
return true;
}
std::vector<pid_t> GetThreadsInProcess(pid_t pid) {
std::vector<pid_t> result;
android::procinfo::GetProcessTids(pid, &result);
return result;
}
bool IsThreadAlive(pid_t tid) {
return IsDir(android::base::StringPrintf("/proc/%d", tid));
}
bool GetProcessForThread(pid_t tid, pid_t* pid) {
return ReadThreadNameAndPid(tid, nullptr, pid);
}
bool GetThreadName(pid_t tid, std::string* name) {
return ReadThreadNameAndPid(tid, name, nullptr);
}
std::vector<pid_t> GetAllProcesses() {
std::vector<pid_t> result;
std::vector<std::string> entries = GetEntriesInDir("/proc");
for (const auto& entry : entries) {
pid_t pid;
if (!android::base::ParseInt(entry.c_str(), &pid, 0)) {
continue;
}
result.push_back(pid);
}
return result;
}
bool GetThreadMmapsInProcess(pid_t pid, std::vector<ThreadMmap>* thread_mmaps) {
std::string map_file = android::base::StringPrintf("/proc/%d/maps", pid);
FILE* fp = fopen(map_file.c_str(), "re");
if (fp == nullptr) {
PLOG(DEBUG) << "can't open file " << map_file;
return false;
}
thread_mmaps->clear();
LineReader reader(fp);
char* line;
while ((line = reader.ReadLine()) != nullptr) {
// Parse line like: 00400000-00409000 r-xp 00000000 fc:00 426998 /usr/lib/gvfs/gvfsd-http
uint64_t start_addr, end_addr, pgoff;
char type[reader.MaxLineSize()];
char execname[reader.MaxLineSize()];
strcpy(execname, "");
if (sscanf(line, "%" PRIx64 "-%" PRIx64 " %s %" PRIx64 " %*x:%*x %*u %s\n", &start_addr,
&end_addr, type, &pgoff, execname) < 4) {
continue;
}
if (strcmp(execname, "") == 0) {
strcpy(execname, DEFAULT_EXECNAME_FOR_THREAD_MMAP);
}
ThreadMmap thread;
thread.start_addr = start_addr;
thread.len = end_addr - start_addr;
thread.pgoff = pgoff;
thread.name = execname;
thread.executable = (type[2] == 'x');
thread_mmaps->push_back(thread);
}
return true;
}
bool GetKernelBuildId(BuildId* build_id) {
ElfStatus result = GetBuildIdFromNoteFile("/sys/kernel/notes", build_id);
if (result != ElfStatus::NO_ERROR) {
LOG(DEBUG) << "failed to read /sys/kernel/notes: " << result;
}
return result == ElfStatus::NO_ERROR;
}
bool GetModuleBuildId(const std::string& module_name, BuildId* build_id) {
std::string notefile = "/sys/module/" + module_name + "/notes/.note.gnu.build-id";
return GetBuildIdFromNoteFile(notefile, build_id);
}
bool GetValidThreadsFromThreadString(const std::string& tid_str, std::set<pid_t>* tid_set) {
std::vector<std::string> strs = android::base::Split(tid_str, ",");
for (const auto& s : strs) {
int tid;
if (!android::base::ParseInt(s.c_str(), &tid, 0)) {
LOG(ERROR) << "Invalid tid '" << s << "'";
return false;
}
if (!IsDir(android::base::StringPrintf("/proc/%d", tid))) {
LOG(ERROR) << "Non existing thread '" << tid << "'";
return false;
}
tid_set->insert(tid);
}
return true;
}
/*
* perf event paranoia level:
* -1 - not paranoid at all
* 0 - disallow raw tracepoint access for unpriv
* 1 - disallow cpu events for unpriv
* 2 - disallow kernel profiling for unpriv
* 3 - disallow user profiling for unpriv
*/
static bool ReadPerfEventParanoid(int* value) {
std::string s;
if (!android::base::ReadFileToString("/proc/sys/kernel/perf_event_paranoid", &s)) {
PLOG(DEBUG) << "failed to read /proc/sys/kernel/perf_event_paranoid";
return false;
}
s = android::base::Trim(s);
if (!android::base::ParseInt(s.c_str(), value)) {
PLOG(ERROR) << "failed to parse /proc/sys/kernel/perf_event_paranoid: " << s;
return false;
}
return true;
}
static const char* GetLimitLevelDescription(int limit_level) {
switch (limit_level) {
case -1: return "unlimited";
case 0: return "disallowing raw tracepoint access for unpriv";
case 1: return "disallowing cpu events for unpriv";
case 2: return "disallowing kernel profiling for unpriv";
case 3: return "disallowing user profiling for unpriv";
default: return "unknown level";
}
}
bool CheckPerfEventLimit() {
// root is not limited by /proc/sys/kernel/perf_event_paranoid.
