blob: f477abfd60d81307cfe00381bc468243953a4b72 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <inttypes.h>
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <chrono>
#include <set>
#include <string>
#include <vector>
#include <android-base/logging.h>
#include <android-base/strings.h>
#include "command.h"
#include "environment.h"
#include "event_attr.h"
#include "event_fd.h"
#include "event_selection_set.h"
#include "event_type.h"
#include "scoped_signal_handler.h"
#include "utils.h"
#include "workload.h"
static std::vector<std::string> default_measured_event_types{
"cpu-cycles", "stalled-cycles-frontend", "stalled-cycles-backend",
"instructions", "branch-instructions", "branch-misses",
"task-clock", "context-switches", "page-faults",
};
static volatile bool signaled;
static void signal_handler(int) {
signaled = true;
}
class StatCommand : public Command {
public:
StatCommand()
: Command("stat", "gather performance counter information",
"Usage: simpleperf stat [options] [command [command-args]]\n"
" Gather performance counter information of running [command].\n"
" -a Collect system-wide information.\n"
" --cpu cpu_item1,cpu_item2,...\n"
" Collect information only on the selected cpus. cpu_item can\n"
" be a cpu number like 1, or a cpu range like 0-3.\n"
" -e event1[:modifier1],event2[:modifier2],...\n"
" Select the event list to count. Use `simpleperf list` to find\n"
" all possible event names. Modifiers can be added to define\n"
" how the event should be monitored. Possible modifiers are:\n"
" u - monitor user space events only\n"
" k - monitor kernel space events only\n"
" --no-inherit\n"
" Don't stat created child threads/processes.\n"
" -p pid1,pid2,...\n"
" Stat events on existing processes. Mutually exclusive with -a.\n"
" -t tid1,tid2,...\n"
" Stat events on existing threads. Mutually exclusive with -a.\n"
" --verbose Show result in verbose mode.\n"),
verbose_mode_(false),
system_wide_collection_(false),
child_inherit_(true) {
signaled = false;
scoped_signal_handler_.reset(
new ScopedSignalHandler({SIGCHLD, SIGINT, SIGTERM}, signal_handler));
}
bool Run(const std::vector<std::string>& args);
private:
bool ParseOptions(const std::vector<std::string>& args, std::vector<std::string>* non_option_args);
bool AddMeasuredEventType(const std::string& event_type_name);
bool AddDefaultMeasuredEventTypes();
bool SetEventSelection();
bool ShowCounters(const std::vector<CountersInfo>& counters, double duration_in_sec);
bool verbose_mode_;
bool system_wide_collection_;
bool child_inherit_;
std::vector<pid_t> monitored_threads_;
std::vector<int> cpus_;
std::vector<EventTypeAndModifier> measured_event_types_;
EventSelectionSet event_selection_set_;
std::unique_ptr<ScopedSignalHandler> scoped_signal_handler_;
};
bool StatCommand::Run(const std::vector<std::string>& args) {
// 1. Parse options, and use default measured event types if not given.
std::vector<std::string> workload_args;
if (!ParseOptions(args, &workload_args)) {
return false;
}
if (measured_event_types_.empty()) {
if (!AddDefaultMeasuredEventTypes()) {
return false;
}
}
if (!SetEventSelection()) {
return false;
}
// 2. Create workload.
std::unique_ptr<Workload> workload;
if (!workload_args.empty()) {
workload = Workload::CreateWorkload(workload_args);
if (workload == nullptr) {
return false;
}
}
if (!system_wide_collection_ && monitored_threads_.empty()) {
if (workload != nullptr) {
monitored_threads_.push_back(workload->GetPid());
event_selection_set_.SetEnableOnExec(true);
} else {
LOG(ERROR) << "No threads to monitor. Try `simpleperf help stat` for help\n";
return false;
}
}
// 3. Open perf_event_files.
if (system_wide_collection_) {
if (!event_selection_set_.OpenEventFilesForCpus(cpus_)) {
return false;
}
} else {
if (cpus_.empty()) {
cpus_ = {-1};
}
if (!event_selection_set_.OpenEventFilesForThreadsOnCpus(monitored_threads_, cpus_)) {
return false;
}
}
// 4. Count events while workload running.
auto start_time = std::chrono::steady_clock::now();
if (workload != nullptr && !workload->Start()) {
return false;
}
while (!signaled) {
sleep(1);
}
auto end_time = std::chrono::steady_clock::now();
// 5. Read and print counters.
std::vector<CountersInfo> counters;
if (!event_selection_set_.ReadCounters(&counters)) {
return false;
}
double duration_in_sec =
std::chrono::duration_cast<std::chrono::duration<double>>(end_time - start_time).count();
if (!ShowCounters(counters, duration_in_sec)) {
return false;
}
return true;
}
bool StatCommand::ParseOptions(const std::vector<std::string>& args,
std::vector<std::string>* non_option_args) {
std::set<pid_t> tid_set;
size_t i;
for (i = 0; i < args.size() && args[i].size() > 0 && args[i][0] == '-'; ++i) {
if (args[i] == "-a") {
system_wide_collection_ = true;
} else if (args[i] == "--cpu") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
cpus_ = GetCpusFromString(args[i]);
} else if (args[i] == "-e") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
std::vector<std::string> event_types = android::base::Split(args[i], ",");
for (auto& event_type : event_types) {
if (!AddMeasuredEventType(event_type)) {
return false;
}
}
} else if (args[i] == "--no-inherit") {
child_inherit_ = false;
} else if (args[i] == "-p") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
if (!GetValidThreadsFromProcessString(args[i], &tid_set)) {
return false;
}
} else if (args[i] == "-t") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
if (!GetValidThreadsFromThreadString(args[i], &tid_set)) {
return false;
}
} else if (args[i] == "--verbose") {
verbose_mode_ = true;
} else {
ReportUnknownOption(args, i);
return false;
}
}
monitored_threads_.insert(monitored_threads_.end(), tid_set.begin(), tid_set.end());
if (system_wide_collection_ && !monitored_threads_.empty()) {
LOG(ERROR) << "Stat system wide and existing processes/threads can't be used at the same time.";
return false;
}
if (non_option_args != nullptr) {
non_option_args->clear();
for (; i < args.size(); ++i) {
non_option_args->push_back(args[i]);
}
}
return true;
}
bool StatCommand::AddMeasuredEventType(const std::string& event_type_name) {
std::unique_ptr<EventTypeAndModifier> event_type_modifier = ParseEventType(event_type_name);
if (event_type_modifier == nullptr) {
return false;
}
measured_event_types_.push_back(*event_type_modifier);
return true;
}
bool StatCommand::AddDefaultMeasuredEventTypes() {
for (auto& name : default_measured_event_types) {
// It is not an error when some event types in the default list are not supported by the kernel.
const EventType* type = FindEventTypeByName(name);
if (type != nullptr && IsEventAttrSupportedByKernel(CreateDefaultPerfEventAttr(*type))) {
AddMeasuredEventType(name);
}
}
if (measured_event_types_.empty()) {
LOG(ERROR) << "Failed to add any supported default measured types";
return false;
}
return true;
}
bool StatCommand::SetEventSelection() {
for (auto& event_type : measured_event_types_) {
if (!event_selection_set_.AddEventType(event_type)) {
return false;
}
}
event_selection_set_.SetInherit(child_inherit_);
return true;
}
static std::string ReadableCountValue(uint64_t count,
const EventTypeAndModifier& event_type_modifier) {
if (event_type_modifier.event_type.name == "cpu-clock" ||
event_type_modifier.event_type.name == "task-clock") {
double value = count / 1e6;
return android::base::StringPrintf("%lf(ms)", value);
} else {
std::string s = android::base::StringPrintf("%" PRIu64, count);
for (size_t i = s.size() - 1, j = 1; i > 0; --i, ++j) {
if (j == 3) {
s.insert(s.begin() + i, ',');
j = 0;
}
}
return s;
}
}
struct CounterSummary {
const EventTypeAndModifier* event_type;
uint64_t count;
double scale;
std::string readable_count_str;
std::string comment;
};
static std::string GetCommentForSummary(const CounterSummary& summary,
const std::vector<CounterSummary>& summaries,
double duration_in_sec) {
const std::string& type_name = summary.event_type->event_type.name;
const std::string& modifier = summary.event_type->modifier;
if (type_name == "task-clock") {
double run_sec = summary.count / 1e9;
double cpu_usage = run_sec / duration_in_sec;
return android::base::StringPrintf("%lf%% cpu usage", cpu_usage * 100);