if (IsRoot()) {
return true;
}
int limit_level;
bool can_read_paranoid = ReadPerfEventParanoid(&limit_level);
if (can_read_paranoid && limit_level <= 1) {
return true;
}
#if defined(__ANDROID__)
const char* prop_name = "security.perf_harden";
char prop_value[PROP_VALUE_MAX];
if (__system_property_get(prop_name, prop_value) <= 0) {
// can't do anything if there is no such property.
return true;
}
if (strcmp(prop_value, "0") == 0) {
return true;
}
// Try to enable perf_event_paranoid by setprop security.perf_harden=0.
if (__system_property_set(prop_name, "0") == 0) {
sleep(1);
if (can_read_paranoid && ReadPerfEventParanoid(&limit_level) && limit_level <= 1) {
return true;
}
if (__system_property_get(prop_name, prop_value) > 0 && strcmp(prop_value, "0") == 0) {
return true;
}
}
if (can_read_paranoid) {
LOG(WARNING) << "/proc/sys/kernel/perf_event_paranoid is " << limit_level
<< ", " << GetLimitLevelDescription(limit_level) << ".";
}
LOG(WARNING) << "Try using `adb shell setprop security.perf_harden 0` to allow profiling.";
return false;
#else
if (can_read_paranoid) {
LOG(WARNING) << "/proc/sys/kernel/perf_event_paranoid is " << limit_level
<< ", " << GetLimitLevelDescription(limit_level) << ".";
return false;
}
#endif
return true;
}
bool GetMaxSampleFrequency(uint64_t* max_sample_freq) {
std::string s;
if (!android::base::ReadFileToString("/proc/sys/kernel/perf_event_max_sample_rate", &s)) {
PLOG(DEBUG) << "failed to read /proc/sys/kernel/perf_event_max_sample_rate";
return false;
}
s = android::base::Trim(s);
if (!android::base::ParseUint(s.c_str(), max_sample_freq)) {
LOG(ERROR) << "failed to parse /proc/sys/kernel/perf_event_max_sample_rate: " << s;
return false;
}
return true;
}
bool CheckSampleFrequency(uint64_t sample_freq) {
if (sample_freq == 0) {
LOG(ERROR) << "Sample frequency can't be zero.";
return false;
}
uint64_t max_sample_freq;
if (!GetMaxSampleFrequency(&max_sample_freq)) {
// Omit the check if can't read perf_event_max_sample_rate.
return true;
}
if (sample_freq > max_sample_freq) {
LOG(ERROR) << "Sample frequency " << sample_freq << " is out of range [1, "
<< max_sample_freq << "]";
return false;
}
return true;
}
bool CheckKernelSymbolAddresses() {
const std::string kptr_restrict_file = "/proc/sys/kernel/kptr_restrict";
std::string s;
if (!android::base::ReadFileToString(kptr_restrict_file, &s)) {
PLOG(DEBUG) << "failed to read " << kptr_restrict_file;
return false;
}
s = android::base::Trim(s);
int value;
if (!android::base::ParseInt(s.c_str(), &value)) {
LOG(ERROR) << "failed to parse " << kptr_restrict_file << ": " << s;
return false;
}
if (value == 0) {
return true;
}
if (value == 1 && IsRoot()) {
return true;
}
LOG(WARNING) << "Access to kernel symbol addresses is restricted. If "
<< "possible, please do `echo 0 >/proc/sys/kernel/kptr_restrict` "
<< "to fix this.";
return false;
}
ArchType GetMachineArch() {
utsname uname_buf;
if (TEMP_FAILURE_RETRY(uname(&uname_buf)) != 0) {
PLOG(WARNING) << "uname() failed";
return GetBuildArch();
}
ArchType arch = GetArchType(uname_buf.machine);
if (arch != ARCH_UNSUPPORTED) {
return arch;
}
return GetBuildArch();
}