}
if (type_name == "cpu-clock") {
return "";
}
if (type_name == "cpu-cycles") {
double hz = summary.count / duration_in_sec;
return android::base::StringPrintf("%lf GHz", hz / 1e9);
}
if (type_name == "instructions" && summary.count != 0) {
for (auto& t : summaries) {
if (t.event_type->event_type.name == "cpu-cycles" && t.event_type->modifier == modifier) {
double cycles_per_instruction = t.count * 1.0 / summary.count;
return android::base::StringPrintf("%lf cycles per instruction", cycles_per_instruction);
}
}
}
if (android::base::EndsWith(type_name, "-misses")) {
std::string s;
if (type_name == "cache-misses") {
s = "cache-references";
} else if (type_name == "branch-misses") {
s = "branch-instructions";
} else {
s = type_name.substr(0, type_name.size() - strlen("-misses")) + "s";
}
for (auto& t : summaries) {
if (t.event_type->event_type.name == s && t.event_type->modifier == modifier && t.count != 0) {
double miss_rate = summary.count * 1.0 / t.count;
return android::base::StringPrintf("%lf%% miss rate", miss_rate * 100);
}
}
}
double rate = summary.count / duration_in_sec;
if (rate > 1e9) {
return android::base::StringPrintf("%.3lf G/sec", rate / 1e9);
}
if (rate > 1e6) {
return android::base::StringPrintf("%.3lf M/sec", rate / 1e6);
}
if (rate > 1e3) {
return android::base::StringPrintf("%.3lf K/sec", rate / 1e3);
}
return android::base::StringPrintf("%.3lf /sec", rate);
}
bool StatCommand::ShowCounters(const std::vector<CountersInfo>& counters, double duration_in_sec) {
printf("Performance counter statistics:\n\n");
if (verbose_mode_) {
for (auto& counters_info : counters) {
const EventTypeAndModifier* event_type = counters_info.event_type;
for (auto& counter_info : counters_info.counters) {
printf("%s(tid %d, cpu %d): count %s, time_enabled %" PRIu64 ", time running %" PRIu64
", id %" PRIu64 "\n",
event_type->name.c_str(), counter_info.tid, counter_info.cpu,
ReadableCountValue(counter_info.counter.value, *event_type).c_str(),
counter_info.counter.time_enabled, counter_info.counter.time_running,
counter_info.counter.id);
}
}
}
std::vector<CounterSummary> summaries;
for (auto& counters_info : counters) {
uint64_t value_sum = 0;
uint64_t time_enabled_sum = 0;
uint64_t time_running_sum = 0;
for (auto& counter_info : counters_info.counters) {
// If time_running is 0, the program has never run on this event and we shouldn't
// summarize it.
if (counter_info.counter.time_running != 0) {
value_sum += counter_info.counter.value;
time_enabled_sum += counter_info.counter.time_enabled;
time_running_sum += counter_info.counter.time_running;
}
}
double scale = 1.0;
if (time_running_sum < time_enabled_sum && time_running_sum != 0) {
scale = static_cast<double>(time_enabled_sum) / time_running_sum;
}
CounterSummary summary;
summary.event_type = counters_info.event_type;
summary.count = value_sum;
summary.scale = scale;
summary.readable_count_str = ReadableCountValue(summary.count, *summary.event_type);
summaries.push_back(summary);
}
for (auto& summary : summaries) {
summary.comment = GetCommentForSummary(summary, summaries, duration_in_sec);
}
size_t count_column_width = 0;
size_t name_column_width = 0;
size_t comment_column_width = 0;
for (auto& summary : summaries) {
count_column_width = std::max(count_column_width, summary.readable_count_str.size());
name_column_width = std::max(name_column_width, summary.event_type->name.size());
comment_column_width = std::max(comment_column_width, summary.comment.size());
}
for (auto& summary : summaries) {
printf(" %*s %-*s # %-*s (%.0lf%%)\n", static_cast<int>(count_column_width),
summary.readable_count_str.c_str(), static_cast<int>(name_column_width),
summary.event_type->name.c_str(), static_cast<int>(comment_column_width),
summary.comment.c_str(), 1.0 / summary.scale * 100);
}
printf("\nTotal test time: %lf seconds.\n", duration_in_sec);
return true;
}
void RegisterStatCommand() {
RegisterCommand("stat", [] { return std::unique_ptr<Command>(new StatCommand); });
}